1
|
Functional Autodisplay of Phenolic Acid Decarboxylase using a GDSL Autotransporter on Escherichia coli for Efficient Catalysis of 4-Hydroxycinnamic Acids to Vinylphenol Derivatives. Catalysts 2019. [DOI: 10.3390/catal9080634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bioproduction of vinylphenol derivatives, such as 4-vinylguaiacol (4-VG) and 4-vinylphenol (4-VP), from 4-hydroxycinnamic acids, such as ferulic acid (FA) and p-coumaric acid (pCA), employing whole cells expressing phenolic acid decarboxylases (PAD) as a biocatalyst has attracted much attention in recent years. However, the accumulation of 4-VG or 4-VP in the cell may cause high cytotoxicity to Escherichia coli (E. coli) and consequently cell death during the process. In this study, we firstly report the functional display of a phenolic acid decarboxylase (BLPAD) from Bacillus licheniformis using a GDSL autotransporter from Pseudomonas putida on the cell surface of E. coli. Expression and localization of BLPAD on E. coli were verified by SDS-PAGE and protease accessibility. The PelB signal peptide is more effective in guiding the translocation of BLPAD on the cell surface than the native signal peptide of GDSL, and the cell surface displaying BLPAD activity reached 19.72 U/OD600. The cell surface displaying BLPAD showed good reusability and retained 63% of residual activity after 7 cycles of repeated use. In contrast, the residual activity of the intracellular expressing cells was approximately 11% after 3 cycles of reuse. The molar bioconversion yields of 72.6% and 80.4% were achieved at the concentration of 300 mM of FA and pCA in a biphasic toluene/Na2HPO4–citric acid buffer system, respectively. Its good reusability and efficient catalysis suggested that the cell surface displaying BLPAD can be used as a whole-cell biocatalyst for efficient production of 4-VG and 4-VP.
Collapse
|
2
|
Hovingh ES, de Maat S, Cloherty APM, Johnson S, Pinelli E, Maas C, Jongerius I. Virulence Associated Gene 8 of Bordetella pertussis Enhances Contact System Activity by Inhibiting the Regulatory Function of Complement Regulator C1 Inhibitor. Front Immunol 2018; 9:1172. [PMID: 29915576 PMCID: PMC5994690 DOI: 10.3389/fimmu.2018.01172] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.
Collapse
Affiliation(s)
- Elise S Hovingh
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Steven de Maat
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Alexandra P M Cloherty
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Steven Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Elena Pinelli
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Coen Maas
- Department of Clinical Chemistry and Haematology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ilse Jongerius
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| |
Collapse
|
3
|
Aoki E, Fujiwara K, Shimizu A, Takase-Yoden S, Ikeguchi M. Optimization of Haemophilus influenzae adhesin transmembrane domain expression in Escherichia coli. Protein Expr Purif 2017; 145:19-24. [PMID: 29284141 DOI: 10.1016/j.pep.2017.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
Abstract
To obtain a high yield of the transmembrane domain of Haemophilus influenzae adhesin (HiaTD) in Escherichia coli, we attempted to express the HiaTD with and without a signal sequence using a T7 expression system. The expression level of HiaTD after induction was followed by quantification of the purified HiaTD, flow cytometric analysis of the outer membrane integrated HiaTD, and immunoblotting assay of fractionated cell lysate. In the expression system with a signal sequence, although the amount of cell-surface-expressed HiaTD increased over time, the number of HiaTD-expressing cells decreased, probably because of plasmid instability. As a result, the amount of purified HiaTD reached a plateau at 2 h postinduction. Although expression without the signal sequence provides a large amount of proteins as inclusion bodies in some membrane proteins, HiaTD expressed without a signal sequence was not observed as inclusion bodies and seemed to be assembled into the outer membrane during or after cell lysis.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Sayaka Takase-Yoden
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
4
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
5
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
6
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Drobnak I, Braselmann E, Chaney JL, Leyton DL, Bernstein HD, Lithgow T, Luirink J, Nataro JP, Clark PL. Of linkers and autochaperones: an unambiguous nomenclature to identify common and uncommon themes for autotransporter secretion. Mol Microbiol 2014; 95:1-16. [PMID: 25345653 DOI: 10.1111/mmi.12838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2014] [Indexed: 01/02/2023]
Abstract
Autotransporter (AT) proteins provide a diverse array of important virulence functions to Gram-negative bacterial pathogens, and have also been adapted for protein surface display applications. The 'autotransporter' moniker refers to early models that depicted these proteins facilitating their own translocation across the bacterial outer membrane. Although translocation is less autonomous than originally proposed, AT protein segments upstream of the C-terminal transmembrane β-barrel have nevertheless consistently been found to contribute to efficient translocation and/or folding of the N-terminal virulence region (the 'passenger'). However, defining the precise secretion functions of these AT regions has been complicated by the use of multiple overlapping and ambiguous terms to define AT sequence, structural, and functional features, including 'autochaperone', 'linker' and 'junction'. Moreover, the precise definitions and boundaries of these features vary among ATs and even among research groups, leading to an overall murky picture of the contributions of specific features to translocation. Here we propose a unified, unambiguous nomenclature for AT structural, functional and conserved sequence features, based on explicit criteria. Applied to 16 well-studied AT proteins, this nomenclature reveals new commonalities for translocation but also highlights that the autochaperone function is less closely associated with a conserved sequence element than previously believed.
Collapse
Affiliation(s)
- Igor Drobnak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Besingi RN, Chaney JL, Clark PL. An alternative outer membrane secretion mechanism for an autotransporter protein lacking a C-terminal stable core. Mol Microbiol 2013; 90:1028-45. [PMID: 24118465 DOI: 10.1111/mmi.12414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2013] [Indexed: 01/24/2023]
Abstract
Autotransporter (AT) proteins are a broad class of virulence factors from Gram-negative pathogens. AT outer membrane (OM) secretion appears simple in many regards, yet the mechanism that enables transport of the central AT 'passenger' across the OM remains unclear. OM secretion efficiency for two AT passengers is enhanced by approximately 20 kDa stable core at the C-terminus of the passenger, but studies on a broader range of AT proteins are needed in order to determine whether a stability difference between the passenger N- and C-terminus represents a truly common mechanistic feature. Yersinia pestis YapV is homologous to Shigella flexneri IcsA, and like IcsA, YapV recruits mammalian neural Wiskott-Aldrich syndrome protein (N-WASP). In vitro, the purified YapV passenger is functional and rich in β-sheet structure, but lacks a approximately 20 kDa C-terminal stable core. However, the N-terminal 49 residues of the YapV passenger globally destabilize the entire YapV passenger, enhancing its OM secretion efficiency. These results indicate that the contributions of AT passenger sequences to OM secretion efficiency extend beyond a C-terminal stable core, and highlight a role of the passenger N-terminus in reducing passenger stability in order to facilitate OM secretion of some AT proteins.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | | |
Collapse
|
9
|
Nicolay T, Vanderleyden J, Spaepen S. Autotransporter-based cell surface display in Gram-negative bacteria. Crit Rev Microbiol 2013; 41:109-23. [PMID: 23855358 DOI: 10.3109/1040841x.2013.804032] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cell surface display of proteins can be used for several biotechnological applications such as the screening of protein libraries, whole cell biocatalysis and live vaccine development. Amongst all secretion systems and surface appendages of Gram-negative bacteria, the autotransporter secretion pathway holds great potential for surface display because of its modular structure and apparent simplicity. Autotransporters are polypeptides made up of an N-terminal signal peptide, a secreted or surface-displayed passenger domain and a membrane-anchored C-terminal translocation unit. Genetic replacement of the passenger domain allows for the surface display of heterologous passengers. An autotransporter-based surface expression module essentially consists of an application-dependent promoter system, a signal peptide, a passenger domain of interest and the autotransporter translocation unit. The passenger domain needs to be compatible with surface translocation although till now no general rules have been determined to test this compatibility. The autotransporter technology for surface display of heterologous passenger domains is critically discussed for various applications.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics , Leuven , Belgium
| | | | | |
Collapse
|
10
|
Nicolay T, Lemoine L, Lievens E, Balzarini S, Vanderleyden J, Spaepen S. Probing the applicability of autotransporter based surface display with the EstA autotransporter of Pseudomonas stutzeri A15. Microb Cell Fact 2012; 11:158. [PMID: 23237539 PMCID: PMC3546941 DOI: 10.1186/1475-2859-11-158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022] Open
Abstract
Background Autotransporters represent a widespread family of secreted proteins in Gram-negative bacteria. Their seemingly easy secretion mechanism and modular structure make them interesting candidates for cell surface display of heterologous proteins. The most widely applied host organism for this purpose is Escherichia coli. Pseudomonas stutzeri A15 is an interesting candidate host for environmentally relevant biotechnological applications. With the recently characterized P. stutzeri A15 EstA autotransporter at hand, all tools for developing a surface display system for environmental use are available. More general, this system could serve as a case-study to test the broad applicability of autotransporter based surface display. Results Based on the P. stutzeri A15 EstA autotransporter β-domain, a surface display expression module was constructed for use in P. stutzeri A15. Proof of concept of this module was presented by successful surface display of the original EstA passenger domain, which retained its full esterase activity. Almost all of the tested heterologous passenger domains however were not exposed at the cell surface of P. stutzeri A15, as assessed by whole cell proteinase K treatment. Only for a beta-lactamase protein, cell surface display in P. stutzeri A15 was comparable to presentation of the original EstA passenger domain. Development of expression modules based on the full-length EstA autotransporter did not resolve these problems. Conclusions Since only one of the tested heterologous passenger proteins could be displayed at the cell surface of P. stutzeri A15 to a notable extent, our results indicate that the EstA autotransporter cannot be regarded as a broad spectrum cell surface display system in P. stutzeri A15.
Collapse
Affiliation(s)
- Toon Nicolay
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
11
|
Teh MY, Tran ENH, Morona R. Absence of O antigen suppresses Shigella flexneri IcsA autochaperone region mutations. MICROBIOLOGY-SGM 2012; 158:2835-2850. [PMID: 22936034 DOI: 10.1099/mic.0.062471-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The Shigella flexneri IcsA (VirG) protein is a polarly distributed autotransporter protein. IcsA functions as a virulence factor by interacting with the host actin regulatory protein N-WASP, which in turn activates the Arp2/3 complex, initiating actin polymerization. Formation of F-actin comet tails allows bacterial cell-to-cell spreading. Although various accessory proteins such as periplasmic chaperones and the β-barrel assembly machine (BAM) complex have been shown to be involved in the export of IcsA, the IcsA translocation mechanism remains to be fully elucidated. A putative autochaperone (AC) region (amino acids 634-735) located at the C-terminal end of the IcsA passenger domain, which forms part of the self-associating autotransporter (SAAT) domain, has been suggested to be required for IcsA biogenesis, as well as for N-WASP recruitment, based on mutagenesis studies. IcsA(i) proteins with linker insertion mutations within the AC region have a significant reduction in production and are defective in N-WASP recruitment when expressed in smooth LPS (S-LPS) S. flexneri. In this study, we have found that the LPS O antigen plays a role in IcsA(i) production based on the use of an rmlD (rfbD) mutant having rough LPS (R-LPS) and a novel assay in which O antigen is depleted using tunicamycin treatment and then regenerated. In addition, we have identified a new N-WASP binding/interaction site within the IcsA AC region.
Collapse
Affiliation(s)
- Min Yan Teh
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| | - Renato Morona
- Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
12
|
Leo JC, Grin I, Linke D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 2012; 367:1088-101. [PMID: 22411980 PMCID: PMC3297439 DOI: 10.1098/rstb.2011.0208] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autotransport in Gram-negative bacteria denotes the ability of surface-localized proteins to cross the outer membrane (OM) autonomously. Autotransporters perform this task with the help of a β-barrel transmembrane domain localized in the OM. Different classes of autotransporters have been investigated in detail in recent years; classical monomeric but also trimeric autotransporters comprise many important bacterial virulence factors. So do the two-partner secretion systems, which are a special case as the transported protein resides on a different polypeptide chain than the transporter. Despite the great interest in these proteins, the exact mechanism of the transport process remains elusive. Moreover, different periplasmic and OM factors have been identified that play a role in the translocation, making the term ‘autotransport’ debatable. In this review, we compile the wealth of details known on the mechanism of single autotransporters from different classes and organisms, and put them into a bigger perspective. We also discuss recently discovered or rediscovered classes of autotransporters.
Collapse
Affiliation(s)
- Jack C Leo
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | | | | |
Collapse
|
13
|
Tame JR. Autotransporter protein secretion. Biomol Concepts 2011; 2:525-36. [DOI: 10.1515/bmc.2011.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/16/2011] [Indexed: 11/15/2022] Open
Abstract
AbstractAutotransporter proteins are a large family of virulence factors secreted from Gram-negative bacteria by a unique mechanism. First described in the 1980s, these proteins have a C-terminal region that folds into a β-barrel in the bacterial outer membrane. The so-called passenger domain attached to this barrel projects away from the cell surface and may be liberated from the cell by self-cleavage or surface proteases. Although the majority of passenger domains have a similar β-helical structure, they carry a variety of subdomains, allowing them to carry out widely differing functions related to pathogenesis. Considerable biochemical and structural characterisation of the barrel domain has shown that ‘autotransporters’ in fact require a conserved and essential protein complex in the outer membrane for correct folding. Although the globular domains of this complex projecting into the periplasmic space have also been structurally characterised, the overall secretion pathway of the autotransporters remains highly puzzling. It was presumed for many years that the passenger domain passed through the centre of the barrel domain to reach the cell surface, driven at least in part by folding. This picture is complicated by conflicting data, and there is currently little hard information on the true nature of the secretion intermediates. As well as their medical importance therefore, autotransporters are proving to be an excellent system to study the folding and membrane insertion of outer membrane proteins in general. This review focuses on structural aspects of autotransporters; their many functions in pathogenesis are beyond its scope.
Collapse
Affiliation(s)
- Jeremy R.H. Tame
- 1Yokohama City University, Suehiro 1-7-29, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
14
|
Dautin N, Bernstein HD. Residues in a conserved α-helical segment are required for cleavage but not secretion of an Escherichia coli serine protease autotransporter passenger domain. J Bacteriol 2011; 193:3748-56. [PMID: 21642456 PMCID: PMC3147522 DOI: 10.1128/jb.05070-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/20/2011] [Indexed: 01/14/2023] Open
Abstract
Autotransporters are a superfamily of virulence factors produced by Gram-negative bacteria that are comprised of an N-terminal extracellular domain (passenger domain) and a C-terminal β barrel domain (β domain) that resides in the outer membrane (OM). The β domain promotes the translocation of the passenger domain across the OM by an unknown mechanism. Available evidence indicates that an α-helical segment that spans the passenger domain-β domain junction is embedded inside the β domain at an early stage of assembly. Following its secretion, the passenger domain of the serine protease autotransporters of the Enterobacteriaceae (SPATEs) and the pertactin family of Bordetella pertussis autotransporters is released from the β domain through an intrabarrel autoproteolytic cleavage of the α-helical segment. Although the mutation of conserved residues that surround the cleavage site has been reported to impair both the translocation and cleavage of the passenger domain of a SPATE called Tsh, we show here that the mutation of the same residues in another SPATE (EspP) affects only passenger domain cleavage. Our results strongly suggest that the conserved residues are required to position the α-helical segment for the cleavage reaction and are not required to promote passenger domain secretion.
Collapse
Affiliation(s)
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
15
|
Autotransporter passenger domain secretion requires a hydrophobic cavity at the extracellular entrance of the β-domain pore. Biochem J 2011; 435:577-87. [DOI: 10.1042/bj20101548] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Whooping cough (pertussis) is a highly contagious acute respiratory illness of humans caused by the Gram-negative bacterial pathogen Bordetella pertussis. The AT (autotransporter) BrkA (Bordetella serum-resistance killing protein A) is an important B. pertussis virulence factor that confers serum resistance and mediates adherence. In the present study, we have solved the crystal structure of the BrkA β-domain at 3 Å (1 Å=0.1 nm) resolution. Special features are a hairpin-like structure formed by the external loop L4, which is observed fortuitously sitting inside the pore of the crystallographic adjacent β-domain, and a previously undiscovered hydrophobic cavity formed by patches on loop L4 and β-strands S5 and S6. This adopts a ubiquitous structure characteristic of all AT β-domains. Mutagenesis studies have demonstrated that the hairpin-like structure and hydrophobic cavity are crucial for BrkA passenger domain (virulence effector) translocation. This structure helps in understanding the molecular mechanism of AT assembly and secretion and provides a potential target for anti-pertussis drug design.
Collapse
|
16
|
Navarro-Garcia F. Enteroaggregative Escherichia coli plasmid-encoded toxin. Future Microbiol 2010; 5:1005-13. [PMID: 20632801 DOI: 10.2217/fmb.10.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plasmid-encoded toxin (Pet) is secreted by enteroaggregative Escherichia coli (EAEC), a pathotype of diarrhogenic E. coli. EAEC infection is an important cause of diarrhea in outbreak and nonoutbreak settings in developing and developed countries. EAEC secretes Pet by using the type V secretion system. Mature secreted Pet is a serine protease and its eukaryotic target is the actin-binding protein alpha-fodrin. When Pet cleaves alpha-fodrin in the target cell cytosol, the organization of the actin cytoskeleton is disrupted. The loss of actin filament structure results in cell rounding and detachment from the substratum. This article summarizes the long trip of Pet during its biogenesis, its interaction with epithelial cells, intracellular trafficking and mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14-740, 07000 México DF, México.
| |
Collapse
|
17
|
Soprova Z, Sauri A, van Ulsen P, Tame JRH, den Blaauwen T, Jong WSP, Luirink J. A conserved aromatic residue in the autochaperone domain of the autotransporter Hbp is critical for initiation of outer membrane translocation. J Biol Chem 2010; 285:38224-33. [PMID: 20923769 DOI: 10.1074/jbc.m110.180505] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autotransporters are bacterial virulence factors that share a common mechanism by which they are transported to the cell surface. They consist of an N-terminal passenger domain and a C-terminal β-barrel, which has been implicated in translocation of the passenger across the outer membrane (OM). The mechanism of passenger translocation and folding is still unclear but involves a conserved region at the C terminus of the passenger domain, the so-called autochaperone domain. This domain functions in the stepwise translocation process and in the folding of the passenger domain after translocation. In the autotransporter hemoglobin protease (Hbp), the autochaperone domain consists of the last rung of the β-helix and a capping domain. To examine the role of this region, we have mutated several conserved aromatic residues that are oriented toward the core of the β-helix. We found that non-conservative mutations affected secretion with Trp(1015) in the cap region as the most critical residue. Substitution at this position yielded a DegP-sensitive intermediate that is located at the periplasmic side of the OM. Further analysis revealed that Trp(1015) is most likely required for initiation of processive folding of the β-helix at the cell surface, which drives sequential translocation of the Hbp passenger across the OM.
Collapse
Affiliation(s)
- Zora Soprova
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Exploring the Versatility of the Autotransporter BrkA for the Presentation of Enterovirus 71 Vaccine Candidates at the Surface of Attenuated Bordetella pertussis. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.provac.2010.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Reidl S, Lehmann A, Schiller R, Salam Khan A, Dobrindt U. Impact of O-glycosylation on the molecular and cellular adhesion properties of the Escherichia coli autotransporter protein Ag43. Int J Med Microbiol 2009; 299:389-401. [DOI: 10.1016/j.ijmm.2009.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/04/2009] [Accepted: 01/06/2009] [Indexed: 11/24/2022] Open
|
20
|
Zhao L, Nguyen NT, Fernandez RC, Murphy MEP. Crystallographic characterization of the passenger domain of the Bordetella autotransporter BrkA. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:608-11. [PMID: 19478443 DOI: 10.1107/s174430910901642x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 05/01/2009] [Indexed: 01/22/2023]
Abstract
Autotransporters (ATs) are proteins that deliver effectors (the passenger domain) to the surface of Gram-negative bacteria by the type V secretion pathway. The passenger domain of BrkA, a Bordetella pertussis autotransporter mediating serum resistance and adherence, was cloned in a pET expression system and overexpressed in Escherichia coli. The gene product was correctly refolded, purified to homogeneity and crystallized. The crystals diffracted to 2.8 A resolution. The space group was assumed to be P4(1)2(1)2, with unit-cell parameters a = b = 108.19, c = 115.35 A.
Collapse
Affiliation(s)
- Li Zhao
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | | | | | | |
Collapse
|
21
|
Shrivastava R, Miller JF. Virulence factor secretion and translocation by Bordetella species. Curr Opin Microbiol 2009; 12:88-93. [PMID: 19186097 DOI: 10.1016/j.mib.2009.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 12/29/2008] [Accepted: 01/02/2009] [Indexed: 01/24/2023]
Abstract
Here we review the Bordetella virulence secretome with an emphasis on factors that translocate into target cells. Recent advances in understanding the functions of adenylate cyclase toxin, a type 1 secretion system (T1SS) substrate, and pertussis toxin, a type IV secretion system (T4SS) substrate, are briefly described and a compilation of additional secretion systems and secreted factors is provided. Particular attention is devoted to the Bsc type III secretion system (T3SS) and controversies surrounding it. Efforts to identify effector proteins, characterize in vitro and in vivo phenotypes, and the potential role of type III secretion during human infections are discussed.
Collapse
Affiliation(s)
- Ruchi Shrivastava
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
22
|
Dé E, Saint N, Glinel K, Meli AC, Lévy D, Jacob-Dubuisson F. Influence of the passenger domain of a model autotransporter on the properties of its translocator domain. Mol Membr Biol 2008; 25:192-202. [PMID: 18428035 DOI: 10.1080/09687680701771925] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Autotransporters are a superfamily of proteins secreted by Gram-negative bacteria including many virulence factors. They are modular proteins composed of an N-terminal signal peptide, a surface-exposed 'passenger' domain carrying the activity of the protein, and a C-terminal 'translocator' domain composed of an alpha-helical linker region and a transmembrane beta-barrel. The translocator domain plays an essential role for the secretion of the passenger domain across the outer membrane; however, the mechanism of autotransport remains poorly understood. The whooping cough agent Bordetella pertussis produces an autotransporter serine-protease, SphB1, which is involved in the maturation of an adhesin at the bacterial surface. SphB1 also mediates the proteolytic maturation of its own precursor. We used SphB1 as a model autotransporter and performed the first comparisons of the biochemical and biophysical properties of an isolated translocator domain with those of the same domain preceded by the C-terminal moiety of its natural passenger. By using cross-linking and dynamic light scattering, we provide evidence that the passenger domain promotes the auto-association of SphB1, although these interactions appear rather labile. Electrophysiological studies revealed that the passenger domain of the autotransporter appears to maintain the translocator channel in a low-conductance conformation, most likely by stabilizing the alpha-helix inside the pore. That the passenger may significantly influence AT physicochemical properties is likely to be relevant for the in vivo maturation and stability of AT proteins.
Collapse
Affiliation(s)
- Emmanuelle Dé
- UMR 6522 CNRS, PBM, Plate-forme Protéomique IFRMP23, Université de Rouen, Mont-Saint-Aignan cedex, France.
| | | | | | | | | | | |
Collapse
|
23
|
Dautin N, Bernstein HD. Protein secretion in gram-negative bacteria via the autotransporter pathway. Annu Rev Microbiol 2007; 61:89-112. [PMID: 17506669 DOI: 10.1146/annurev.micro.61.080706.093233] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autotransporters are a large and diverse superfamily of proteins produced by pathogenic gram-negative bacteria that are composed of an N-terminal passenger domain, which typically harbors a virulence function, and a C-terminal beta domain. It has long been known that the beta domain anchors the protein to the outer membrane and facilitates transport of the passenger domain into the extracellular space. Despite the apparent simplicity of the autotransporter pathway, several aspects of autotransporter biogenesis remain poorly understood, most notably the mechanism by which the passenger domain is translocated across the outer membrane. Here we review recent evidence that the enormous sequence diversity of both passenger and beta domains belies a remarkable conservation of structure. We also discuss insights into each stage of autotransporter biogenesis that have emerged from recent structural, biochemical, and imaging studies.
Collapse
Affiliation(s)
- Nathalie Dautin
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0538, USA.
| | | |
Collapse
|
24
|
Highly attenuated Bordetella pertussis strain BPZE1 as a potential live vehicle for delivery of heterologous vaccine candidates. Infect Immun 2007; 76:111-9. [PMID: 17954727 DOI: 10.1128/iai.00795-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, is a promising and attractive candidate for vaccine delivery via the nasal route, provided that suitable attenuation of this pathogen has been obtained. Recently, the highly attenuated B. pertussis BPZE1 strain has been described as a potential live pertussis vaccine for humans. We investigated here the use of BPZE1 as a live vehicle for heterologous vaccine candidates. Previous studies have reported the filamentous hemagglutinin (FHA), a major B. pertussis adhesin, as a carrier to express foreign antigens in B. pertussis. In this study, we also examined the BrkA autotransporter as a surface display system. Three copies of the neutralizing peptide SP70 from enterovirus 71 (EV71) were fused to FHA or in the passenger domain of BrkA, and each chimera was expressed in BPZE1. The FHA-(SP70)3 and BrkA-(SP70)3 chimeras were successfully secreted and exposed at the bacterial surface, respectively. Nasal administration of the live recombinant strains triggered a strong and sustained systemic anti-SP70 antibody response in mice, although the titers and neutralizing activities against EV71 were significantly higher in the sera of mice immunized with the BrkA-(SP70)3-producing strain. These data indicate that the highly attenuated BPZE1 strain is a potential candidate for vaccine delivery via the nasal route with the BrkA autotransporter as an alternative to FHA for the presentation of the heterologous vaccine antigens.
Collapse
|
25
|
Jain S, Goldberg MB. Requirement for YaeT in the outer membrane assembly of autotransporter proteins. J Bacteriol 2007; 189:5393-8. [PMID: 17513479 PMCID: PMC1951886 DOI: 10.1128/jb.00228-07] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters constitute the largest group of secreted proteins in gram-negative bacteria. Autotransporter secretion involves the insertion of a carboxy-terminal beta barrel into and the translocation of an amino-terminal domain across the outer membrane. Here, we demonstrate that secretion of autotransporters from several organisms requires the outer membrane assembly factor YaeT.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital/Harvard Medical School, Cambridge, MA 02139, USA
| | | |
Collapse
|
26
|
Berthiaume F, Rutherford N, Mourez M. Mutations affecting the biogenesis of the AIDA-I autotransporter. Res Microbiol 2007; 158:348-54. [PMID: 17446047 DOI: 10.1016/j.resmic.2007.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Autotransporters are simple systems that Gram-negative bacteria employ to secrete proteins to their surfaces or into the extracellular milieu. They consist of an N-terminal passenger domain and a C-terminal domain that is thought to insert into the outer membrane and mediate the secretion of the passenger domain. Despite the apparent simplicity of these secretion systems, their mechanism of translocation is still not completely understood. To study this mechanism, we used the AIDA-I autotransporter adhesin of Escherichia coli. We introduced mutations at several sites in a junction region of the passenger domain, close to the membrane-embedded domain. We observed that the mutations dramatically affected the biogenesis of AIDA-I. The same mutations, however, did not affect the translocation of a chimeric construct where MalE, the E. coli periplasmic maltose binding protein, replaced most of the passenger domain of AIDA-I. Our results emphasize the function of this region in the biogenesis of AIDA-I and suggest that it plays its role by interacting with and/or promoting folding of native passenger domains.
Collapse
Affiliation(s)
- Frédéric Berthiaume
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6 Québec, Canada
| | | | | |
Collapse
|
27
|
Kostakioti M, Stathopoulos C. Role of the alpha-helical linker of the C-terminal translocator in the biogenesis of the serine protease subfamily of autotransporters. Infect Immun 2006; 74:4961-9. [PMID: 16926387 PMCID: PMC1594850 DOI: 10.1128/iai.00103-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autotransporters are secreted virulence factors that comprise three domains: an N-terminal signal peptide, an internal passenger domain, and a C-terminal beta-domain. The mechanism of passenger translocation across the outer membrane remains undefined, with four models having been proposed: the "hairpin," the "threading," the "multimeric," and the "Omp85 (YaeT)" models. In an attempt to understand autotransporter biogenesis, we screened the sequences of the serine protease subfamily of autotransporters (SPATEs) for conserved features indicative of a common secretion mechanism. Our analyses revealed a strictly conserved 14-amino-acid motif within the predicted alpha-helical linker region, upstream of the beta-domain of SPATEs. We investigated the function of this motif through a mutagenesis approach using Tsh as a model. Our studies demonstrate that mutations throughout the conserved motif do not block insertion of the beta-domain into the outer membrane. However, nonconservative mutations of four hydrophobic (V1099, L1102, G1107, and L1109) and three polar (N1100, K1104, and R1105) residues of the motif severely decrease or even abolish Tsh biogenesis. Further studies showed that these mutations interfere with passenger transport across the outer membrane. Bioinformatical analyses suggest that the critical polar and hydrophobic amino acids localize on opposite sides of the helix that runs through the beta-barrel pore. Our data indicate that the conserved motif is important for passenger secretion across the outer membrane and that mutations in certain residues severely affect the secretion process. We discuss how these results fit with the four proposed models for autotransporter secretion and potential applications in antimicrobial and vaccine development.
Collapse
Affiliation(s)
- Maria Kostakioti
- Department of Biology and Biochemistry, SRII 369, University of Houston, 4800 Calhoun St., Houston, TX 77204, USA
| | | |
Collapse
|
28
|
Letley DP, Rhead JL, Bishop K, Atherton JC. Paired cysteine residues are required for high levels of the Helicobacter pylori autotransporter VacA. MICROBIOLOGY-SGM 2006; 152:1319-1325. [PMID: 16622049 DOI: 10.1099/mic.0.28548-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Helicobacter pylori vacuolating cytotoxin VacA shares homology in its C-terminal domain with many autotransporter proteins, suggesting a similar mechanism of secretion. Like most autotransporters, VacA contains a single pair of cysteine residues located near the C-terminus of the passenger domain. This study aimed to investigate the role of these conserved cysteine residues. This involved changing each cysteine in the VacA passenger domain to serine, quantifying the effect on VacA levels and assessing toxin activity in H. pylori. It was shown that both cysteine residues were required for high VacA levels, although mutation of each cysteine reduced toxin amounts to differing extents, implying that their importance was not simply for intramolecular disulphide bond formation. Although less VacA was observed for the cysteine mutants, vacuolating activity was detected, showing that the cysteines were not required for VacA function.
Collapse
Affiliation(s)
- Darren P Letley
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
- Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | - Joanne L Rhead
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
- Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | - Keith Bishop
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| | - John C Atherton
- Institute of Infection, Immunity and Inflammation, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
- Wolfson Digestive Diseases Centre, University of Nottingham, Queen's Medical Centre, Clifton Boulevard, Nottingham NG7 2UH, UK
| |
Collapse
|
29
|
Cainelli Gebara VCB, Risoléo L, Lopes APY, Ferreira VRF, Quintilio W, Lépine F, Silva WD, Raw I. Adjuvant and immunogenic activities of the 73kDa N-terminal alpha-domain of BrkA autotransporter and Cpn60/60kDa chaperonin of Bordetella pertussis. Vaccine 2006; 25:621-9. [PMID: 17011680 DOI: 10.1016/j.vaccine.2006.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 08/22/2006] [Accepted: 08/24/2006] [Indexed: 11/16/2022]
Abstract
A soluble fraction obtained from Bordetella pertussis was evaluated as adjuvant for the pertussis component of the Diphtheria-Pertussis-Tetanus (DPT) vaccine. High levels of antibodies were induced, and a 78% protection rate of mice challenged with live B. pertussis was observed. Two proteins were identified as the 73 kDa N-terminal alpha-domain of BrkA autotransporter protein and the Cpn60/60 kDa chaperonin. Both stimulated antibodies against pertussis and induced a 42% protection rate against the challenge. IgG1 and IgG2a were stimulated suggesting that the immune response could be modulated to produce Th1 or Th2.
Collapse
Affiliation(s)
- Vera C B Cainelli Gebara
- Centro de Biotecnologia, Instituto Butantan, Av. Dr. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jain S, van Ulsen P, Benz I, Schmidt MA, Fernandez R, Tommassen J, Goldberg MB. Polar localization of the autotransporter family of large bacterial virulence proteins. J Bacteriol 2006; 188:4841-50. [PMID: 16788193 PMCID: PMC1483012 DOI: 10.1128/jb.00326-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters are an extensive family of large secreted virulence-associated proteins of gram-negative bacteria. Secretion of such large proteins poses unique challenges to bacteria. We demonstrate that autotransporters from a wide variety of rod-shaped pathogens, including IcsA and SepA of Shigella flexneri, AIDA-I of diffusely adherent Escherichia coli, and BrkA of Bordetella pertussis, are localized to the bacterial pole. The restriction of autotransporters to the pole is dependent on the presence of a complete lipopolysaccharide (LPS), consistent with known effects of LPS composition on membrane fluidity. Newly synthesized and secreted BrkA is polar even in the presence of truncated LPS, and all autotransporters examined are polar in the cytoplasm prior to secretion. Together, these findings are consistent with autotransporter secretion occurring at the poles of rod-shaped gram-negative organisms. Moreover, NalP, an autotransporter of spherically shaped Neisseria meningitidis contains the molecular information to localize to the pole of Escherichia coli. In N. meningitidis, NalP is secreted at distinct sites around the cell. These data are consistent with a model in which the secretion of large autotransporters occurs via specific conserved pathways located at the poles of rod-shaped bacteria, with profound implications for the underlying physiology of the bacterial cell and the nature of bacterial pathogen-host interactions.
Collapse
Affiliation(s)
- Sumita Jain
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Rutherford N, Charbonneau ME, Berthiaume F, Betton JM, Mourez M. The periplasmic folding of a cysteineless autotransporter passenger domain interferes with its outer membrane translocation. J Bacteriol 2006; 188:4111-6. [PMID: 16707702 PMCID: PMC1482886 DOI: 10.1128/jb.01949-05] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autotransporters are single polypeptides consisting of an outer membrane translocation domain mediating the translocation of a passenger domain. The periplasmic folding state of the passenger domain is controversial. By comparisons of passenger domains differing in their folding properties, our results suggest that periplasmic folding of passenger domains interferes with translocation.
Collapse
Affiliation(s)
- Nancy Rutherford
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St.-Hyacinthe, J2S 7C6 Quebec, Canada
| | | | | | | | | |
Collapse
|
32
|
Rutherford N, Mourez M. Surface display of proteins by gram-negative bacterial autotransporters. Microb Cell Fact 2006; 5:22. [PMID: 16787545 PMCID: PMC1533851 DOI: 10.1186/1475-2859-5-22] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 06/20/2006] [Indexed: 11/10/2022] Open
Abstract
Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.
Collapse
Affiliation(s)
- Nancy Rutherford
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6, Québec, Canada
| | - Michael Mourez
- Canada Research Chair on Bacterial Animal Diseases, Université de Montréal, Faculté de Médecine Vétérinaire, 3200 Sicotte, St-Hyacinthe, J2S 7C6, Québec, Canada
| |
Collapse
|
33
|
Meng G, Surana NK, St Geme JW, Waksman G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J 2006; 25:2297-304. [PMID: 16688217 PMCID: PMC1478200 DOI: 10.1038/sj.emboj.7601132] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 04/12/2006] [Indexed: 11/10/2022] Open
Abstract
Autotransporter proteins are defined by the ability to drive their own secretion across the bacterial outer membrane. The Hia autotransporter of Haemophilus influenzae belongs to the trimeric autotransporter subfamily and mediates bacterial adhesion to the respiratory epithelium. In this report, we present the crystal structure of the C-terminal end of Hia, corresponding to the entire Hia translocator domain and part of the passenger domain (residues 992-1098). This domain forms a beta-barrel with 12 transmembrane beta-strands, including four strands from each subunit. The beta-barrel has a central channel of 1.8 nm in diameter that is traversed by three N-terminal alpha-helices, one from each subunit. Mutagenesis studies demonstrate that the transmembrane portion of the three alpha-helices and the loop region between the alpha-helices and the neighboring beta-strands are essential for stability of the trimeric structure of the translocator domain, and that trimerization of the translocator domain is a prerequisite for translocator activity. Overall, this study provides important insights into the mechanism of translocation in trimeric autotransporters.
Collapse
Affiliation(s)
- Guoyu Meng
- Institute of Structural Molecular Biology at UCL/Birkbeck, London, UK
| | - Neeraj K Surana
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph W St Geme
- The Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, T901 Children's Health Center, Durham, NC 27710, USA. Tel.: +1 919 681 4080; Fax: +1 919 681 2714; E-mail:
| | - Gabriel Waksman
- Institute of Structural Molecular Biology at UCL/Birkbeck, London, UK
- Birkbeck College, School of Crystallography, Malet Street, London WC1E 7HX, UK. Tel.: +44 0207 631 6833; Fax: +44 0207 631 6833; E-mail:
| |
Collapse
|
34
|
Abstract
This review focuses on the function of the Escherichia coli and Salmonella autotransporters for which a considerable amount of literature is available. Members of the serine protease autotransporters of the Enterobacteriaceae (SPATEs) family are proteins from E. coli and Shigella spp., which, like the Neisseria and Haemophilus influenzae IgA1 proteases and Hap, possess a consensus serine protease motif. The largest subfamily of autotransporters is defined by the AidA conserved domain COG3468 and consists of members from a diverse range of animal and plant pathogens including E. coli, S. enterica, Yersinia pestis. This subfamily, which is composed of more than 55 proteins, possesses some of the best-characterized autotransporter proteins including the S. flexneri mediator of motility IcsA, the major phase-variable E. coli outer membrane protein antigen 43 (Ag43) and the diffuse adhering E. coli (DAEC) adhesin AIDA-I, from which this subfamily derives its name. Another member of the AIDA-I family, and one of the most studied autotransporter proteins, is IcsA. The autotransporter pathway is emerging as the most common mechanism of protein translocation across the gram-negative outer membrane.
Collapse
Affiliation(s)
- Ian R Henderson
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - James P Nataro
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201
| |
Collapse
|
35
|
Thanassi DG, Stathopoulos C, Karkal A, Li H. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of gram-negative bacteria (review). Mol Membr Biol 2005; 22:63-72. [PMID: 16092525 DOI: 10.1080/09687860500063290] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bacteria secrete a wide variety of proteins, many of which play important roles in virulence. In gram-negative bacteria, these proteins must cross the cytoplasmic or inner membrane, periplasm, and outer membrane to reach the cell surface. Gram-negative bacteria have evolved multiple pathways to allow protein secretion across their complex envelope. ATP is not available in the periplasm and many of these secretion pathways encode components that harness energy available at the inner membrane to drive secretion across the outer membrane. In contrast, the autotransporter, two-partner secretion and chaperone/usher pathways are comparatively simple systems that allow secretion across the outer membrane without the need for input of energy from the inner membrane. This review will present overviews of these 'self-sufficient' pathways, focusing on recent advances and secretion mechanisms. Similarities among the pathways and with other protein translocation mechanisms will be highlighted.
Collapse
Affiliation(s)
- David G Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York 11794-5120, USA.
| | | | | | | |
Collapse
|
36
|
Bandara AB, Sriranganathan N, Schurig GG, Boyle SM. Putative outer membrane autotransporter protein influences survival of Brucella suis in BALB/c mice. Vet Microbiol 2005; 109:95-104. [PMID: 15970403 DOI: 10.1016/j.vetmic.2005.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 11/25/2022]
Abstract
In Gram-negative bacteria, autotransporters are secreted proteins able to translocate themselves through the inner- and outer-membranes to the cell surface or to the extracellular environment. The influence of the putative outer membrane autotransporter (OmaA) protein to the persistence of Brucella suis was investigated. Sequence analyses revealed that the OmaA protein of B. suis strain 1330 consists of a signal peptide, a passenger alpha-domain, and a transporter beta-domain, which are the characteristic components of an autotransporter protein. The transporter beta-domain consists of 14 individual amphipathic beta-strands, and a 46-amino acid long alpha-helix lies upstream of the transporter domain, indicating that the B. suis OmaA is a type-I classical autotransporter. BLAST search and phylogenetic analyses revealed that the B. suis OmaA protein shares more similarities with adhesin autotransporter proteins than with protease autotransporter proteins of other bacteria. An OmaA-deficient strain (1330DeltaomaA) was generated by disrupting the DNA region encoding the passenger alpha-domain of the OmaA protein of B. suis wild type strain 1330. The omaA gene encoding the full-length OmaA protein was cloned and used to complement the OmaA-deficient strain. The OmaA-deficient strain did not differ from the wild type strain in terms of persistence in J774 macrophage cell line 24 and 48 h after inoculation, or clearance from the spleens of BALB/c mice at 1 week after intraperitoneal inoculation. These observations suggest that the function of the OmaA protein is dispensable during the acute phase of B. suis infection. However, the OmaA-deficient strain was cleared from the spleens of BALB/c mice faster than the wild type strain between the third and the ninth week after intraperitoneal inoculation, indicating that the OmaA may be important during the chronic phase of B. suis infection. Relative to the BALB/c mice injected with saline, those vaccinated with the OmaA-deficient strain exhibited 3.0-3.9log10 colony forming units protection against a challenge with B. suis strain 1330. This study is the first report correlating an autotransporter protein deficiency with persistence of B. suis in vitro and in vivo.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1800 Kraft Drive, Blacksburg, VA 24061-0484, USA.
| | | | | | | |
Collapse
|
37
|
Middendorf B, Stubs D, Guiso N, Deppisch H, Gross R, Fuchs TM. Phg, a novel member of the autotransporter family present in Bordetella species. Microbiol Res 2005; 160:329-36. [PMID: 16035245 DOI: 10.1016/j.micres.2005.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Several proteins encoded in the genomes of Bordetella species show significant sequence similarity to the autotransporter domains of surface exposed or secreted virulence factors of bordetellae such as pertactin, tracheal colonization factor or Vag8. One of these putative autotransporters, provisionally termed Phg, is encoded by the pertactin homologous gene (phg), which is highly conserved in Bordetella pertussis, B. bronchiseptica and B. parapertussis, but absent in B. avium and B. petrii. In contrast to homologues with documented functions in host interaction and virulence, several key amino acids probably involved in proteolytic processing of the autotransporter domain are not conserved in Phg. The transcription start site of phg was identified by primer extension analysis, but differential transcription of phg could not be detected in B. bronchiseptica strains under conditions that lead to enhanced expression of other known Bordetella autotransporter proteins. A mutant of B. pertussis was constructed in which major parts of phg are substituted by a kanamycin resistance cassette. Virulence testing of this mutant in a mouse respiratory infection model showed the same colonization properties as the wild-type strain.
Collapse
Affiliation(s)
- Barbara Middendorf
- Lehrstuhl für Mikrobiologie, Biozentrum, Universität Würzburg, D-97074 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Müller D, Benz I, Tapadar D, Buddenborg C, Greune L, Schmidt MA. Arrangement of the translocator of the autotransporter adhesin involved in diffuse adherence on the bacterial surface. Infect Immun 2005; 73:3851-9. [PMID: 15972470 PMCID: PMC1168569 DOI: 10.1128/iai.73.7.3851-3859.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autotransporters of gram-negative bacteria are single-peptide secretion systems that consist of a functional N-terminal alpha-domain ("passenger") fused to a C-terminal beta-domain ("translocator"). How passenger proteins are translocated through the outer membrane has not been resolved, and at present essentially three different models are discussed. In the widely accepted "hairpin model" the passenger proteins are translocated through a channel formed by the beta-barrel of the translocator that is integrated in the outer membrane. This model has been challenged by a recent proposal for a general autotransporter model suggesting that there is a hexameric translocation pore that is generated by the oligomerization of six beta-domains. A third model suggests that conserved Omp85 participates in autotransporter integration and passenger protein translocation. To examine these models, in this study we investigated the presence of putative oligomeric structures of the translocator of the autotransporter adhesin involved in diffuse adherence (AIDA) in vivo by cross-linking techniques. Furthermore, the capacity of isolated AIDA fusion proteins to form oligomers was studied in vitro by several complementary analytical techniques, such as analytical gel filtration, electron microscopy, immunogold labeling, and cross-linking of recombinant autotransporter proteins in which different passenger proteins were fused to the AIDA translocator. Our results show that the AIDA translocator is mostly present as a monomer. Only a fraction of the AIDA autotransporter was found to form dimers on the bacterial surface and in solution. Higher-order structures, such as hexamers, were not detected either in vivo or in vitro and can therefore be excluded as functional moieties for the AIDA autotransporter.
Collapse
Affiliation(s)
- Daniel Müller
- Institut für Infektiologie, Zentrum für Molekularbiologie der Entzündung (ZMBE), Westfälische Wilhelms-Universität, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 2005; 18:326-82. [PMID: 15831828 PMCID: PMC1082800 DOI: 10.1128/cmr.18.2.326-382.2005] [Citation(s) in RCA: 778] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.
Collapse
Affiliation(s)
- Seema Mattoo
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1752, USA
| | | |
Collapse
|
40
|
Protein secretion through autotransporter and two-partner pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1694:235-57. [PMID: 15546669 DOI: 10.1016/j.bbamcr.2004.03.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Revised: 03/18/2004] [Accepted: 03/26/2004] [Indexed: 01/19/2023]
Abstract
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.
Collapse
|
41
|
Henderson IR, Navarro-Garcia F, Desvaux M, Fernandez RC, Ala'Aldeen D. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 2004; 68:692-744. [PMID: 15590781 PMCID: PMC539010 DOI: 10.1128/mmbr.68.4.692-744.2004] [Citation(s) in RCA: 595] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gram-negative bacteria possess an outer membrane layer which constrains uptake and secretion of solutes and polypeptides. To overcome this barrier, bacteria have developed several systems for protein secretion. The type V secretion pathway encompasses the autotransporter proteins, the two-partner secretion system, and the recently described type Vc or AT-2 family of proteins. Since its discovery in the late 1980s, this family of secreted proteins has expanded continuously, due largely to the advent of the genomic age, to become the largest group of secreted proteins in gram-negative bacteria. Several of these proteins play essential roles in the pathogenesis of bacterial infections and have been characterized in detail, demonstrating a diverse array of function including the ability to condense host cell actin and to modulate apoptosis. However, most of the autotransporter proteins remain to be characterized. In light of new discoveries and controversies in this research field, this review considers the autotransporter secretion process in the context of the more general field of bacterial protein translocation and exoprotein function.
Collapse
Affiliation(s)
- Ian R Henderson
- Division of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | | | | | | | | |
Collapse
|
42
|
Elder KD, Harvill ET. Strain-dependent role of BrkA during Bordetella pertussis infection of the murine respiratory tract. Infect Immun 2004; 72:5919-24. [PMID: 15385494 PMCID: PMC517575 DOI: 10.1128/iai.72.10.5919-5924.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/10/2004] [Accepted: 06/16/2004] [Indexed: 11/20/2022] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, expresses many virulence factors believed to be involved in infection and disease progression. While these factors as a group are required for infection, deletion of individual virulence factor genes generally has limited effects on the ability of B. pertussis to efficiently infect the respiratory tract of mice, suggesting they may perform noncritical or redundant functions. We have recently observed that a B. pertussis strain, putatively with a mutation of a single gene, brkA, results in a severe defect in vivo. Although BrkA has been shown to be required for B. pertussis to resist complement-mediated killing in vitro, the relevance of these findings to the in vivo role of BrkA during infection has not been examined. Transducing this mutation into multiple wild-type B. pertussis strains allowed us to confirm the in vitro phenotype of reduced resistance to serum complement. All DeltabrkA mutants were increased in their sensitivity to complement in vitro, both in the presence and absence of antibodies. However, these strains differed substantially in their phenotypes in vivo. DeltabrkA mutants of recent clinical isolates were indistinguishable from wild-type strains in their efficient infection of respiratory organs, suggesting that the function of BrkA in these strains is noncritical or redundant. In contrast, multiple DeltabrkA strains derived from Tohama I were severely defective during the first week postinoculation compared to their wild-type parent. This defect was present even in complement-deficient mice, revealing a complement-independent phenotype for the DeltabrkA mutant in respiratory tract infection.
Collapse
Affiliation(s)
- Kelly D Elder
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
43
|
Desvaux M, Parham NJ, Henderson IR. The autotransporter secretion system. Res Microbiol 2004; 155:53-60. [PMID: 14990256 DOI: 10.1016/j.resmic.2003.10.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/03/2003] [Indexed: 01/13/2023]
Abstract
The type V secretion system includes the autotransporter family, the two-partner system and the Oca family. The autotransporter secretion process involving first the translocation of the precursor through the inner membrane and then its translocation through the outer membrane via a pore formed by a beta-barrel is reviewed.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Bacterial Pathogenesis and Genomics Unit, Division of Immunity and Infection, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | | |
Collapse
|
44
|
Velarde JJ, Nataro JP. Hydrophobic Residues of the Autotransporter EspP Linker Domain Are Important for Outer Membrane Translocation of Its Passenger. J Biol Chem 2004; 279:31495-504. [PMID: 15151995 DOI: 10.1074/jbc.m404424200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The autotransporter family of proteins is an important class of Gram-negative secreted virulence factors. Their secretion mechanism comprises entry to the periplasm via the Sec apparatus, followed by formation of an outer membrane beta barrel, which allows the N-terminal passenger domain to pass to the extracellular space. Several groups have identified a region immediately upstream of the beta domain that is important for outer membrane translocation, the so-called linker region. Here we characterize this region in EspP, a prototype of the serine protease autotransporters of enterobacteriaceae. We hypothesized that the folding of this region would be important in the outer membrane translocation process. We tested this hypothesis using a mutagenesis approach in conjunction with a series of nested deletions and found that in the absence of a complete passenger, mutations to the C-terminal helix, but not the upstream linker, significantly decrease secretion efficiency. However, in the presence of the passenger mutations to the amino-terminal region of the linker decrease secretion efficiency. Moreover, amino acids of hydrophobic character play a crucial role in linker function, suggesting the existence of a hydrophobic core or hydrophobic interaction necessary for outer membrane translocation of autotransporter proteins.
Collapse
Affiliation(s)
- Jorge J Velarde
- Center for Vaccine Development, Department of Biochemistry, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
45
|
Dutta PR, Sui BQ, Nataro JP. Structure-function analysis of the enteroaggregative Escherichia coli plasmid-encoded toxin autotransporter using scanning linker mutagenesis. J Biol Chem 2003; 278:39912-20. [PMID: 12878602 DOI: 10.1074/jbc.m303595200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli is a cytopathic serine protease, which is prototypical of a large family of bacterial autotransporter toxins. To further elucidate the structure-function relationships of this toxin, we employed transposon-based scanning linker mutagenesis. A subset of insertions throughout the Pet mature toxin (passenger) domain reduced secretion to the extracellular space. Many of these mutants were undetectable, but secretion of a subset of mutants with insertions in the N-terminal half of the toxin could be restored to wild type secretion levels if cultured in the presence of 0.1% Triton X-100. Secretion of two mutants with insertions at the extreme C terminus was partially restored when co-expressed with a minimal clone of EspP, a related autotransporter protein. Several well secreted mutants with insertions in the N-terminal third of the molecule reduced protease activity over 20-fold, suggesting that the protease domain is located within this N-terminal region of Pet. We have also identified two insertional mutants in the middle of the passenger domain that were proteolytic but no longer cytopathic; these mutants displayed decreased binding and internalization upon incubation with HEp-2 cells. Our data suggest the existence of separate functional domains mediating Pet proteolysis, secretion, and cell interaction.
Collapse
Affiliation(s)
- Pinaki R Dutta
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
46
|
Oliver DC, Huang G, Nodel E, Pleasance S, Fernandez RC. A conserved region within the Bordetella pertussis autotransporter BrkA is necessary for folding of its passenger domain. Mol Microbiol 2003; 47:1367-83. [PMID: 12603741 DOI: 10.1046/j.1365-2958.2003.03377.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Autotransporter secretion represents a unique mechanism that Gram-negative bacteria employ to deliver proteins to their cell surface. BrkA is a Bordetella pertussis autotransporter protein that mediates serum resistance and contributes to adherence of the bacterium to host cells. BrkA is a 103 kDa protein that is cleaved to form a 73 kDa alpha-domain and a 30 kDa beta domain. The alpha domain, also referred to as the passenger domain, is responsible for the effector functions of the protein, whereas the beta domain serves as a transporter. In an effort to characterize BrkA secretion, we have shown that BrkA has a 42 amino acid signal peptide for transit across the cytoplasmic membrane, and a translocation unit made up of a short linker region fused to the beta-domain to ferry the passenger domain to the bacterial surface through a channel formed by the beta-domain. In this report, we provide genetic, biochemical and structural evidence demonstrating that a region within the BrkA passenger (Glu601-Ala692) is necessary for folding the passenger. This region is not required for surface display in the outer membrane protease OmpT-deficient Escherichia coli strain UT5600. However, a BrkA mutant protein bearing a deletion in this region is susceptible to digestion when expressed in E. coli strains expressing OmpT suggesting that the region is required to maintain a stable structure. The instability of the deletion mutant can be rescued by surface expressing Glu601-Ala692in trans suggesting that this region is acting as an intramolecular chaperone to effect folding of the passenger concurrent with or following translocation across the outer membrane.
Collapse
Affiliation(s)
- David C Oliver
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Blvd., Vancouver, BC, V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|