1
|
Lu J, Xiong C, Wei J, Xiong C, Long R, Yu Y, Ye H, Ozdemir E, Li Y, Wu R. The role and molecular mechanism of flgK gene in biological properties, pathogenicity and virulence genes expression of Aeromonas hydrophila. Int J Biol Macromol 2024; 258:129082. [PMID: 38161026 DOI: 10.1016/j.ijbiomac.2023.129082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Aeromonas hydrophila is a highly pathogenic aquatic resident bacterium that can cause co-morbidity in aquatic animals, waterfowl, poultry, and humans. Flagellum is the motility organ of bacteria important for bacterium tissue colonization and invasion. The flgK gene encodes a flagellar hook protein essential for normal flagellar formation. In order to explore the role of flgK in A. hydrophila, a flgK gene mutant strain of A. hydrophila (∆flgK-AH) was constructed using an efficient suicide plasmid-mediated homologous recombination method, and gene sequencing confirmed successful mutation of the flgK gene. The biological properties, pathogenicity and virulence genes expression were compared. The results showed that there was no significant difference in the growth, hemolytic, and swarming abilities, but the swimming and biofilm formation abilities of ∆flgK-AH were significantly reduced and the transmission electron microscope (TEM) results showed that the ∆flgK-AH strain did not have a flagellar structure. The median lethal dose (LD50) value of the ∆flgK-AH in Carassius auratus was 1.47-fold higher than that of the wild-type strain (WT-AH). The quantitative real-time PCR results showed that only the expression level of the lapA gene was up-regulated by 1.47 times compared with the WT-AH, while the expression levels of other genes were significantly down-regulated. In conclusion, flgK gene mutant led to a decline in the pathogenicity possibly by reducing swimming and biofilm formation abilities, these biological properties might result from the down-regulated expression of flagellate and pilus-related genes.
Collapse
Affiliation(s)
- Jiahui Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Chuanyu Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Jinming Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Caijiang Xiong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Rui Long
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yongxiang Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Hua Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Eda Ozdemir
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Yun Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China
| | - Ronghua Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Vass LR, Branscum KM, Bourret RB, Foster CA. Generalizable strategy to analyze domains in the context of parent protein architecture: A CheW case study. Proteins 2022; 90:1973-1986. [PMID: 35668544 PMCID: PMC9561059 DOI: 10.1002/prot.26390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022]
Abstract
Domains are the three-dimensional building blocks of proteins. An individual domain can occur in a variety of domain architectures that perform unique functions and are subject to different evolutionary selective pressures. We describe an approach to evaluate the variability in amino acid sequences of a single domain across architectural contexts. The ability to distinguish different evolutionary outcomes of one protein domain can help determine whether existing knowledge about a specific domain will apply to an uncharacterized protein, lead to insights and hypotheses about function, and guide experimental priorities. We developed and tested our approach on CheW-like domains (PF01584), which mediate protein/protein interactions and are difficult to compare experimentally. CheW-like domains occur in CheW scaffolding proteins, CheA kinases, and CheV proteins that regulate bacterial chemotaxis. We analyzed 16 domain architectures that included 94% of all CheW-like domains found in nature. We identified six Classes of CheW-like domains with presumed functional differences. CheV and most CheW proteins contained Class 1 domains, whereas some CheW proteins contained Class 6 (~20%) or Class 2 (~1%) domains instead. Most CheA proteins contained Class 3 domains. CheA proteins with multiple Hpt domains contained Class 4 domains. CheA proteins with two CheW-like domains contained one Class 3 and one Class 5. We also created SimpLogo, an innovative method for visualizing amino acid composition across large sets of multiple sequence alignments of arbitrary length. SimpLogo offers substantial advantages over standard sequence logos for comparison and analysis of related protein sequences. The R package for SimpLogo is freely available.
Collapse
Affiliation(s)
- Luke R. Vass
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Current Address: Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Katie M. Branscum
- Current Address: Department of Pediatrics, Section Hematology/Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert B. Bourret
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Clay A. Foster
- Department of Microbiology & Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Current Address: Department of Pediatrics, Section Hematology/Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
3
|
Ezaj MMA, Haque MS, Syed SB, Khan MSA, Ahmed KR, Khatun MT, Nayeem SMA, Rizvi GR, Al-Forkan M, Khaleda L. Comparative proteomic analysis to annotate the structural and functional association of the hypothetical proteins of S. maltophilia k279a and predict potential T and B cell targets for vaccination. PLoS One 2021; 16:e0252295. [PMID: 34043709 PMCID: PMC8159010 DOI: 10.1371/journal.pone.0252295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant bacterium with no precise clinical treatment. This bacterium can be a vital cause for death and different organ failures in immune-compromised, immune-competent, and long-time hospitalized patients. Extensive quorum sensing capability has become a challenge to develop new drugs against this pathogen. Moreover, the organism possesses about 789 proteins which function, structure, and pathogenesis remain obscured. In this piece of work, we tried to enlighten the aforementioned sectors using highly reliable bioinformatics tools validated by the scientific community. At first, the whole proteome sequence of the organism was retrieved and stored. Then we separated the hypothetical proteins and searched for the conserved domain with a high confidence level and multi-server validation, which resulted in 24 such proteins. Furthermore, all of their physical and chemical characterizations were performed, such as theoretical isoelectric point, molecular weight, GRAVY value, and many more. Besides, the subcellular localization, protein-protein interactions, functional motifs, 3D structures, antigenicity, and virulence factors were also evaluated. As an extension of this work, 'RTFAMSSER' and 'PAAPQPSAS' were predicted as potential T and B cell epitopes, respectively. We hope our findings will help in better understating the pathogenesis and smoothen the way to the cure.
Collapse
Affiliation(s)
- Md. Muzahid Ahmed Ezaj
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chittagong, Bangladesh
| | - Md. Sajedul Haque
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md. Shakil Ahmed Khan
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Mst. Tania Khatun
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - S. M. Abdul Nayeem
- Reverse Vaccinology Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory, Chittagong, Bangladesh
- Department of Chemistry, Faculty of Science, University of Chittagong, Chattogram, Bangladesh
| | - Golam Rosul Rizvi
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Al-Forkan
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Laila Khaleda
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
4
|
Grishin DV, Samoilenko VA, Gladilina YA, Zhdanov DD, Pokrovskaya MV, Aleksandrova SS, Pokrovsky VS, Sokolov NN. Effect of Heterologous Expression of Chemotaxis Proteins from Genus Thermotoga on the Growth Kinetics of Escherichia coli Cells. Bull Exp Biol Med 2019; 167:375-379. [PMID: 31346881 DOI: 10.1007/s10517-019-04530-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 11/30/2022]
Abstract
In the process of optimization of heterologous expression of thermostable chemotaxis proteins CheW and CheY as industrially useful polypeptides, their direct influence on the cell growth kinetics and morphology of Escherichia coli was observed. CheW and CheY of bacteria of the genus Thermotoga, being expressed in recombinant form in E. coli cells, are involved in the corresponding signal pathways of the mesophilic microorganisms. The effects of such involvement in the metabolism of "host" cells are extremely diverse: from rapid aging of the culture to elongation of the stationary growth phase. We also discuss the mechanisms of the influence of the heterologous chemotaxis proteins on cells, their positive and negative effects, as well as potential applications in industry and biomedicine.
Collapse
Affiliation(s)
- D V Grishin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - V A Samoilenko
- G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Yu A Gladilina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - D D Zhdanov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - M V Pokrovskaya
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - S S Aleksandrova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - V S Pokrovsky
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - N N Sokolov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
5
|
Bacterial chemotaxis coupling protein: Structure, function and diversity. Microbiol Res 2019; 219:40-48. [DOI: 10.1016/j.micres.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/29/2018] [Accepted: 11/02/2018] [Indexed: 01/10/2023]
|
6
|
Huang Z, Zhou Q, Sun P, Yang J, Guo M. Two Agrobacterium tumefaciens CheW Proteins Are Incorporated into One Chemosensory Pathway with Different Efficiencies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:460-470. [PMID: 29182466 DOI: 10.1094/mpmi-10-17-0255-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Agrobacterium tumefaciens is the agent that causes crown gall tumor disease on more than 140 species of dicotyledonous plants. Chemotaxis of A. tumefaciens toward the wound sites of the host plant is the first step to recognize the host. CheW is a coupling protein that bridges the histidine kinase CheA and the chemoreceptors to form the chemotaxis core signaling complex and plays a crucial role in the assembly and function of the large chemosensory array. Unlike all previously reported chemotaxis systems, A. tumefaciens has only one major che operon but two cheW homologs (atu2075 as cheW1 and atu2617 as cheW2) on unlinked loci. The in-frame deletion of either cheW gene significantly affects A. tumefaciens chemotaxis but does not abolish the chemotaxis, unless both cheW genes were deleted. The effect of cheW2 deletion on the chemotaxis is more severe than that of cheW1 deletion. Either CheW can interact with CheA and couple it to the cell poles. The promoter activity of cheW2 is always higher than that of cheW1 under all of the tested conditions. When two cheW genes were adjusted to the same expression level by using the identical promoter, the difference between the effects of two CheW proteins on the chemotaxis still existed. Therefore, we envision that both the different molecular ratio of two CheW proteins in cell and the different affinities of two CheW proteins with CheA and chemoreceptors result in the efficiency difference of two CheW proteins in functioning in the large chemosensory array.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Qingxuan Zhou
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Pan Sun
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Jing Yang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| | - Minliang Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou City, Jiangsu 225009, P R China
| |
Collapse
|
7
|
Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018; 8:341. [PMID: 29321600 PMCID: PMC5762655 DOI: 10.1038/s41598-017-18578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.
Collapse
|
8
|
A Chemotaxis Receptor Modulates Nodulation during the Azorhizobium caulinodans-Sesbania rostrata Symbiosis. Appl Environ Microbiol 2016; 82:3174-84. [PMID: 26994081 DOI: 10.1128/aem.00230-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Azorhizobium caulinodans ORS571 is a free-living nitrogen-fixing bacterium which can induce nitrogen-fixing nodules both on the root and the stem of its legume host Sesbania rostrata This bacterium, which is an obligate aerobe that moves by means of a polar flagellum, possesses a single chemotaxis signal transduction pathway. The objective of this work was to examine the role that chemotaxis and aerotaxis play in the lifestyle of the bacterium in free-living and symbiotic conditions. In bacterial chemotaxis, chemoreceptors sense environmental changes and transmit this information to the chemotactic machinery to guide motile bacteria to preferred niches. Here, we characterized a chemoreceptor of A. caulinodans containing an N-terminal PAS domain, named IcpB. IcpB is a soluble heme-binding protein that localized at the cell poles. An icpB mutant strain was impaired in sensing oxygen gradients and in chemotaxis response to organic acids. Compared to the wild-type strain, the icpB mutant strain was also affected in the production of extracellular polysaccharides and impaired in flocculation. When inoculated alone, the icpB mutant induced nodules on S. rostrata, but the nodules formed were smaller and had reduced N2-fixing activity. The icpB mutant failed to nodulate its host when inoculated competitively with the wild-type strain. Together, the results identify chemotaxis and sensing of oxygen by IcpB as key regulators of the A. caulinodans-S. rostrata symbiosis. IMPORTANCE Bacterial chemotaxis has been implicated in the establishment of various plant-microbe associations, including that of rhizobial symbionts with their legume host. The exact signal(s) detected by the motile bacteria that guide them to their plant hosts remain poorly characterized. Azorhizobium caulinodans ORS571 is a diazotroph that is a motile and chemotactic rhizobial symbiont of Sesbania rostrata, where it forms nitrogen-fixing nodules on both the roots and the stems of the legume host. We identify here a chemotaxis receptor sensing oxygen in A. caulinodans that is critical for nodulation and nitrogen fixation on the stems and roots of S. rostrata These results identify oxygen sensing and chemotaxis as key regulators of the A. caulinodans-S. rostrata symbiosis.
Collapse
|
9
|
Ortega DR, Zhulin IB. Evolutionary Genomics Suggests That CheV Is an Additional Adaptor for Accommodating Specific Chemoreceptors within the Chemotaxis Signaling Complex. PLoS Comput Biol 2016; 12:e1004723. [PMID: 26844549 PMCID: PMC4742279 DOI: 10.1371/journal.pcbi.1004723] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/29/2015] [Indexed: 12/30/2022] Open
Abstract
Escherichia coli and Salmonella enterica are models for many experiments in molecular biology including chemotaxis, and most of the results obtained with one organism have been generalized to another. While most components of the chemotaxis pathway are strongly conserved between the two species, Salmonella genomes contain some chemoreceptors and an additional protein, CheV, that are not found in E. coli. The role of CheV was examined in distantly related species Bacillus subtilis and Helicobacter pylori, but its role in bacterial chemotaxis is still not well understood. We tested a hypothesis that in enterobacteria CheV functions as an additional adaptor linking the CheA kinase to certain types of chemoreceptors that cannot be effectively accommodated by the universal adaptor CheW. Phylogenetic profiling, genomic context and comparative protein sequence analyses suggested that CheV interacts with specific domains of CheA and chemoreceptors from an orthologous group exemplified by the Salmonella McpC protein. Structural consideration of the conservation patterns suggests that CheV and CheW share the same binding spot on the chemoreceptor structure, but have some affinity bias towards chemoreceptors from different orthologous groups. Finally, published experimental results and data newly obtained via comparative genomics support the idea that CheV functions as a “phosphate sink” possibly to off-set the over-stimulation of the kinase by certain types of chemoreceptors. Overall, our results strongly suggest that CheV is an additional adaptor for accommodating specific chemoreceptors within the chemotaxis signaling complex. Due to the overwhelming complexity and diversity of biological systems, the functional roles of the majority of proteins encoded in sequenced genomes remain unknown or poorly understood. The multi-protein pathway controlling chemotaxis in bacteria and archaea is an example of such complexity and diversity. Chemotaxis pathway in E. coli is one of the best understood signal transduction networks in nature; however, this model organism lacks some of the system components, such as CheV, that are found in many other species. The biological role of CheV is still under avid debate. CheV is an auxiliary component of many chemotaxis systems and is present in important human pathogens, such as Salmonella and Helicobacter, where chemotaxis is being studied as an important virulence trait. Here we established the evolutionary history of the chemotaxis pathway in enterobacteria and combined a computational genomics approach with available structural information to propose a role for CheV. Our results show that CheV in enterics evolved as an adaptor for a specific type of chemoreceptors. Furthermore, we propose that some CheV-associated chemoreceptors might increase the kinase activity above the base level, and in these cases CheV acts as an attenuator.
Collapse
Affiliation(s)
- Davi R. Ortega
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Igor B. Zhulin
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ortega DR, Mo G, Lee K, Zhou H, Baudry J, Dahlquist FW, Zhulin IB. Conformational coupling between receptor and kinase binding sites through a conserved salt bridge in a signaling complex scaffold protein. PLoS Comput Biol 2013; 9:e1003337. [PMID: 24244143 PMCID: PMC3828127 DOI: 10.1371/journal.pcbi.1003337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/27/2013] [Indexed: 11/25/2022] Open
Abstract
Bacterial chemotaxis is one of the best studied signal transduction pathways. CheW is a scaffold protein that mediates the association of the chemoreceptors and the CheA kinase in a ternary signaling complex. The effects of replacing conserved Arg62 of CheW with other residues suggested that the scaffold protein plays a more complex role than simply binding its partner proteins. Although R62A CheW had essentially the same affinity for chemoreceptors and CheA, cells expressing the mutant protein are impaired in chemotaxis. Using a combination of molecular dynamics simulations (MD), NMR spectroscopy, and circular dichroism (CD), we addressed the role of Arg62. Here we show that Arg62 forms a salt bridge with another highly conserved residue, Glu38. Although this interaction is unimportant for overall protein stability, it is essential to maintain the correct alignment of the chemoreceptor and kinase binding sites of CheW. Computational and experimental data suggest that the role of the salt bridge in maintaining the alignment of the two partner binding sites is fundamental to the function of the signaling complex but not to its assembly. We conclude that a key feature of CheW is to maintain the specific geometry between the two interaction sites required for its function as a scaffold. Signal transduction is a universal biological process and a common target of drug design. The chemotaxis machinery in Escherichia coli is a model signal transduction system, and the CheW protein is one of its core components. CheW is thought to work as a scaffold protein that mediates the formation of the signaling complex with the CheA histidine kinase and the chemoreceptors. A mutation targeting a highly conserved residue, Arg62, impairs chemotaxis while maintaining normal binding affinity for both partners, suggesting that CheW might play a more complex role than previously proposed. Using a series of molecular dynamics simulations, we found that the residue Arg62 can form a stable salt bridge with another highly conserved residue, Glu38. We determined that this bridge does not contribute to the overall stability of the protein. However, the bridge stabilizes the local backbone structure of CheW and stabilizes the relative position of the binding sites for the chemoreceptor and kinase. The geometry of these interactions appears to be vital for the function of the signaling complex. We validated and complemented our computational findings using NMR spectroscopy and circular dichroism analysis.
Collapse
Affiliation(s)
- Davi R. Ortega
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Guoya Mo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Kwangwoon Lee
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Hongjun Zhou
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cell and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Center for Molecular Biophysics, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Frederick W. Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, University of Tennessee - Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cashman DJ, Ortega DR, Zhulin IB, Baudry J. Homology modeling of the CheW coupling protein of the chemotaxis signaling complex. PLoS One 2013; 8:e70705. [PMID: 23950985 PMCID: PMC3737408 DOI: 10.1371/journal.pone.0070705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/21/2013] [Indexed: 11/23/2022] Open
Abstract
Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space.
Collapse
Affiliation(s)
- Derek J. Cashman
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Davi R. Ortega
- Department of Physics, University of Tennessee, Knoxville, Tennessee, United States of America
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Igor B. Zhulin
- Joint Institute for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jerome Baudry
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- UT/ORNL Center for Molecular Biophysics, University of Tennessee, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
Herrera Seitz MK, Soto D, Studdert CA. A chemoreceptor from Pseudomonas putida forms active signalling complexes in Escherichia coli. Microbiology (Reading) 2012; 158:2283-2292. [DOI: 10.1099/mic.0.059899-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- M. Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
13
|
Zhang K, Liu J, Tu Y, Xu H, Charon NW, Li C. Two CheW coupling proteins are essential in a chemosensory pathway of Borrelia burgdorferi. Mol Microbiol 2012; 85:782-94. [PMID: 22780444 DOI: 10.1111/j.1365-2958.2012.08139.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In the model organism Escherichia coli, the coupling protein CheW, which bridges the chemoreceptors and histidine kinase CheA, is essential for chemotaxis. Unlike the situation in E. coli, Borrelia burgdorferi, the causative agent of Lyme disease, has three cheW homologues (cheW(1) , cheW(2) and cheW(3) ). Here, a comprehensive approach is utilized to investigate the roles of the three cheWs in chemotaxis of B. burgdorferi. First, genetic studies indicated that both the cheW(1) and cheW(3) genes are essential for chemotaxis, as the mutants had altered swimming behaviours and were non-chemotactic. Second, immunofluorescence and cryo-electron tomography studies suggested that both CheW(1) and CheW(3) are involved in the assembly of chemoreceptor arrays at the cell poles. In contrast to cheW(1) and cheW(3) , cheW(2) is dispensable for chemotaxis and assembly of the chemoreceptor arrays. Finally, immunoprecipitation studies demonstrated that the three CheWs interact with different CheAs: CheW(1) and CheW(3) interact with CheA(2) whereas CheW(2) binds to CheA(1) . Collectively, our results indicate that CheW(1) and CheW(3) are incorporated into one chemosensory pathway that is essential for B. burgdorferi chemotaxis. Although many bacteria have more than one homologue of CheW, to our knowledge, this report provides the first experimental evidence that two CheW proteins coexist in one chemosensory pathway and that both are essential for chemotaxis.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Oral Biology, the State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
14
|
The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping. J Bacteriol 2012; 194:3343-55. [PMID: 22522896 DOI: 10.1128/jb.00310-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.
Collapse
|
15
|
Li H, Cui Y, Wu L, Tu R, Chen S. cDNA-AFLP analysis of differential gene expression related to cell chemotactic and encystment of Azospirillum brasilense. Microbiol Res 2011; 166:595-605. [DOI: 10.1016/j.micres.2010.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/26/2010] [Accepted: 11/27/2010] [Indexed: 10/18/2022]
|
16
|
A CheR/CheB fusion protein is involved in cyst cell development and chemotaxis in Azospirillum brasilense Sp7. Microbiol Res 2011; 166:606-17. [PMID: 21232929 DOI: 10.1016/j.micres.2010.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/06/2010] [Accepted: 12/12/2010] [Indexed: 01/28/2023]
Abstract
We here report the sequence and functional analysis of cstB of Azospirillum brasilense Sp7. The predicted cstB contains C-terminal two PAS domains and N-terminal part which has similarity with CheB-CheR fusion protein. cstB mutants had reduced swarming ability compared to that of A. brasilense wild-type strain, implying that cstB was involved in chemotaxis in A. brasilense. A microscopic analysis revealed that cstB mutants developed mature cyst cells more quickly than wild type, indicating that cstB is involved in cyst formation. cstB mutants were affected in colony morphology and the production of exopolysaccharides (EPS) which are essential for A. brasilense cells to differentiate into cyst-like forms. These observations suggested that cstB was a multi-effector involved in cyst development and chemotaxis in A. brasilense.
Collapse
|
17
|
Abstract
Chemotaxis is an important virulence factor for Helicobacter pylori colonization and infection. The chemotactic system of H. pylori is marked by the presence of multiple response regulators: CheY1, one CheY-like-containing CheA protein (CheAY2), and three CheV proteins. Recent studies have demonstrated that these molecules play unique roles in the chemotactic signal transduction mechanisms of H. pylori. Here we report the crystal structures of BeF(3(-)-activated CheY1 from H. pylori resolved to 2.4 A. Structural comparison of CheY1 with active-site residues of BeF3(-)-bound CheY from Escherichia coli and fluorescence quenching experiments revealed the importance of Thr84 in the phosphotransfer reaction. Complementation assays using various nonchemotactic E. coli mutants and pull-down experiments demonstrated that CheY1 displays differential association with the flagellar motor in E. coli. The structural rearrangement of helix 5 and the C-terminal loop in CheY1 provide a different interaction surface for FliM. On the other hand, interaction of the CheA-P2 domain with CheY1, but not with CheY2/CheV proteins, underlines the preferential recognition of CheY1 by CheA in the phosphotransfer reaction. Our results provide the first structural insight into the features of the H. pylori chemotactic system as a model for Epsilonproteobacteria.
Collapse
|
18
|
Virulence factors encoded by Legionella longbeachae identified on the basis of the genome sequence analysis of clinical isolate D-4968. J Bacteriol 2009; 192:1030-44. [PMID: 20008069 DOI: 10.1128/jb.01272-09] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella longbeachae causes most cases of legionellosis in Australia and may be underreported worldwide due to the lack of L. longbeachae-specific diagnostic tests. L. longbeachae displays distinctive differences in intracellular trafficking, caspase 1 activation, and infection in mouse models compared to Legionella pneumophila, yet these two species have indistinguishable clinical presentations in humans. Unlike other legionellae, which inhabit freshwater systems, L. longbeachae is found predominantly in moist soil. In this study, we sequenced and annotated the genome of an L. longbeachae clinical isolate from Oregon, isolate D-4968, and compared it to the previously published genomes of L. pneumophila. The results revealed that the D-4968 genome is larger than the L. pneumophila genome and has a gene order that is different from that of the L. pneumophila genome. Genes encoding structural components of type II, type IV Lvh, and type IV Icm/Dot secretion systems are conserved. In contrast, only 42/140 homologs of genes encoding L. pneumophila Icm/Dot substrates have been found in the D-4968 genome. L. longbeachae encodes numerous proteins with eukaryotic motifs and eukaryote-like proteins unique to this species, including 16 ankyrin repeat-containing proteins and a novel U-box protein. We predict that these proteins are secreted by the L. longbeachae Icm/Dot secretion system. In contrast to the L. pneumophila genome, the L. longbeachae D-4968 genome does not contain flagellar biosynthesis genes, yet it contains a chemotaxis operon. The lack of a flagellum explains the failure of L. longbeachae to activate caspase 1 and trigger pyroptosis in murine macrophages. These unique features of L. longbeachae may reflect adaptation of this species to life in soil.
Collapse
|
19
|
Functional characterization and mutagenesis of the proposed behavioral sensor TlpD of Helicobacter pylori. J Bacteriol 2008; 190:3244-55. [PMID: 18245281 DOI: 10.1128/jb.01940-07] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Helicobacter pylori requires flagellar motility and chemotaxis to establish and maintain chronic infection of the human stomach. The pH gradient in the stomach mucus is essential for bacterial orientation and guides the bacterium toward a narrow layer of the mucus, suggesting that H. pylori is capable of energy sensing or taxis. In the present study, H. pylori wild-type behavior in a temporal swimming assay could be altered by electron transport inhibitors, indicating that a connection between metabolism and behavior exists. In order to elucidate mechanisms of behavioral responses of H. pylori related to energy sensing, we investigated the phenotypes of single and multiple mutants of the four proposed chemotaxis sensor proteins. All sensor mutants were motile, but they diverged in their behavior in media supporting different energy yields. One proposed intracellular sensor, TlpD, was crucial for behavioral responses of H. pylori in defined media which did not permit growth and led to reduced bacterial energy levels. Suboptimal energetic conditions and inhibition of electron transport induced an increased frequency of stops and direction changes in the wild type but not in tlpD mutants. Loss of metabolism-dependent behavior in tlpD mutants could be reversed by complementation but not by electron donors bypassing the activity of the electron transport chain, in contrast to the case for the wild type. TlpD, which apparently lacks transmembrane domains, was detected both in the bacterial cytoplasm and at the bacterial periphery. The proposed energy sensor TlpD was found to mediate a repellent tactic response away from conditions of reduced electron transport.
Collapse
|
20
|
Wuichet K, Alexander RP, Zhulin IB. Comparative genomic and protein sequence analyses of a complex system controlling bacterial chemotaxis. Methods Enzymol 2007; 422:1-31. [PMID: 17628132 PMCID: PMC2754700 DOI: 10.1016/s0076-6879(06)22001-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Molecular machinery governing bacterial chemotaxis consists of the CheA-CheY two-component system, an array of specialized chemoreceptors, and several auxiliary proteins. It has been studied extensively in Escherichia coli and, to a significantly lesser extent, in several other microbial species. Emerging evidence suggests that homologous signal transduction pathways regulate not only chemotaxis, but several other cellular functions in various bacterial species. The availability of genome sequence data for hundreds of organisms enables productive study of this system using comparative genomics and protein sequence analysis. This chapter describes advances in genomics of the chemotaxis signal transduction system, provides information on relevant bioinformatics tools and resources, and outlines approaches toward developing a computational framework for predicting important biological functions from raw genomic data based on available experimental evidence.
Collapse
Affiliation(s)
- Kristin Wuichet
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
21
|
Abstract
The comparative analysis of protein sequences depends crucially on measures of amino acid similarity or distance. Many such measures exist, yet it is not known how well these measures reflect the operational exchangeability of amino acids in proteins, since most are derived by methods that confound a variety of effects, including effects of mutation. In pursuit of a pure measure of exchangeability, we present (1) a compilation of data on the effects of 9671 amino acid exchanges engineered and assayed in a set of 12 proteins; (2) a statistical procedure to combine results from diverse assays of exchange effects; (3) a matrix of "experimental exchangeability" values EX(ij) derived from applying this procedure to the compiled data; and (4) a set of three tests designed to evaluate the power of an exchangeability measure to (i) predict the effects of amino acid exchanges in the laboratory, (ii) account for the disease-causing potential of missense mutations in the human population, and (iii) model the probability of fixation of missense mutations in evolution. EX not only captures useful information on exchangeability while remaining free of other effects, but also outperforms all measures tested except for the best-performing alignment scoring matrix, which is comparable in performance.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614-1710, USA
| | | |
Collapse
|
22
|
Greer-Phillips SE, Stephens BB, Alexandre G. An energy taxis transducer promotes root colonization by Azospirillum brasilense. J Bacteriol 2004; 186:6595-604. [PMID: 15375141 PMCID: PMC516605 DOI: 10.1128/jb.186.19.6595-6604.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Motility responses triggered by changes in the electron transport system are collectively known as energy taxis. In Azospirillum brasilense, energy taxis was shown to be the principal form of locomotor control. In the present study, we have identified a novel chemoreceptor-like protein, named Tlp1, which serves as an energy taxis transducer. The Tlp1 protein is predicted to have an N-terminal periplasmic region and a cytoplasmic C-terminal signaling module homologous to those of other chemoreceptors. The predicted periplasmic region of Tlp1 comprises a conserved domain that is found in two types of microbial sensory receptors: chemotaxis transducers and histidine kinases. However, the function of this domain is currently unknown. We characterized the behavior of a tlp1 mutant by a series of spatial and temporal gradient assays. The tlp1 mutant is deficient in (i) chemotaxis to several rapidly oxidizable substrates, (ii) taxis to terminal electron acceptors (oxygen and nitrate), and (iii) redox taxis. Taken together, the data strongly suggest that Tlp1 mediates energy taxis in A. brasilense. Using qualitative and quantitative assays, we have also demonstrated that the tlp1 mutant is impaired in colonization of plant roots. This finding supports the hypothesis that energy taxis and therefore bacterial metabolism might be key factors in determining host specificity in Azospirillum-grass associations.
Collapse
Affiliation(s)
- Suzanne E Greer-Phillips
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, California, USA
| | | | | |
Collapse
|
23
|
Park SY, Beel BD, Simon MI, Bilwes AM, Crane BR. In different organisms, the mode of interaction between two signaling proteins is not necessarily conserved. Proc Natl Acad Sci U S A 2004; 101:11646-51. [PMID: 15289606 PMCID: PMC511033 DOI: 10.1073/pnas.0401038101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although interfaces mediating protein-protein interactions are thought to be under strong evolutionary constraints, binding of the chemotaxis histidine kinase CheA to its phosphorylation target CheY suggests otherwise. The structure of Thermotoga maritima CheA domain P2 in complex with CheY reveals a different association than that observed for the same Escherichia coli proteins. Similar regions of CheY bind CheA P2 in the two systems, but the CheA P2 domains differ by an approximately 90 degrees rotation. CheA binds CheY with identical affinity in T. maritima and E. coli at the vastly different temperatures where the respective organisms live. Distinct sets of P2 residues mediate CheY binding in the two complexes; conservation patterns of these residues in CheA and compensations in CheY delineate two families of prokaryotic chemotaxis systems. A protein complex that has the same components and general function in different organisms, but an altered structure, indicates unanticipated complexity in the evolution of protein-protein interactions and cautions against extrapolating structural data from homologs.
Collapse
Affiliation(s)
- Sang-Youn Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, USA
| | | | | | | | | |
Collapse
|
24
|
Alexandre G, Greer-Phillips S, Zhulin IB. Ecological role of energy taxis in microorganisms. FEMS Microbiol Rev 2004; 28:113-26. [PMID: 14975533 DOI: 10.1016/j.femsre.2003.10.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Revised: 10/03/2003] [Accepted: 10/15/2003] [Indexed: 11/29/2022] Open
Abstract
Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.
Collapse
Affiliation(s)
- Gladys Alexandre
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | |
Collapse
|
25
|
Abstract
Components of the chemotaxis system encoded in multiple homologous operons were identified in five cyanobacterial genomes. Analysis of phylogenetic profiles, genomic context, domain architectures and sequence identity reveal that sensory modules of chemoreceptors that detect environmental cues are the subject of frequent domain birth and death events and have accelerated rates of sequence evolution. This fact could explain a remarkable diversity of the sensing repertoire of chemotaxis receptors in microorganisms.
Collapse
Affiliation(s)
- Kristin Wuichet
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | |
Collapse
|