1
|
Erdem E, Malihan-Yap L, Assil-Companioni L, Grimm H, Barone GD, Serveau-Avesque C, Amouric A, Duquesne K, de Berardinis V, Allahverdiyeva Y, Alphand V, Kourist R. Photobiocatalytic Oxyfunctionalization with High Reaction Rate using a Baeyer-Villiger Monooxygenase from Burkholderia xenovorans in Metabolically Engineered Cyanobacteria. ACS Catal 2022; 12:66-72. [PMID: 35036041 PMCID: PMC8751089 DOI: 10.1021/acscatal.1c04555] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/03/2021] [Indexed: 01/26/2023]
Abstract
![]()
Baeyer–Villiger
monooxygenases (BVMOs) catalyze the oxidation
of ketones to lactones under very mild reaction conditions. This enzymatic
route is hindered by the requirement of a stoichiometric supply of
auxiliary substrates for cofactor recycling and difficulties with
supplying the necessary oxygen. The recombinant production of BVMO
in cyanobacteria allows the substitution of auxiliary organic cosubstrates
with water as an electron donor and the utilization of oxygen generated
by photosynthetic water splitting. Herein, we report the identification
of a BVMO from Burkholderia xenovorans (BVMOXeno) that exhibits higher reaction
rates in comparison to currently identified BVMOs. We report a 10-fold
increase in specific activity in comparison to cyclohexanone monooxygenase
(CHMOAcineto) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW–1 at
an optical density of OD750 = 10) and an initial rate of
3.7 ± 0.2 mM h–1. While the cells containing
CHMOAcineto showed a considerable reduction
of cyclohexanone to cyclohexanol, this unwanted side reaction was
almost completely suppressed for BVMOXeno, which was attributed to the much faster lactone formation and a
10-fold lower KM value of BVMOXeno toward cyclohexanone. Furthermore, the whole-cell
catalyst showed outstanding stereoselectivity. These results show
that, despite the self-shading of the cells, high specific activities
can be obtained at elevated cell densities and even further increased
through manipulation of the photosynthetic electron transport chain
(PETC). The obtained rates of up to 3.7 mM h–1 underline
the usefulness of oxygenic cyanobacteria as a chassis for enzymatic
oxidation reactions. The photosynthetic oxygen evolution can contribute
to alleviating the highly problematic oxygen mass-transfer limitation
of oxygen-dependent enzymatic processes.
Collapse
Affiliation(s)
- Elif Erdem
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Lenny Malihan-Yap
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Leen Assil-Companioni
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| | - Hanna Grimm
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Giovanni Davide Barone
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,i3S, Instituto de Investigação em Saúde Universidade do Porto & IBMC, Instituto de Biologia Molecular e Celular, R. Alfredo Allen 208, 4200-135 Porto, Portugal.,Departamento de Biologia Faculdade de Ciências, Universidade do Porto Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | | | - Agnes Amouric
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Katia Duquesne
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Véronique de Berardinis
- Génomique métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, Faculty of Technology, University of Turku, Turku 20014, Finland
| | - Véronique Alphand
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 UMR7313, 13397 Marseille, France
| | - Robert Kourist
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria.,ACIB GmbH, 8010 Graz, Austria
| |
Collapse
|
2
|
RNA Interference by Cyanobacterial Feeding Demonstrates the SCSG1 Gene Is Essential for Ciliogenesis during Oral Apparatus Regeneration in Stentor. Microorganisms 2021; 9:microorganisms9010176. [PMID: 33467569 PMCID: PMC7830263 DOI: 10.3390/microorganisms9010176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/17/2022] Open
Abstract
In the giant ciliate Stentor coeruleus, oral apparatus (OA) regeneration is an experimentally tractable regeneration paradigm that occurs via a series of morphological steps. OA regeneration is thought to be driven by a complex regulatory system that orchestrates the temporal expression of conserved and specific genes. We previously identified a S. coeruleus-specific gene (named SCSG1) that was significantly upregulated during the ciliogenesis stages of OA regeneration, with an expression peak at the stage of the first OA cilia appearance. We established a novel RNA interference (RNAi) method through cyanobacteria Synechocystis sp. PCC6803 feeding in S. coeruleus. The expression of SCSG1 gene was significantly knocked down by using this method and induced abnormal ciliogenesis of OA regeneration in S. coeruleus, suggesting that SCSG1 is essential for OA regeneration in S. coeruleus. This novel RNAi method by cyanobacterial feeding has potential utility for studying other ciliates.
Collapse
|
3
|
Till P, Toepel J, Bühler B, Mach RL, Mach-Aigner AR. Regulatory systems for gene expression control in cyanobacteria. Appl Microbiol Biotechnol 2020; 104:1977-1991. [PMID: 31965222 PMCID: PMC7007895 DOI: 10.1007/s00253-019-10344-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/21/2019] [Accepted: 12/28/2019] [Indexed: 11/24/2022]
Abstract
As photosynthetic microbes, cyanobacteria are attractive hosts for the production of high-value molecules from CO2 and light. Strategies for genetic engineering and tightly controlled gene expression are essential for the biotechnological application of these organisms. Numerous heterologous or native promoter systems were used for constitutive and inducible expression, yet many of them suffer either from leakiness or from a low expression output. Anyway, in recent years, existing systems have been improved and new promoters have been discovered or engineered for cyanobacteria. Moreover, alternative tools and strategies for expression control such as riboswitches, riboregulators or genetic circuits have been developed. In this mini-review, we provide a broad overview on the different tools and approaches for the regulation of gene expression in cyanobacteria and explain their advantages and disadvantages.
Collapse
Affiliation(s)
- Petra Till
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz-Centre for Environmental Research GmbH-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Robert L Mach
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria
| | - Astrid R Mach-Aigner
- Christian Doppler Laboratory for Optimized Expression of Carbohydrate-Active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Str. 1a, A-1060, Vienna, Austria.
| |
Collapse
|
4
|
Zhou J, Zhang H, Meng H, Zhang Y, Li Y. Production of optically pure d-lactate from CO2 by blocking the PHB and acetate pathways and expressing d-lactate dehydrogenase in cyanobacterium Synechocystis sp. PCC 6803. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Camsund D, Lindblad P. Engineered transcriptional systems for cyanobacterial biotechnology. Front Bioeng Biotechnol 2014; 2:40. [PMID: 25325057 PMCID: PMC4181335 DOI: 10.3389/fbioe.2014.00040] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria can function as solar-driven biofactories thanks to their ability to perform photosynthesis and the ease with which they are genetically modified. In this review, we discuss transcriptional parts and promoters available for engineering cyanobacteria. First, we go through special cyanobacterial characteristics that may impact engineering, including the unusual cyanobacterial RNA polymerase, sigma factors and promoter types, mRNA stability, circadian rhythm, and gene dosage effects. Then, we continue with discussing component characteristics that are desirable for synthetic biology approaches, including decoupling, modularity, and orthogonality. We then summarize and discuss the latest promoters for use in cyanobacteria regarding characteristics such as regulation, strength, and dynamic range and suggest potential uses. Finally, we provide an outlook and suggest future developments that would advance the field and accelerate the use of cyanobacteria for renewable biotechnology.
Collapse
Affiliation(s)
- Daniel Camsund
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| | - Peter Lindblad
- Science for Life Laboratory, Microbial Chemistry, Department of Chemistry - Ångström, Uppsala University , Uppsala , Sweden
| |
Collapse
|
6
|
Formighieri C, Melis A. Regulation of β-phellandrene synthase gene expression, recombinant protein accumulation, and monoterpene hydrocarbons production in Synechocystis transformants. PLANTA 2014; 240:309-24. [PMID: 24838596 DOI: 10.1007/s00425-014-2080-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/13/2014] [Indexed: 05/04/2023]
Abstract
Successful application of the photosynthesis-to-fuels approach requires a high product-to-biomass carbon-partitioning ratio. The work points to the limiting amounts of heterologous terpene synthase in cyanobacteria as a potential barrier in the yield of terpene hydrocarbons via photosynthesis. Cyanobacteria like Synechocystis sp. can be exploited as platforms in a photosynthesis-to-fuels process for the generation of terpene hydrocarbons. Successful application of this concept requires maximizing photosynthesis and attaining a high endogenous carbon partitioning toward the desirable product. The work addressed the question of the regulation of β-phellandrene synthase transgene expression in relation to product yield from the terpenoid biosynthetic pathway of cyanobacteria. The choice of strong alternative transcriptional and translational cis-regulatory elements and the choice of the Synechocystis genomic DNA loci for transgene insertion were investigated. Specifically, the β-phellandrene synthase transgene was expressed under the control of the endogenous psbA2 promoter, or under the control of the Ptrc promoter from Escherichia coli with the translation initiation region of highly expressed gene 10 from bacteriophage T7. These heterologous elements allowed for constitutive transgene expression. In addition, the β-phellandrene synthase construct was directed to replace the Synechocystis cpc operon, encoding the peripheral phycocyanin rods of the phycobilisome antenna. Results showed that a 4-fold increase in the cellular content of the β-phellandrene synthase was accompanied by a 22-fold increase in β-phellandrene yield, suggesting limitations in rate and yield by the amount of the transgenic enzyme. The work points to the limiting amount of transgenic terpene synthases as a potential barrier in the heterologous generation of terpene products via the process of photosynthesis.
Collapse
Affiliation(s)
- Cinzia Formighieri
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA, 94720-3102, USA,
| | | |
Collapse
|
7
|
Finished Genome Sequence of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC 6714. GENOME ANNOUNCEMENTS 2014; 2:2/4/e00757-14. [PMID: 25081267 PMCID: PMC4118070 DOI: 10.1128/genomea.00757-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synechocystis sp. strain PCC 6714 is a unicellular cyanobacterium closely related to the popular model organism Synechocystis sp. strain PCC 6803. A combination of PacBio SMRT and Illumina GAIIx data results in a highly accurate finished genome sequence that provides a reliable resource for further comparative analyses.
Collapse
|
8
|
Lea-Smith DJ, Bombelli P, Dennis JS, Scott SA, Smith AG, Howe CJ. Phycobilisome-Deficient Strains of Synechocystis sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity. PLANT PHYSIOLOGY 2014; 165:705-714. [PMID: 24760817 PMCID: PMC4044857 DOI: 10.1104/pp.114.237206] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/17/2014] [Indexed: 05/21/2023]
Abstract
Reducing excessive light harvesting in photosynthetic organisms may increase biomass yields by limiting photoinhibition and increasing light penetration in dense cultures. The cyanobacterium Synechocystis sp. PCC 6803 harvests light via the phycobilisome, which consists of an allophycocyanin core and six radiating rods, each with three phycocyanin (PC) discs. Via targeted gene disruption and alterations to the promoter region, three mutants with two (pcpcT→C) and one (ΔCpcC1C2:pcpcT→C) PC discs per rod or lacking PC (olive) were generated. Photoinhibition and chlorophyll levels decreased upon phycobilisome reduction, although greater penetration of white light was observed only in the PC-deficient mutant. In all strains cultured at high cell densities, most light was absorbed by the first 2 cm of the culture. Photosynthesis and respiration rates were also reduced in the ΔCpcC1C2:pcpcT→C and olive mutants. Cell size was smaller in the pcpcT→C and olive strains. Growth and biomass accumulation were similar between the wild-type and pcpcT→C under a variety of conditions. Growth and biomass accumulation of the olive mutant were poorer in carbon-saturated cultures but improved in carbon-limited cultures at higher light intensities, as they did in the ΔCpcC1C2:pcpcT→C mutant. This study shows that one PC disc per rod is sufficient for maximal light harvesting and biomass accumulation, except under conditions of high light and carbon limitation, and two or more are sufficient for maximal oxygen evolution. To our knowledge, this study is the first to measure light penetration in bulk cultures of cyanobacteria and offers important insights into photobioreactor design.
Collapse
Affiliation(s)
- David J Lea-Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| | - John S Dennis
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| | - Stuart A Scott
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| | - Alison G Smith
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom (D.J.L.-S., P.B., C.J.H.);Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, United Kingdom (J.S.D.);Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom (S.A.S.); andDepartment of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom (A.G.S.)
| |
Collapse
|
9
|
Discovery of a super-strong promoter enables efficient production of heterologous proteins in cyanobacteria. Sci Rep 2014; 4:4500. [PMID: 24675756 PMCID: PMC3968457 DOI: 10.1038/srep04500] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/03/2014] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are oxygenic photosynthetic prokaryotes that play important roles in the global carbon cycle. Recently, engineered cyanobacteria capable of producing various small molecules from CO2 have been developed. However, cyanobacteria are seldom considered as factories for producing proteins, mainly because of the lack of efficient strong promoters. Here, we report the discovery and verification of a super-strong promoter Pcpc560, which contains two predicted promoters and 14 predicted transcription factor binding sites (TFBSs). Using Pcpc560, functional proteins were produced at a level of up to 15% of total soluble protein in the cyanobacterium Synechocystis sp. 6803, a level comparable to that produced in Escherichia coli. We demonstrated that the presence of multiple TFBSs in Pcpc560 is crucial for its promoter strength. Genetically transformable cyanobacteria neither have endotoxins nor form inclusion bodies; therefore, Pcpc560 opens the possibility to use cyanobacteria as alternative hosts for producing heterogeneous proteins from CO2 and inorganic nutrients.
Collapse
|
10
|
Camsund D, Heidorn T, Lindblad P. Design and analysis of LacI-repressed promoters and DNA-looping in a cyanobacterium. J Biol Eng 2014; 8:4. [PMID: 24467947 PMCID: PMC3922697 DOI: 10.1186/1754-1611-8-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cyanobacteria are solar-powered prokaryotes useful for sustainable production of valuable molecules, but orthogonal and regulated promoters are lacking. The Lac repressor (LacI) from Escherichia coli is a well-studied transcription factor that is orthogonal to cyanobacteria and represses transcription by binding a primary lac operator (lacO), blocking RNA-polymerase. Repression can be enhanced through DNA-looping, when a LacI-tetramer binds two spatially separated lacO and loops the DNA. Ptrc is a commonly used LacI-repressed promoter that is inefficiently repressed in the cyanobacterium Synechocystis PCC 6803. Ptrc2O, a version of Ptrc with two lacO, is more efficiently repressed, indicating DNA-looping. To investigate the inefficient repression of Ptrc and cyanobacterial DNA-looping, we designed a Ptrc-derived promoter library consisting of single lacO promoters, including a version of Ptrc with a stronger lacO (Ptrc1O-proximal), and dual lacO promoters with varying inter-lacO distances (the Ptrc2O-library). RESULTS We first characterized artificial constitutive promoters and used one for engineering a LacI-expressing strain of Synechocystis. Using this strain, we observed that Ptrc1O-proximal is similar to Ptrc in being inefficiently repressed. Further, the Ptrc2O-library displays a periodic repression pattern that remains for both non- and induced conditions and decreases with longer inter-lacO distances, in both E. coli and Synechocystis. Repression of Ptrc2O-library promoters with operators out of phase is less efficient in Synechocystis than in E. coli, whereas repression of promoters with lacO in phase is efficient even under induced conditions in Synechocystis. Two well-repressed Ptrc2O promoters were highly active when tested in absence of LacI in Synechocystis. CONCLUSIONS The artificial constitutive promoters herein characterized can be utilized for expression in cyanobacteria, as demonstrated for LacI. The inefficient repression of Ptrc and Ptrc1O-proximal in Synechocystis, as compared to E. coli, may be due to insufficient LacI expression, or differences in RNAP subunits. DNA-looping works as a transcriptional regulation mechanism similarly as in E. coli. DNA-looping contributes strongly to Ptrc2O-library repression in Synechocystis, even though they contain the weakly-repressed primary lacO of Ptrc1O-proximal and relatively low levels of LacI/cell. Hence, Synechocystis RNAP may be more sensitive to DNA-looping than E. coli RNAP, and/or the chromatin torsion resistance could be lower. Two strong and highly repressed Ptrc2O promoters could be used without induction, or together with an unstable LacI.
Collapse
Affiliation(s)
| | | | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Science for Life Laboratory, Uppsala University, P,O, Box 523, SE-75120 Uppsala, Sweden.
| |
Collapse
|
11
|
Wang B, Wang J, Zhang W, Meldrum DR. Application of synthetic biology in cyanobacteria and algae. Front Microbiol 2012; 3:344. [PMID: 23049529 PMCID: PMC3446811 DOI: 10.3389/fmicb.2012.00344] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.
Collapse
Affiliation(s)
- Bo Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University Tempe, AZ, USA ; Biological Design Graduate Program, Arizona State University Tempe, AZ, USA
| | | | | | | |
Collapse
|
12
|
Designing and creating a modularized synthetic pathway in cyanobacterium Synechocystis enables production of acetone from carbon dioxide. Metab Eng 2012; 14:394-400. [DOI: 10.1016/j.ymben.2012.03.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/14/2012] [Accepted: 03/12/2012] [Indexed: 11/20/2022]
|
13
|
Abstract
To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 10(9) cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production.
Collapse
|
14
|
Abstract
Cyanobacteria are the only prokaryotes capable of using sunlight as their energy, water as an electron donor, and air as a source of carbon and, for some nitrogen-fixing strains, nitrogen. Compared to algae and plants, cyanobacteria are much easier to genetically engineer, and many of the standard biological parts available for Synthetic Biology applications in Escherichia coli can also be used in cyanobacteria. However, characterization of such parts in cyanobacteria reveals differences in performance when compared to E. coli, emphasizing the importance of detailed characterization in the cellular context of a biological chassis. Furthermore, cyanobacteria possess special characteristics (e.g., multiple copies of their chromosomes, high content of photosynthetically active proteins in the thylakoids, the presence of exopolysaccharides and extracellular glycolipids, and the existence of a circadian rhythm) that have to be taken into account when genetically engineering them. With this chapter, the synthetic biologist is given an overview of existing biological parts, tools and protocols for the genetic engineering, and molecular analysis of cyanobacteria for Synthetic Biology applications.
Collapse
|
15
|
Imamura S, Asayama M. Sigma factors for cyanobacterial transcription. GENE REGULATION AND SYSTEMS BIOLOGY 2009; 3:65-87. [PMID: 19838335 PMCID: PMC2758279 DOI: 10.4137/grsb.s2090] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cyanobacteria are photosynthesizing microorganisms that can be used as a model for analyzing gene expression. The expression of genes involves transcription and translation. Transcription is performed by the RNA polymerase (RNAP) holoenzyme, comprising a core enzyme and a sigma (sigma) factor which confers promoter selectivity. The unique structure, expression, and function of cyanobacterial sigma factors (and RNAP core subunits) are summarized here based on studies, reported previously. The types of promoter recognized by the sigma factors are also discussed with regard to transcriptional regulation.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, School of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, Ibaraki 300-0393, Japan
| | | |
Collapse
|
16
|
Imashimizu M, Hanaoka M, Seki A, Murakami KS, Tanaka K. The cyanobacterial principal sigma factor region 1.1 is involved in DNA-binding in the free form and in transcription activity as holoenzyme. FEBS Lett 2006; 580:3439-44. [PMID: 16712841 DOI: 10.1016/j.febslet.2006.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 05/07/2006] [Accepted: 05/08/2006] [Indexed: 11/29/2022]
Abstract
Cyanobacterial principal sigma factor, sigma(A), includes a specifically conserved cluster of basic amino acids in the amino-terminal extension called region 1.1. We found that the sigma(A) in a thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 binds DNA in the absence of the core RNA polymerase and that sigma(A) lacking region 1.1 is not able to bind DNA. This indicates that, in the cyanobacterium, region 1.1 participates in DNA-binding, rather than inhibiting the interaction between free sigma and DNA, as found in other principal sigma factors of eubacteria. The results of in vitro transcription assays with the reconstituted RNA polymerase showed that region 1.1 reduces transcription activity from the cpc promoter.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Japan
| | | | | | | | | |
Collapse
|
17
|
Imashimizu M, Yoshimura H, Katoh H, Ehira S, Ohmori M. NaCl enhances cellular cAMP and upregulates genes related to heterocyst development in the cyanobacterium, Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 2005; 252:97-103. [PMID: 16182471 DOI: 10.1016/j.femsle.2005.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/30/2022] Open
Abstract
Cellular cAMP was rapidly increased in the nitrogen-fixing cyanobacterium, Anabaena sp. PCC 7120, by the addition of 200 mM NaCl to the culture medium. Other alkaline-metal chlorides such as KCl or LiCl caused a lesser increase. The increase in cellular cAMP was transient and diminished when an adenylate cyclase, CyaC, which contains the conserved domains of the bacterial two-component regulatory system, was disrupted. DNA microarray analysis showed that expression of a gene cluster containing all5347 and alr5351 (hglE) was upregulated by NaCl in the wild-type strain but not in the cyaC mutant. Primer extension analysis indicated that transcription levels of all5347 and hglE were rapidly increased in response to the NaCl addition, and that these genes have NaCl-dependent transcription start sites. It was concluded that NaCl induced expression of genes related to heterocyst envelope formation in this cyanobacterium, possibly via a CyaC-cAMP signal transduction system.
Collapse
Affiliation(s)
- Masahiko Imashimizu
- Department of Life Sciences, The University of Tokyo, 381 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | |
Collapse
|
18
|
Imamura S, Asayama M, Shirai M. In vitro transcription analysis by reconstituted cyanobacterial RNA polymerase: roles of group 1 and 2 sigma factors and a core subunit, RpoC2. Genes Cells 2005; 9:1175-87. [PMID: 15569150 DOI: 10.1111/j.1365-2443.2004.00808.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The RNA polymerase (RNAP) core enzyme of cyanobacterium Synechocystis sp. strain PCC 6803 was reconstituted with overproduced recombinant subunits and purified with C-terminal histidine-tagged RpoA. The core enzyme with purified a sigma factor, SigA/SigD or SigB, allowed specific in vitro transcription from the light-inducible psbA2 or the dark-/heat-inducible lrtA/hspA promoters, respectively. Further analysis using a mutant psbA2 promoter revealed that the -35 hexamer of the promoter was essential for SigA but not SigD. Similar but distinct patterns of psbA2 transcription were found for two types of RNAP, cyanobacterial (alpha2betabeta'gamma) and E. coli (alpha2betabeta') core enzymes. Specific binding of PCC 6803 RpoC2 (beta') to E. coli core enzyme and its contribution to efficient psbA2 transcription by RNAP-SigA/D suggest that this subunit could confer an important role on the cyanobactrial RNAP. Differences in affinity and specificity among cyanobacterial sigma factors for the core enzyme and promoters were discussed.
Collapse
Affiliation(s)
- Sousuke Imamura
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ami, Inashiki, Ibaraki 300-0393, Japan
| | | | | |
Collapse
|