1
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
3
|
Turbant F, Wu P, Wien F, Arluison V. The Amyloid Region of Hfq Riboregulator Promotes DsrA: rpoS RNAs Annealing. BIOLOGY 2021; 10:biology10090900. [PMID: 34571778 PMCID: PMC8468756 DOI: 10.3390/biology10090900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 11/16/2022]
Abstract
Hfq is a bacterial RNA chaperone which promotes the pairing of small noncoding RNAs to target mRNAs, allowing post-transcriptional regulation. This RNA annealing activity has been attributed for years to the N-terminal region of the protein that forms a toroidal structure with a typical Sm-fold. Nevertheless, many Hfqs, including that of Escherichia coli, have a C-terminal region with unclear functions. Here we use a biophysical approach, Synchrotron Radiation Circular Dichroism (SRCD), to probe the interaction of the E. coli Hfq C-terminal amyloid region with RNA and its effect on RNA annealing. This C-terminal region of Hfq, which has been described to be dispensable for sRNA:mRNA annealing, has an unexpected and significant effect on this activity. The functional consequences of this novel property of the amyloid region of Hfq in relation to physiological stress are discussed.
Collapse
Affiliation(s)
- Florian Turbant
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
| | - Pengzhi Wu
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland;
| | - Frank Wien
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint Aubin BP48, 91192 Gif-sur-Yvette, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| | - Véronique Arluison
- Laboratoire Léon Brillouin LLB, CEA, CNRS UMR12, Université Paris Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France;
- UFR Sciences du Vivant, Université de Paris, 75006 Paris, France
- Correspondence: (F.W.); or (V.A.); Tel.: +33-(0)169359665 (F.W.); +33-(0)169083282 (V.A.)
| |
Collapse
|
4
|
Hör J, Matera G, Vogel J, Gottesman S, Storz G. Trans-Acting Small RNAs and Their Effects on Gene Expression in Escherichia coli and Salmonella enterica. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0030-2019. [PMID: 32213244 PMCID: PMC7112153 DOI: 10.1128/ecosalplus.esp-0030-2019] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Indexed: 12/20/2022]
Abstract
The last few decades have led to an explosion in our understanding of the major roles that small regulatory RNAs (sRNAs) play in regulatory circuits and the responses to stress in many bacterial species. Much of the foundational work was carried out with Escherichia coli and Salmonella enterica serovar Typhimurium. The studies of these organisms provided an overview of how the sRNAs function and their impact on bacterial physiology, serving as a blueprint for sRNA biology in many other prokaryotes. They also led to the development of new technologies. In this chapter, we first summarize how these sRNAs were identified, defining them in the process. We discuss how they are regulated and how they act and provide selected examples of their roles in regulatory circuits and the consequences of this regulation. Throughout, we summarize the methodologies that were developed to identify and study the regulatory RNAs, most of which are applicable to other bacteria. Newly updated databases of the known sRNAs in E. coli K-12 and S. enterica Typhimurium SL1344 serve as a reference point for much of the discussion and, hopefully, as a resource for readers and for future experiments to address open questions raised in this review.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Gianluca Matera
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), 97080 Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892
| |
Collapse
|
5
|
Temperature-dependent regulation of the Escherichia coli lpxT gene. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:786-795. [DOI: 10.1016/j.bbagrm.2019.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 01/11/2023]
|
6
|
Gottesman S. Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. J Biol Chem 2019; 294:11685-11700. [PMID: 31197038 DOI: 10.1074/jbc.rev119.005593] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bacteria can rapidly and reversibly respond to changing environments via complex transcriptional and post-transcriptional regulatory mechanisms. Many of these adaptations are specific, with the regulatory output tailored to the inducing signal (for instance, repairing damage to cell components or improving acquisition and use of growth-limiting nutrients). However, the general stress response, activated in bacterial cells entering stationary phase or subjected to nutrient depletion or cellular damage, is unique in that its common, broad output is induced in response to many different signals. In many different bacteria, the key regulator for the general stress response is a specialized sigma factor, the promoter specificity subunit of RNA polymerase. The availability or activity of the sigma factor is regulated by complex regulatory circuits, the majority of which are post-transcriptional. In Escherichia coli, multiple small regulatory RNAs, each made in response to a different signal, positively regulate translation of the general stress response sigma factor RpoS. Stability of RpoS is regulated by multiple anti-adaptor proteins that are also synthesized in response to different signals. In this review, the modes of signaling to and levels of regulation of the E. coli general stress response are discussed. They are also used as a basis for comparison with the general stress response in other bacteria with the aim of extracting key principles that are common among different species and highlighting important unanswered questions.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
7
|
Sudo N, Soma A, Iyoda S, Oshima T, Ohto Y, Saito K, Sekine Y. Small RNA Esr41 inversely regulates expression of LEE and flagellar genes in enterohaemorrhagic Escherichia coli. MICROBIOLOGY-SGM 2018; 164:821-834. [PMID: 29580371 DOI: 10.1099/mic.0.000652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a life-threatening human pathogen worldwide. The locus of enterocyte effacement (LEE) in EHEC encodes a type three secretion system and effector proteins, all of which are essential for bacterial adherence to host cells. When LEE expression is activated, flagellar gene expression is down-regulated because bacterial flagella induce the immune responses of host cells at the infection stage. Therefore, this inverse regulation is also important for EHEC infection. We report here that a small regulatory RNA (sRNA), Esr41, mediates LEE repression and flagellar gene activation. Multiple copies of esr41 abolished LEE expression by down-regulating the expression of ler and pch, which encode positive regulators of LEE. This regulation led to reduced EHEC adhesion to host cells. Translational gene-reporter fusion experiments revealed that Esr41 regulates ler expression at a post-transcriptional level, and pch transcription, probably via an unknown target of Esr41. Esr41-mediated ler and pch repression was not observed in cells lacking hfq, which encodes an RNA-binding protein essential for most sRNA functions, indicating that Esr41 acts in an Hfq-dependent manner. We previously reported an increase in cell motility induced by Esr41. This motility enhancement was also observed in EHEC lacking ler, showing that Esr41-mediated enhancement of cell motility is in a ler-independent manner. In addition, Esr41 activated the expression of flagellar Class 3 genes by indirectly inducing the transcription of fliA, which encodes the sigma factor for flagellar synthesis. These results suggest that Esr41 plays important roles in the inverse regulation of LEE and flagellar gene expression.
Collapse
Affiliation(s)
- Naoki Sudo
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan.,Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akiko Soma
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, Japan
| | - Sunao Iyoda
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Taku Oshima
- Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Yui Ohto
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Kenta Saito
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| | - Yasuhiko Sekine
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo, Japan
| |
Collapse
|
8
|
Hook-Barnard IG, Hinton DM. Transcription Initiation by Mix and Match Elements: Flexibility for Polymerase Binding to Bacterial Promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2017. [DOI: 10.1177/117762500700100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (β β′, α1, α2, ω), which have RNA synthesizing activity, and a specificity factor (σ), which identifies the start of transcription by recognizing and binding to sequence elements within promoter DNA. Four core promoter consensus sequences, the –10 element, the extended –10 (TGn) element, the –35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the –35 elements (–35TTGACA–30), and the extended –10 (15TGn–13) are recognized as double-stranded binding elements, whereas the –5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the –10 element (–12TATAAT–7) is recognized as both double-stranded DNA for the T:A bp at position –12 and as nontemplate, single-stranded DNA from positions –11 to –7. The single-stranded sequences at positions –11 to –7 as well as the –5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double-stranded elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
Affiliation(s)
- India G. Hook-Barnard
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8 Room 2A-13, Bethesda, MD 20892-0830
| |
Collapse
|
9
|
Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J, Shi Y. The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Res 2017; 45:9625-9639. [PMID: 28934467 PMCID: PMC5766208 DOI: 10.1093/nar/gkx570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
In bacteria, small non-coding RNAs (sRNAs) could function in gene regulations under variable stress responses. DsrA is an ∼90-nucleotide Hfq-dependent sRNA found in Escherichia coli. It regulates the translation and degradation of multiple mRNAs, such as rpoS, hns, mreB and rbsD mRNAs. However, its functional structure and particularly how it regulates multiple mRNAs remain obscure. Using NMR, we investigated the solution structures of the full-length and isolated stem-loops of DsrA. We first solved the NMR structure of the first stem-loop (SL1), and further studied the melting process of the SL1 induced by the base-pairing with the rpoS mRNA and the A-form duplex formation of the DsrA/rpoS complex. The secondary structure of the second stem-loop (SL2) was also determined, which contains a lower stem and an upper stem with distinctive stability. Interestingly, two conformational states of SL2 in dynamic equilibrium were observed in our NMR spectra, suggesting that the conformational selection may occur during the base-pairing between DsrA and mRNAs. In summary, our study suggests that the conformational plasticity of DsrA may represent a special mechanism sRNA employed to deal with its multiple regulatory targets of mRNA.
Collapse
Affiliation(s)
- Pengzhi Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Xiaodan Liu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Lingna Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yitong Sun
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Qingguo Gong
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Jihui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| | - Yunyu Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Anhui 230027, China
| |
Collapse
|
10
|
Ryan D, Mukherjee M, Suar M. The expanding targetome of small RNAs in Salmonella Typhimurium. Biochimie 2017; 137:69-77. [DOI: 10.1016/j.biochi.2017.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
|
11
|
Hücker SM, Simon S, Scherer S, Neuhaus K. Transcriptional and translational regulation by RNA thermometers, riboswitches and the sRNA DsrA in Escherichia coli O157:H7 Sakai under combined cold and osmotic stress adaptation. FEMS Microbiol Lett 2016; 364:fnw262. [PMID: 27856567 DOI: 10.1093/femsle/fnw262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/22/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
The enteric pathogen Escherichia coli O157:H7 Sakai (EHEC) is able to grow at lower temperatures compared to commensal E. coli Growth at environmental conditions displays complex challenges different to those in a host. EHEC was grown at 37°C and at 14°C with 4% NaCl, a combination of cold and osmotic stress as present in the food chain. Comparison of RNAseq and RIBOseq data provided a snap shot of ongoing transcription and translation, differentiating transcriptional and post-transcriptional gene regulation, respectively. Indeed, cold and osmotic stress related genes are simultaneously regulated at both levels, but translational regulation clearly dominates. Special emphasis was given to genes regulated by RNA secondary structures in their 5'UTRs, such as RNA thermometers and riboswitches, or genes controlled by small RNAs encoded in trans The results reveal large differences in gene expression between short-time shock compared to adaptation in combined cold and osmotic stress. Whereas the majority of cold shock proteins, such as CspA, are translationally downregulated after adaptation, many osmotic stress genes are still significantly upregulated mainly translationally, but several also transcriptionally.
Collapse
Affiliation(s)
- Sarah Maria Hücker
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Svenja Simon
- Chair for Data Analysis and Visualization, Department of Computer and Information Science, University of Konstanz, Box 78, 78457 Konstanz, Germany
| | - Siegfried Scherer
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany
| |
Collapse
|
12
|
Fan Y, Evans CR, Ling J. Reduced Protein Synthesis Fidelity Inhibits Flagellar Biosynthesis and Motility. Sci Rep 2016; 6:30960. [PMID: 27468805 PMCID: PMC4965754 DOI: 10.1038/srep30960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/12/2016] [Indexed: 01/02/2023] Open
Abstract
Accurate translation of the genetic information from DNA to protein is maintained by multiple quality control steps from bacteria to mammals. Genetic and environmental alterations have been shown to compromise translational quality control and reduce fidelity during protein synthesis. The physiological impact of increased translational errors is not fully understood. While generally considered harmful, translational errors have recently been shown to benefit cells under certain stress conditions. In this work, we describe a novel regulatory pathway in which reduced translational fidelity downregulates expression of flagellar genes and suppresses bacterial motility. Electron microscopy imaging shows that the error-prone Escherichia coli strain lacks mature flagella. Further genetic analyses reveal that translational errors upregulate expression of a small RNA DsrA through enhancing its transcription, and deleting DsrA from the error-prone strain restores motility. DsrA regulates expression of H-NS and RpoS, both of which regulate flagellar genes. We demonstrate that an increased level of DsrA in the error-prone strain suppresses motility through the H-NS pathway. Our work suggests that bacteria are capable of switching on and off the flagellar system by altering translational fidelity, which may serve as a previously unknown mechanism to improve fitness in response to environmental cues.
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Christopher R Evans
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
13
|
Cayrol B, Fortas E, Martret C, Cech G, Kloska A, Caulet S, Barbet M, Trépout S, Marco S, Taghbalout A, Busi F, Wegrzyn G, Arluison V. Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA. Integr Biol (Camb) 2015; 7:128-41. [PMID: 25407044 DOI: 10.1039/c4ib00102h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterial actin-homolog MreB is a key player in bacterial cell-wall biosynthesis and is required for the maintenance of the rod-like morphology of Escherichia coli. However, how MreB cellular levels are adjusted to growth conditions is poorly understood. Here, we show that DsrA, an E. coli small noncoding RNA (sRNA), is involved in the post-transcriptional regulation of mreB. DsrA is required for the downregulation of MreB cellular concentration during environmentally induced slow growth-rates, mainly growth at low temperature and during the stationary phase. DsrA interacts in an Hfq-dependent manner with the 5' region of mreB mRNA, which contains signals for translation initiation and thereby affects mreB translation and stability. Moreover, as DsrA is also involved in the regulation of two transcriptional regulators, σ(S) and the nucleoid associated protein H-NS, which negatively regulate mreB transcription, it also indirectly contributes to mreB transcriptional down-regulation. By using quantitative analyses, our results evidence the complexity of this regulation and the tangled interplay between transcriptional and post-transcriptional control. As transcription factors and sRNA-mediated post-transcriptional regulators use different timescales, we propose that the sRNA pathway helps to adapt to changes in temperature, but also indirectly mediates long-term regulation of MreB concentration. The tight regulation and fine-tuning of mreB gene expression in response to cellular stresses is discussed in regard to the effect of the MreB protein on cell elongation.
Collapse
Affiliation(s)
- Bastien Cayrol
- Laboratoire Léon Brillouin, CEA - Centre de Saclay, 91191 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Papenfort K, Vanderpool CK. Target activation by regulatory RNAs in bacteria. FEMS Microbiol Rev 2015; 39:362-78. [PMID: 25934124 DOI: 10.1093/femsre/fuv016] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
Bacterial small regulatory RNAs (sRNAs) are commonly known to repress gene expression by base pairing to target mRNAs. In many cases, sRNAs base pair with and sequester mRNA ribosome-binding sites, resulting in translational repression and accelerated transcript decay. In contrast, a growing number of examples of translational activation and mRNA stabilization by sRNAs have now been documented. A given sRNA often employs a conserved region to interact with and regulate both repressed and activated targets. However, the mechanisms underlying activation differ substantially from repression. Base pairing resulting in target activation can involve sRNA interactions with the 5(') untranslated region (UTR), the coding sequence or the 3(') UTR of the target mRNAs. Frequently, the activities of protein factors such as cellular ribonucleases and the RNA chaperone Hfq are required for activation. Bacterial sRNAs, including those that function as activators, frequently control stress response pathways or virulence-associated functions required for immediate responses to changing environments. This review aims to summarize recent advances in knowledge regarding target mRNA activation by bacterial sRNAs, highlighting the molecular mechanisms and biological relevance of regulation.
Collapse
Affiliation(s)
- Kai Papenfort
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA Department of Biology I, Ludwig-Maximilians-University Munich, 82152 Martinsried, Germany
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Stress sigma factor RpoS degradation and translation are sensitive to the state of central metabolism. Proc Natl Acad Sci U S A 2015; 112:5159-64. [PMID: 25847996 DOI: 10.1073/pnas.1504639112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RpoS, the stationary phase/stress sigma factor of Escherichia coli, regulates a large cohort of genes important for the cell to deal with suboptimal conditions. Its level increases quickly in the cell in response to many stresses and returns to low levels when growth resumes. Increased RpoS results from increased translation and decreased RpoS degradation. Translation is positively regulated by small RNAs (sRNAs). Protein stability is positively regulated by anti-adaptors, which prevent the RssB adaptor-mediated degradation of RpoS by the ClpXP protease. Inactivation of aceE, a subunit of pyruvate dehydrogenase (PDH), was found to increase levels of RpoS by affecting both translation and protein degradation. The stabilization of RpoS in aceE mutants is dependent on increased transcription and translation of IraP and IraD, two known anti-adaptors. The aceE mutation also leads to a significant increase in rpoS translation. The sRNAs known to positively regulate RpoS are not responsible for the increased translation; sequences around the start codon are sufficient for the induction of translation. PDH synthesizes acetyl-CoA; acetate supplementation allows the cell to synthesize acetyl-CoA by an alternative, less favored pathway, in part dependent upon RpoS. Acetate addition suppressed the effects of the aceE mutant on induction of the anti-adaptors, RpoS stabilization, and rpoS translation. Thus, the bacterial cell responds to lowered levels of acetyl-CoA by inducing RpoS, allowing reprogramming of E. coli metabolism.
Collapse
|
16
|
Mika F, Hengge R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 2014; 11:494-507. [PMID: 25028968 PMCID: PMC4152358 DOI: 10.4161/rna.28867] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid curli fibers and cellulose are extracellular matrix components produced in the stationary phase top layer of E. coli macrocolonies, which confer physical protection, strong cohesion, elasticity, and wrinkled morphology to these biofilms. Curli and cellulose synthesis is controlled by a three-level transcription factor (TF) cascade with the RpoS sigma subunit of RNA polymerase at the top, the MerR-like TF MlrA, and the biofilm regulator CsgD, with two c-di-GMP control modules acting as key switching devices. Additional signal input and fine-tuning is provided by an entire series of small RNAs-ArcZ, DsrA, RprA, McaS, OmrA/OmrB, GcvB, and RydC--that differentially control all three TF modules by direct mRNA interaction. This review not only summarizes the mechanisms of action of these sRNAs, but also addresses the question of how these sRNAs and the regulators they target contribute to building the intriguing three-dimensional microarchitecture and macromorphology of these biofilms.
Collapse
Affiliation(s)
- Franziska Mika
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| | - Regine Hengge
- Institut für Biologie/Mikrobiologie; Humboldt Universität zu Berlin; Berlin, Germany
| |
Collapse
|
17
|
Hämmerle H, Večerek B, Resch A, Bläsi U. Duplex formation between the sRNA DsrA and rpoS mRNA is not sufficient for efficient RpoS synthesis at low temperature. RNA Biol 2013; 10:1834-41. [PMID: 24448230 DOI: 10.4161/rna.27100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At low temperatures the Escherichia coli rpoS mRNA, encoding the stationary phase sigma factor RpoS, forms an intramolecular secondary structure (iss) that impedes translation initiation. Under these conditions the small RNA DsrA, which is stabilzed by Hfq, forms a duplex with rpoS mRNA sequences opposite of the ribosome-binding site (rbs). Both the DEAD box helicase CsdA and Hfq have been implicated in DsrA·rpoS duplex formation. Hfq binding to A-rich sequences in the rpoS leader has been suggested to restructure the mRNA, and thereby to accelerate DsrA·rpoS duplex formation, which, in turn, was deemed to free the rpoS rbs and to permit ribosome loading on the mRNA. Several experiments designed to elucidate the role of Hfq in DsrA-mediated translational activation of rpoS mRNA have been conducted in vitro. Here, we assessed RpoS synthesis in vivo to further study the role of Hfq in rpoS regulation. We show that RpoS synthesis was reduced when DsrA was ectopically overexpressed at 24 °C in the absence of Hfq despite of DsrA·rpoS duplex formation. This observation indicated that DsrA·rpoS annealing may not be sufficient for efficient ribosome loading on rpoS mRNA. In addition, a HfqG29A mutant protein was employed, which is deficient in binding to A-rich sequences present in the rpoS leader but proficient in DsrA binding. We show that DsrA·rpoS duplex formation occurs in the presence of the HfqG29A mutant protein at low temperature, whereas synthesis of RpoS was greatly diminished. RNase T1 footprinting studies of DsrA·rpoS duplexes in the absence and presence of Hfq or HfqG29A indicated that Hfq is required to resolve a stem-loop structure in the immediate coding region of rpoS mRNA. These in vivo studies corroborate the importance of the A-rich sequences in the rpoS leader and strongly suggest that Hfq, besides stabilizing DsrA and accelerating DsrA·rpoS duplex formation, is also required to convert the rpoS mRNA into a translationally competent form.
Collapse
Affiliation(s)
- Hermann Hämmerle
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Branislav Večerek
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria; Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Prague 4-Krč, Czech Republic
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Centre of Molecular Biology, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
18
|
Hoe CH, Raabe CA, Rozhdestvensky TS, Tang TH. Bacterial sRNAs: regulation in stress. Int J Med Microbiol 2013; 303:217-29. [PMID: 23660175 DOI: 10.1016/j.ijmm.2013.04.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/26/2013] [Accepted: 04/07/2013] [Indexed: 11/28/2022] Open
Abstract
Bacteria are often exposed to a hostile environment and have developed a plethora of cellular processes in order to survive. A burgeoning list of small non-coding RNAs (sRNAs) has been identified and reported to orchestrate crucial stress responses in bacteria. Among them, cis-encoded sRNA, trans-encoded sRNA, and 5'-untranslated regions (UTRs) of the protein coding sequence are influential in the bacterial response to environmental cues, such as fluctuation of temperature and pH as well as other stress conditions. This review summarizes the role of bacterial sRNAs in modulating selected stress conditions and highlights the alliance between stress response and clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial defense.
Collapse
Affiliation(s)
- Chee-Hock Hoe
- Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, 13200 Penang, Malaysia.
| | | | | | | |
Collapse
|
19
|
Expanding control in bacteria: interplay between small RNAs and transcriptional regulators to control gene expression. Curr Opin Microbiol 2013; 16:125-32. [PMID: 23415757 DOI: 10.1016/j.mib.2012.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/21/2012] [Accepted: 12/29/2012] [Indexed: 11/20/2022]
Abstract
Small regulatory RNAs (sRNAs) are now considered as major post-transcriptional regulators of gene expression in bacteria. Their importance is related to their variety in probably all bacterial species as well as to the extreme diversity of physiological functions of their target genes. An increasing amount of data point to an intimate connection between sRNAs and transcriptional regulatory networks to control multiple functions as important as motility or group behavior. The resulting mixed circuits unravel novel regulatory links and their properties are just starting to be characterized.
Collapse
|
20
|
Micevski D, Dougan DA. Proteolytic regulation of stress response pathways in Escherichia coli. Subcell Biochem 2013; 66:105-28. [PMID: 23479439 DOI: 10.1007/978-94-007-5940-4_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maintaining correct cellular function is a fundamental biological process for all forms of life. A critical aspect of this process is the maintenance of protein homeostasis (proteostasis) in the cell, which is largely performed by a group of proteins, referred to as the protein quality control (PQC) network. This network of proteins, comprised of chaperones and proteases, is critical for maintaining proteostasis not only during favourable growth conditions, but also in response to stress. Indeed proteases play a crucial role in the clearance of unwanted proteins that accumulate during stress, but more importantly, in the activation of various different stress response pathways. In bacteria, the cells response to stress is usually orchestrated by a specific transcription factor (sigma factor). In Escherichia coli there are seven different sigma factors, each of which responds to a particular stress, resulting in the rapid expression of a specific set of genes. The cellular concentration of each transcription factor is tightly controlled, at the level of transcription, translation and protein stability. Here we will focus on the proteolytic regulation of two sigma factors (σ(32) and σ(S)), which control the heat and general stress response pathways, respectively. This review will also briefly discuss the role proteolytic systems play in the clearance of unwanted proteins that accumulate during stress.
Collapse
Affiliation(s)
- Dimce Micevski
- Department of Biochemistry, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, 3086, Australia
| | | |
Collapse
|
21
|
Shapiro RS, Cowen LE. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing. mBio 2012; 3:e00238-12. [PMID: 23033469 PMCID: PMC3518907 DOI: 10.1128/mbio.00238-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Temperature is a critical and ubiquitous environmental signal that governs the development and virulence of diverse microbial species, including viruses, archaea, bacteria, fungi, and parasites. Microbial survival is contingent upon initiating appropriate responses to the cellular stress induced by severe environmental temperature change. In the case of microbial pathogens, development and virulence are often coupled to sensing host physiological temperatures. As such, microbes have developed diverse molecular strategies to sense fluctuations in temperature, and nearly all cellular molecules, including proteins, lipids, RNA, and DNA, can act as thermosensors that detect changes in environmental temperature and initiate relevant cellular responses. The myriad of molecular mechanisms by which microbes sense and respond to temperature reveals an elegant repertoire of strategies to orchestrate cellular signaling, developmental programs, and virulence with spatial and temporal environmental cues.
Collapse
Affiliation(s)
- Rebecca S Shapiro
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
22
|
Guantes R, Cayrol B, Busi F, Arluison V. Positive regulatory dynamics by a small noncoding RNA: speeding up responses under temperature stress. MOLECULAR BIOSYSTEMS 2012; 8:1707-15. [PMID: 22456827 DOI: 10.1039/c2mb05479e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent discoveries of noncoding regulatory RNAs have led to further understanding of the elements controlling genetic expression. In E. coli, most of those ncRNAs for which functional knowledge is available were shown to be dependent on the Hfq RNA chaperone and to act as inhibitors of translation by base pairing with their mRNA target. Nevertheless, there are also some examples where the sRNA plays a role of a translational activator, structurally enhancing ribosome binding to mRNA. In this work, we seek to understand the dynamics of DsrA-based positive regulation of rpoS mRNA, encoding the σ(S) RNA polymerase subunit, and to understand how it helps to mitigate environmental stress in bacteria. Our analysis is based on the first absolute quantification of the copy number of both the sRNA and of its corresponding mRNA in combination with mathematical models for post-transcriptional regulation. We show that on average, DsrA is present at a ratio of 3 to 24 copies per cell, while an rpoS transcript is present at a level of 1 to 4 copies per cell, both levels increasing when temperature is decreased. Our analysis supports the idea that temperature dependency of DsrA degradation is not a crucial condition for the attainment of observed DsrA steady levels, but highlights that this may have a marked influence on the dynamics of the regulation, notably to speed up the time of recovery to normal RNA levels after ending the stress signal. Further, our analysis also reveals how reversibility of RNA complex formation and σ(S)-regulated degradation act to reduce intrinsic noise in σ(S) induction. Taking into account the importance of this master regulator, which allows E. coli as well as other important pathogens to survive their environment, the present work contributes to complete the panel of multiple signals used to regulate bacterial transcription.
Collapse
Affiliation(s)
- Raúl Guantes
- Department of Condensed Matter Physics and Materials Science Institute Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
23
|
Battesti A, Majdalani N, Gottesman S. The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 2012; 65:189-213. [PMID: 21639793 DOI: 10.1146/annurev-micro-090110-102946] [Citation(s) in RCA: 654] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under conditions of nutrient deprivation or stress, or as cells enter stationary phase, Escherichia coli and related bacteria increase the accumulation of RpoS, a specialized sigma factor. RpoS-dependent gene expression leads to general stress resistance of cells. During rapid growth, RpoS translation is inhibited and any RpoS protein that is synthesized is rapidly degraded. The complex transition from exponential growth to stationary phase has been partially dissected by analyzing the induction of RpoS after specific stress treatments. Different stress conditions lead to induction of specific sRNAs that stimulate RpoS translation or to induction of small-protein antiadaptors that stabilize the protein. Recent progress has led to a better, but still far from complete, understanding of how stresses lead to RpoS induction and what RpoS-dependent genes help the cell deal with the stress.
Collapse
Affiliation(s)
- Aurelia Battesti
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
24
|
Abstract
Four different mechanisms have evolved in eubacteria to comply with changes in the environmental temperature. The underlying genetic mechanisms regulate gene expression at transcriptional, translational and posttranslational level. The high temperature response (HTR) is a reaction on increases in temperature and is mainly used by pathogenic bacteria when they enter their mammalian host. The temperature of 37°C causes induction of the virulent genes the products of which are only needed in this environment. The heat shock response (HSR) is induced by any sudden increase in temperature, allows the bacterial cell to adapt to this environmental stress factor and is shut off after adaptation. In a similar way the low temperature response (LTR) is a reaction to a new environment and leads to the constant expression of appropriate genes. In contrast, the cold shock response (CSR) includes turn off of the cold shock genes after adaptation to the low temperature. Sensors of temperature changes are specific DNA regions, RNA molecules or proteins and conformational changes have been identified as a common motif.
Collapse
|
25
|
Abstract
A major class of small bacterial RNAs (sRNAs) regulate translation and mRNA stability by pairing with target mRNAs, dependent upon the RNA chaperone Hfq. Hfq, related to the Lsm/Sm families of splicing proteins, binds the sRNAs and stabilizes them in vivo and stimulates pairing with mRNAs in vitro. Although Hfq is abundant, the sRNAs, when induced, are similarly abundant. Therefore, Hfq may be limiting for sRNA function. We find that, when overexpressed, a number of sRNAs competed with endogenous sRNAs for binding to Hfq. This correlated with lower accumulation of the sRNAs (presumably a reflection of the loss of Hfq binding), and lower activity of the sRNAs in regulating gene expression. Hfq was limiting for both positive and negative regulation by the sRNAs. In addition, deletion of the gene for an expressed and particularly effective competitor sRNA improved the regulation of genes by other sRNAs, suggesting that Hfq is limiting during normal growth conditions. These results support the existence of a hierarchy of sRNA competition for Hfq, modulating the function of some sRNAs.
Collapse
Affiliation(s)
- Kyung Moon
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Shimada T, Bridier A, Briandet R, Ishihama A. Novel roles of LeuO in transcription regulation of E. coli genome: antagonistic interplay with the universal silencer H-NS. Mol Microbiol 2011; 82:378-97. [DOI: 10.1111/j.1365-2958.2011.07818.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Mitchell RJ, Lee SK, Kim T, Ghim CM. Microbial linguistics: perspectives and applications of microbial cell-to-cell communication. BMB Rep 2011; 44:1-10. [PMID: 21266100 DOI: 10.5483/bmbrep.2011.44.1.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.
Collapse
Affiliation(s)
- Robert J Mitchell
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea
| | | | | | | |
Collapse
|
28
|
Abstract
During the last decade small regulatory RNA (srRNA) emerged as central players in the regulation of gene expression in all kingdoms of life. Multiple pathways for srRNA biogenesis and diverse mechanisms of gene regulation may indicate that srRNA regulation evolved independently multiple times. However, small RNA pathways share numerous properties, including the ability of a single srRNA to regulate multiple targets. Some of the mechanisms of gene regulation by srRNAs have significant effect on the abundance of free srRNAs that are ready to interact with new targets. This results in indirect interactions among seemingly unrelated genes, as well as in a crosstalk between different srRNA pathways. Here we briefly review and compare the major srRNA pathways, and argue that the impact of srRNA is always at the system level. We demonstrate how a simple mathematical model can ease the discussion of governing principles. To demonstrate these points we review a few examples from bacteria and animals.
Collapse
Affiliation(s)
- Daniel Jost
- Department of Physics, FAS Center for Systems Biology, Harvard University, Cambridge MA 02138, USA
| | | | | |
Collapse
|
29
|
Kim K, Sim SH, Jeon CO, Lee Y, Lee K. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III. FEMS Microbiol Lett 2010; 315:30-7. [PMID: 21133991 DOI: 10.1111/j.1574-6968.2010.02169.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kyungsub Kim
- Department of Life Sciences (BK21 program), Chung-Ang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
30
|
Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 2010; 192:5559-71. [PMID: 20802038 DOI: 10.1128/jb.00464-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding RNAs (sRNAs) regulate gene expression in Escherichia coli by base pairing with mRNAs and modulating translation and mRNA stability. The sRNAs DsrA and RprA stimulate the translation of the stress response transcription factor RpoS by base pairing with the 5' untranslated region of the rpoS mRNA. In the present study, we found that the rpoS mRNA was unstable in the absence of DsrA and RprA and that expression of these sRNAs increased both the accumulation and the half-life of the rpoS mRNA. Mutations in dsrA, rprA, or rpoS that disrupt the predicted pairing sequences and reduce translation of RpoS also destabilize the rpoS mRNA. We found that the rpoS mRNA accumulates in an RNase E mutant strain in the absence of sRNA expression and, therefore, is degraded by an RNase E-mediated mechanism. DsrA expression is required, however, for maximal translation even when rpoS mRNA is abundant. This suggests that DsrA protects rpoS mRNA from degradation by RNase E and that DsrA has a further activity in stimulating RpoS protein synthesis. rpoS mRNA is subject to degradation by an additional pathway, mediated by RNase III, which, in contrast to the RNase E-mediated pathway, occurs in the presence and absence of DsrA or RprA. rpoS mRNA and RpoS protein levels are increased in an RNase III mutant strain with or without the sRNAs, suggesting that the role of RNase III in this context is to reduce the translation of RpoS even when the sRNAs are acting to stimulate translation.
Collapse
|
31
|
Madhugiri R, Basineni SR, Klug G. Turn-over of the small non-coding RNA RprA in E. coli is influenced by osmolarity. Mol Genet Genomics 2010; 284:307-18. [PMID: 20717695 DOI: 10.1007/s00438-010-0568-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
Abstract
The sRNA RprA is known to activate rpoS translation in E. coli in an osmolarity-dependent manner. We asked whether RprA stability contributes to osmolarity-dependent regulation and how the RNA binding protein Hfq and the major E. coli endonucleases contribute to this turn-over. The study reveals that osmolarity-dependent turn-over of RprA indeed contributes to its osmolarity-dependent abundance. RprA is stabilized by the RNA chaperone Hfq and in absence of Hfq its turn-over is no longer osmolarity-dependent. The stability of the RprA target mRNA rpoS shows a lower extent of osmolarity dependence, which differs from the profile observed for RprA. Thus, the effect of sucrose is specific for individual RNAs. We can attribute a role of the endoribonuclease RNase E in turn-over of RprA and an indirect effect of the endoribonuclease III in vivo. In addition, RprA is stabilized by the presence of rpoS suggesting that hybrid formation with its target may protect it against ribonucleases. In vitro RprA is cleaved by the RNase E containing degradosome and by RNase III and rpoS interferes with RNase III cleavage. We also show that temperature affects the stabilities of the sRNAs binding to rpoS and of rpoS mRNA itself differentially and that higher stability of DsrA with decreasing temperature may contribute to its high abundance at lower temperatures. This study demonstrates that environmental parameters can affect the stability of sRNAs and consequently their abundance.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
32
|
How do bacteria sense and respond to low temperature? Arch Microbiol 2010; 192:85-95. [DOI: 10.1007/s00203-009-0539-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/19/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
|
33
|
Klinkert B, Narberhaus F. Microbial thermosensors. Cell Mol Life Sci 2009; 66:2661-76. [PMID: 19554260 PMCID: PMC11115684 DOI: 10.1007/s00018-009-0041-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 03/27/2009] [Accepted: 04/21/2009] [Indexed: 12/27/2022]
Abstract
Temperature is among the most important of the parameters that free-living microbes monitor. Microbial physiology needs to be readjusted in response to sudden temperature changes. When the ambient temperature rises or drops to potentially harmful levels, cells mount protective stress responses--so-called heat or cold shock responses, respectively. Pathogenic microorganisms often respond to a temperature of around 37 degrees C by inducing virulence gene expression. There are two main ways in which temperature can be measured. Often, the consequences of a sudden temperature shift are detected. Such indirect signals are known to be the accumulation of denatured proteins (heat shock) or stalled ribosomes (cold shock). However, this article focuses solely on direct thermosensors. Since the conformation of virtually every biomolecule is susceptible to temperature changes, primary sensors include DNA, RNA, proteins and lipids.
Collapse
Affiliation(s)
- Birgit Klinkert
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| | - Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780 Bochum, Germany
| |
Collapse
|
34
|
Hansen AM, Kaper JB. Hfq affects the expression of the LEE pathogenicity island in enterohaemorrhagic Escherichia coli. Mol Microbiol 2009; 73:446-65. [PMID: 19570135 DOI: 10.1111/j.1365-2958.2009.06781.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colonization of the intestinal epithelium by enterohaemorrhagic Escherichia coli (EHEC) is characterized by an attaching and effacing (A/E) histopathology. The locus of enterocyte effacement (LEE) pathogenicity island encodes many genes required for the A/E phenotype including the global regulator of EHEC virulence gene expression, Ler. The LEE is subject to a complex regulatory network primarily targeting ler transcription. The RNA chaperone Hfq, implicated in post-transcriptional regulation, is an important virulence factor in many bacterial pathogens. Although post-transcriptional regulation of EHEC virulence genes is known to occur, a regulatory role of Hfq in EHEC virulence gene expression has yet to be defined. Here, we show that an hfq mutant expresses increased levels of LEE-encoded proteins prematurely, leading to earlier A/E lesion formation relative to wild type. Hfq indirectly affects LEE expression in exponential phase independent of Ler by negatively controlling levels of the regulators GrlA and GrlR through post-transcriptional regulation of the grlRA messenger. Moreover, Hfq negatively affects LEE expression in stationary phase independent of GrlA and GrlR. Altogether, Hfq plays an important role in co-ordinating the temporal expression of the LEE by controlling grlRA expression at the post-transcriptional level.
Collapse
Affiliation(s)
- Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
35
|
Involvement of the leucine response transcription factor LeuO in regulation of the genes for sulfa drug efflux. J Bacteriol 2009; 191:4562-71. [PMID: 19429622 DOI: 10.1128/jb.00108-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LeuO, a LysR family transcription factor, exists in a wide variety of bacteria of the family Enterobacteriaceae and is involved in the regulation of as yet unidentified genes affecting the stress response and pathogenesis expression. Using genomic screening by systematic evolution of ligands by exponential enrichment (SELEX) in vitro, a total of 106 DNA sequences were isolated from 12 different regions of the Escherichia coli genome. All of the SELEX fragments formed complexes in vitro with purified LeuO. After Northern blot analysis of the putative target genes located downstream of the respective LeuO-binding sequence, a total of nine genes were found to be activated by LeuO, while three genes were repressed by LeuO. The LeuO target gene collection included several multidrug resistance genes. A phenotype microarray assay was conducted to identify the gene(s) responsible for drug resistance and the drug species that are under the control of the LeuO target gene(s). The results described herein indicate that the yjcRQP operon, one of the LeuO targets, is involved in sensitivity control against sulfa drugs. We propose to rename the yjcRQP genes the sdsRQP genes (sulfa drug sensitivity determinant).
Collapse
|
36
|
The promoter spacer influences transcription initiation via sigma70 region 1.1 of Escherichia coli RNA polymerase. Proc Natl Acad Sci U S A 2009; 106:737-42. [PMID: 19139410 DOI: 10.1073/pnas.0808133106] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription initiation is a dynamic process in which RNA polymerase (RNAP) and promoter DNA act as partners, changing in response to one another, to produce a polymerase/promoter open complex (RPo) competent for transcription. In Escherichia coli RNAP, region 1.1, the N-terminal 100 residues of sigma(70), is thought to occupy the channel that will hold the DNA downstream of the transcription start site; thus, region 1.1 must move from this channel as RPo is formed. Previous work has also shown that region 1.1 can modulate RPo formation depending on the promoter. For some promoters region 1.1 stimulates the formation of open complexes; at the P(minor) promoter, region 1.1 inhibits this formation. We demonstrate here that the AT-rich P(minor) spacer sequence, rather than promoter recognition elements or downstream DNA, determines the effect of region 1.1 on promoter activity. Using a P(minor) derivative that contains good sigma(70)-dependent DNA elements, we find that the presence of a more GC-rich spacer or a spacer with the complement of the P(minor) sequence results in a promoter that is no longer inhibited by region 1.1. Furthermore, the presence of the P(minor) spacer, the GC-rich spacer, or the complement spacer results in different mobilities of promoter DNA during gel electrophoresis, suggesting that the spacer regions impart differing conformations or curvatures to the DNA. We speculate that the spacer can influence the trajectory or flexibility of DNA as it enters the RNAP channel and that region 1.1 acts as a "gatekeeper" to monitor channel entry.
Collapse
|
37
|
Schumann W. Chapter 7 Temperature Sensors of Eubacteria. ADVANCES IN APPLIED MICROBIOLOGY 2009; 67:213-56. [DOI: 10.1016/s0065-2164(08)01007-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Butala M, Podlesek Z, Zgur-Bertok D. The SOS response affects thermoregulation of colicin K synthesis. FEMS Microbiol Lett 2008; 283:104-11. [PMID: 18399998 DOI: 10.1111/j.1574-6968.2008.01161.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Temperature is one of the key environmental parameters affecting bacterial gene expression. This study investigated the effect of temperature on synthesis of Escherichia coli colicins E1, K, N and E7 as well as the molecular basis underlying thermoregulation of the colicin K activity gene cka. The results of our study show that synthesis of the investigated colicins is higher at 37 degrees C than at 22 degrees C and that temperature regulates cka expression at the level of transcription. We propose that the SOS response indirectly regulates thermoregulation of colicin K (and possibly of the other examined colicins). Two LexA dimers bind cooperatively with high affinity to the two overlapping LexA boxes in a temperature-independent manner. At 22 degrees C the relative degree of repression is higher as a result of less LexA cleavage due to a slower growth rate, while at 37 degrees C the extent of LexA cleavage is higher due to a higher growth rate. Thermoregulation of colicin synthesis is an additional example of the connection between the SOS regulon and cell physiology.
Collapse
Affiliation(s)
- Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
39
|
Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. GENE REGULATION AND SYSTEMS BIOLOGY 2007; 1:275-93. [PMID: 19119427 PMCID: PMC2613000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial RNA polymerase is composed of a core of subunits (beta, beta', alpha1, alpha2, omega), which have RNA synthesizing activity, and a specificity factor (sigma), which identifies the start of transcription by recognizing and binding to sequences elements within promoter DNA. Four core promoter consensus sequences, the -10 element, the extended -10 (TGn) element, the -35 element, and the UP elements, have been known for many years; the importance of a nontemplate G at position -5 has been recognized more recently. However, the functions of these elements are not the same. The AT-rich UP elements, the -35 elements ((-35)TTGACA(-30)), and the extended -10 ((-15)TGn(-13)) are recognized as double stranded binding elements, whereas the -5 nontemplate G is recognized in the context of single-stranded DNA at the transcription bubble. Furthermore, the -10 element ((-12)TATAAT(-7)) is recognized as both double strand DNA for the T:A bp at position -12 and as nontemplate, single-strand DNA from positions -11 to -7. The single-strand sequences at positions -11 to -7 as well as the -5 contribute to later steps in transcription initiation that involve isomerization of polymerase and separation of the promoter DNA around the transcription start site. Recent work has demonstrated that the double strand elements may be used in various combinations to yield an effective promoter. Thus, while some minimal number of contacts is required for promoter function, polymerase allows the elements to be mixed and matched. Interestingly, which particular elements are used does not appear to fundamentally alter the transcription bubble generated in the stable complex. In this review, we discuss the multiple steps involved in forming a transcriptionally competent polymerase/promoter complex, and we examine what is known about polymerase recognition of core promoter elements. We suggest that considering promoter elements according to their involvement in early (polymerase binding) or later (polymerase isomerization) steps in transcription initiation rather than simply from their match to conventional promoter consensus sequences is a more instructive form of promoter classification.
Collapse
|
40
|
Jones AM, Goodwill A, Elliott T. Limited role for the DsrA and RprA regulatory RNAs in rpoS regulation in Salmonella enterica. J Bacteriol 2006; 188:5077-88. [PMID: 16816180 PMCID: PMC1539969 DOI: 10.1128/jb.00206-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RpoS, the sigma factor of enteric bacteria that responds to stress and stationary phase, is subject to complex regulation acting at multiple levels, including transcription, translation, and proteolysis. Increased translation of rpoS mRNA during growth at low temperature, after osmotic challenge, or with a constitutively activated Rcs phosphorelay depends on two trans-acting small regulatory RNAs (sRNAs) in Escherichia coli. The DsrA and RprA sRNAs are both highly conserved in Salmonella enterica, as is their target, an inhibitory antisense element within the rpoS untranslated leader. Analysis of dsrA and rprA deletion mutants indicates that while the increased translation of RpoS in response to osmotic challenge is conserved in S. enterica, dependence on these two sRNA regulators is much reduced. Furthermore, low-temperature growth or constitutive RcsC activation had only modest effects on RpoS expression, and these increases were, respectively, independent of dsrA or rprA function. This lack of conservation of sRNA function suggests surprising flexibility in RpoS regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Base Sequence
- Conserved Sequence
- Gene Expression Regulation, Bacterial
- Kinetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Antisense/chemistry
- RNA, Antisense/genetics
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Small Cytoplasmic/chemistry
- RNA, Small Cytoplasmic/genetics
- RNA, Small Untranslated
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- Salmonella enterica/genetics
- Salmonella enterica/growth & development
- Sigma Factor/genetics
Collapse
Affiliation(s)
- Amy M Jones
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
41
|
Laaberki MH, Janabi N, Oswald E, Repoila F. Concert of regulators to switch on LEE expression in enterohemorrhagic Escherichia coli O157:H7: Interplay between Ler, GrlA, HNS and RpoS. Int J Med Microbiol 2006; 296:197-210. [PMID: 16618552 DOI: 10.1016/j.ijmm.2006.02.017] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 02/02/2006] [Accepted: 02/02/2006] [Indexed: 11/19/2022] Open
Abstract
Enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli strains carry a pathogenicity island termed locus of enterocyte effacement (LEE) responsible for attaching and effacing lesions on epithelial cells. The expression of LEE varies among isolates and is dependent on environmental cues. In the EHEC O157:H7 Sakaï isolate (RIMD-0509952 strain), we found that the non-coding RNA, DsrA, activates the expression of the LEE. This activation requires RpoS, the stress sigma factor. The DsrA/RpoS regulatory pathway mediates its positive effect by stimulating the transcription of ler, a positive regulatory gene encoded by the LEE. A second regulatory pathway, repressed by HNS, is also able to activate the transcription of ler and requires GrlA, another LEE-encoded regulator. Both regulatory pathways, DsrA/RpoS and HNS/GrlA, affect the activity of the ler distal promoter and require the Ler protein to be functional. Our data demonstrate that the LEE expression can be turned on by at least two separate pathways acting on the transcription of ler.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/physiology
- Blotting, Northern
- Blotting, Western
- DNA-Binding Proteins/physiology
- Escherichia coli O157/genetics
- Escherichia coli O157/physiology
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/physiology
- Gene Expression Regulation, Bacterial
- Genomic Islands
- Models, Biological
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Promoter Regions, Genetic
- RNA, Bacterial/biosynthesis
- RNA, Messenger/analysis
- RNA, Small Untranslated
- RNA, Untranslated/genetics
- RNA, Untranslated/physiology
- Sigma Factor/genetics
- Sigma Factor/physiology
- Trans-Activators/genetics
- Trans-Activators/physiology
Collapse
|
42
|
Madhusudan S, Paukner A, Klingen Y, Schnetz K. Independent regulation of H-NS-mediated silencing of the bgl operon at two levels: upstream by BglJ and LeuO and downstream by DnaKJ. MICROBIOLOGY-SGM 2005; 151:3349-3359. [PMID: 16207917 DOI: 10.1099/mic.0.28080-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Silencing of the Escherichia coli bgl operon by the histone-like nucleoid-structuring protein H-NS occurs at two levels. Binding of H-NS upstream of the promoter represses transcription initiation, whilst binding within the coding region is also proposed to repress transcription elongation. The latter, downstream level of repression is counteracted by the protease Lon and, thus, silencing of the bgl operon is more effective in lon mutants. Transposon-mutagenesis screens for suppression of this lon phenotype on bgl were performed and insertion mutations disrupting rpoS and crl were obtained, as well as mutations mapping upstream of the open reading frames of bglJ, leuO and dnaK. In rpoS and crl mutants, bgl promoter activity is known to be higher. Likewise, as shown here, bgl promoter activity is increased in the bglJ and leuO mutants, which express BglJ and LeuO constitutively. However, BglJ and LeuO have no impact on downstream repression. A dnaKJ mutant was isolated for the first time in the context of the bgl operon. The mutant expresses lower levels of DnaK than the wild-type. Interestingly, in this dnaKJ : : miniTn10 mutant, downstream repression of bgl by H-NS is less effective, whilst upstream repression by H-NS remains unaffected. Together, the data show that the two levels of bgl silencing by H-NS are regulated independently.
Collapse
Affiliation(s)
- S Madhusudan
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Andreas Paukner
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Yvonne Klingen
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicherstr. 47, 50674 Cologne, Germany
| |
Collapse
|
43
|
Phadtare S, Severinov K. Extended -10 motif is critical for activity of the cspA promoter but does not contribute to low-temperature transcription. J Bacteriol 2005; 187:6584-9. [PMID: 16159795 PMCID: PMC1236650 DOI: 10.1128/jb.187.18.6584-6589.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial promoters belonging to the extended -10 class contain a conserved TGn motif upstream of the -10 promoter consensus element. Open promoter complexes can be formed on some extended -10 Escherichia coli promoters at temperatures as low as 6 degrees C, when complexes on most promoters are closed. The promoter of cspA, a gene that codes for the major cold shock protein CspA of E. coli, contains an extended -10 motif. CspA is dramatically induced upon temperature downshift from 37 to 15 degrees C, and its cold shock induction has been attributed to transcription, translation, and mRNA stabilization effects. Here, we show that though the extended -10 motif is critical for high-level expression of cspA, it does not contribute to low-temperature expression. In fact, transcription from the wild-type cspA promoter is cold sensitive in vitro and in vivo. Thus, transcription appears to play little or no role in low-temperature induction of cspA expression.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
44
|
Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet 2005; 21:399-404. [PMID: 15913835 DOI: 10.1016/j.tig.2005.05.008] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/17/2005] [Accepted: 05/09/2005] [Indexed: 11/25/2022]
Abstract
Small non-coding RNAs with important regulatory roles are not confined to eukaryotes. Recent studies have led to the identification of numerous small regulatory RNAs in Escherichia coli and in other bacteria. As in eukaryotic cells, a major class of these small RNAs acts by base-pairing with target mRNAs, resulting in changes in the translation and stability of the mRNA. Roles for these non-coding pairing RNAs in bacteria have been demonstrated in several cases. Because these non-coding RNAs act post-transcriptionally, they impose a regulatory step that is independent of and epistatic to any transcriptional signals for their target mRNAs.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
45
|
Lease RA, Woodson SA. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. J Mol Biol 2005; 344:1211-23. [PMID: 15561140 DOI: 10.1016/j.jmb.2004.10.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/22/2004] [Accepted: 10/06/2004] [Indexed: 11/15/2022]
Abstract
Small RNAs (sRNAs) regulate bacterial genes involved in environmental adaptation. This RNA regulation requires Hfq, a bacterial Sm-like protein that stabilizes sRNAs and enhances RNA-RNA interactions. To understand the mechanism of target recognition by sRNAs, we investigated the interactions between Hfq, the sRNA DsrA, and its regulatory target rpoS mRNA, which encodes the stress response sigma factor. Nuclease footprinting revealed that Hfq recognized multiple sites in rpoS mRNA without significantly perturbing secondary structure in the 5' leader that inhibits translation initiation. Base-pairing with DsrA, however, made the rpoS ribosome binding site fully accessible, as predicted by genetic data. Hfq bound DsrA four times more tightly than the DsrA.rpoS RNA complex in gel mobility-shift assays. Consequently, Hfq is displaced rapidly from its high-affinity binding site on DsrA by conformational changes in DsrA, when DsrA base-pairs with rpoS mRNA. Hfq accelerated DsrA.rpoS RNA association and stabilized the RNA complex up to twofold. Hybridization of DsrA and rpoS mRNA was optimal when Hfq occupied its primary binding site on free DsrA, but was inhibited when Hfq associated with the DsrA.rpoS RNA complex. We conclude that recognition of rpoS mRNA is stimulated by binding of Hfq to free DsrA sRNA, followed by release of Hfq from the sRNA.mRNA complex.
Collapse
Affiliation(s)
- Richard A Lease
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2865, USA
| | | |
Collapse
|
46
|
Abstract
Small noncoding RNAs have been found in all organisms, primarily as regulators of translation and message stability. The most exhaustive searches have taken place in E. coli, resulting in identification of more than 50 small RNAs, or 1%-2% of the number of protein-coding genes. One large class of these small RNAs uses the RNA chaperone Hfq; members of this class act by pairing to target messenger RNAs. Among the members of this class are DsrA and RprA, which positively regulate rpoS translation, OxyS, which negatively regulates rpoS translation and fhlA translation, RyhB, which reapportions iron use in the cell by downregulating translation of many genes that encode Fe-containing proteins, and Spot 42, which changes the polarity of translation in the gal operon. The promoters of these small RNAs are tightly regulated, frequently as part of well-understood regulons. Lessons learned from the study of small RNAs in E. coli can be applied to finding these important regulators in other organisms.
Collapse
Affiliation(s)
- Susan Gottesman
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892, USA.
| |
Collapse
|
47
|
Cybulski LE, del Solar G, Craig PO, Espinosa M, de Mendoza D. Bacillus subtilis DesR functions as a phosphorylation-activated switch to control membrane lipid fluidity. J Biol Chem 2004; 279:39340-7. [PMID: 15247225 DOI: 10.1074/jbc.m405150200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Des pathway of Bacillus subtilis regulates the synthesis of the cold-shock induced membrane-bound enzyme Delta5-fatty acid desaturase (Delta5-Des). A central component of the Des pathway is the response regulator, DesR, which is activated by a membrane-associated kinase, DesK, in response to a decrease in membrane lipid fluidity. Despite genetic and biochemical studies, specific details of the interaction between DesR and the DNA remain unknown. In this study we show that only the phosphorylated form of protein DesR is able to bind to a regulatory region immediately upstream of the promoter of the Delta5-Des gene (Pdes). Phosphorylation of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P DNA binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. Subsequently, this phosphorylation signal propagation leads to the activation of the des gene through recruitment of RNA polymerase to Pdes. This is the first dissected example of a transcription factor functioning as a phosphorylation-activated switch for a cold-shock gene, allowing the cell to optimize the fluidity of membrane phospholipids.
Collapse
Affiliation(s)
- Larisa E Cybulski
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Argentina
| | | | | | | | | |
Collapse
|