1
|
Mao X, Egli R, Petersen N, Liu X. Combined response of polar magnetotaxis to oxygen and pH: Insights from hanging drop assays and microcosm experiments. Sci Rep 2024; 14:27331. [PMID: 39521854 PMCID: PMC11550849 DOI: 10.1038/s41598-024-78946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Magnetotactic bacteria (MTB) combine passive alignment with the Earth magnetic field with a chemotactic response (magneto-chemotaxis) to reach their optimal living depth in chemically stratified environments. Current magneto-aerotaxis models fail to explain the occurrence of MTB far below the oxic-anoxic interface and the coexistence of MTB cells with opposite magnetotactic polarity at depths that are unrelated with the redox gradient. Here we propose a modified model of polar magnetotaxis which explains these observations, as well as the distinct concentration profiles and magnetotactic advantages of two types of MTB inhabiting a freshwater sediment: a group of unidentified cocci (MC), and a giant rod-shaped bacterium (MB) apparently identical to M. bavaricum (MB). This model assumed that magnetotactic polarity is set by a threshold mechanism in counter gradients of oxygen and a second group of repellents, with, in case of MB, includes H+ ions. MTB possessing this type of polar magnetotaxis can shuttle between two limit depths across the redox gradient (redox taxis), as previously postulated for M. bavaricum and other members of the Nitrospirota group. The magnetotaxis of MB and MC is predominantly dipolar whenever the presence of a magnetic field ensures a magnetotactic advantage. In addition, MB can overcome unfavorable magnetic field configurations through a temporal sensing mechanism. The availability of threshold and temporal sensing mechanisms of different substances can generate a rich variety of responses by different types of MTB, enabling them to exploit multiple ecological niches.
Collapse
Affiliation(s)
- Xuegang Mao
- Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China.
| | - Ramon Egli
- Department of General Geophysics and Conrad Observatory, GeoSphere Austria, Hohe Warte 38, 1190, Vienna, Austria.
| | - Nikolai Petersen
- Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Theresienstrasse 41, 80333, Munich, Germany
| | - Xiuming Liu
- Key Laboratory for Humid Subtropical Ecogeographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
- Institute of Geography, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
2
|
Nakanishi K, Kojima K, Sowa Y, Sudo Y. Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins. J Phys Chem B 2024; 128:6509-6517. [PMID: 38949422 DOI: 10.1021/acs.jpcb.4c03027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Proton (H+) motive force (PMF) serves as the energy source for the flagellar motor rotation, crucial for microbial motility. Here, to control PMF using light, we introduced light-driven inward and outward proton pump rhodopsins, RmXeR and AR3, into Escherichia coli. The motility of E. coli cells expressing RmXeR and AR3 significantly decreased and increased upon illumination, respectively. Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with RmXeR, while it increased to 1170 pN nm with AR3. These alterations in PMF correspond to +146 mV (RmXeR) and -140 mV (AR3), respectively. Thus, bidirectional optical control of PMF in E. coli was successfully achieved by using proton pump rhodopsins. This system holds a potential for enhancing our understanding of the roles of PMF in various biological functions.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| | - Yoshiyuki Sowa
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo 184-8584, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Bastet L, Korepanov A, Jagodnik J, Grondin J, Lamontagne AM, Guillier M, Lafontaine D. Riboswitch and small RNAs modulate btuB translation initiation in Escherichia coli and trigger distinct mRNA regulatory mechanisms. Nucleic Acids Res 2024; 52:5852-5865. [PMID: 38742638 PMCID: PMC11162775 DOI: 10.1093/nar/gkae347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Small RNAs (sRNAs) and riboswitches represent distinct classes of RNA regulators that control gene expression upon sensing metabolic or environmental variations. While sRNAs and riboswitches regulate gene expression by affecting mRNA and protein levels, existing studies have been limited to the characterization of each regulatory system in isolation, suggesting that sRNAs and riboswitches target distinct mRNA populations. We report that the expression of btuB in Escherichia coli, which is regulated by an adenosylcobalamin (AdoCbl) riboswitch, is also controlled by the small RNAs OmrA and, to a lesser extent, OmrB. Strikingly, we find that the riboswitch and sRNAs reduce mRNA levels through distinct pathways. Our data show that while the riboswitch triggers Rho-dependent transcription termination, sRNAs rely on the degradosome to modulate mRNA levels. Importantly, OmrA pairs with the btuB mRNA through its central region, which is not conserved in OmrB, indicating that these two sRNAs may have specific targets in addition to their common regulon. In contrast to canonical sRNA regulation, we find that OmrA repression of btuB is lost using an mRNA binding-deficient Hfq variant. Together, our study demonstrates that riboswitch and sRNAs modulate btuB expression, providing an example of cis- and trans-acting RNA-based regulatory systems maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Laurène Bastet
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Alexey P Korepanov
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Jonathan Jagodnik
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Jonathan P Grondin
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Anne-Marie Lamontagne
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Maude Guillier
- Expression Génétique Microbienne, UMR8261 CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 75005Paris, France
| | - Daniel A Lafontaine
- Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
4
|
Einenkel R, Halte M, Erhardt M. Quantifying Substrate Protein Secretion via the Type III Secretion System of the Bacterial Flagellum. Methods Mol Biol 2024; 2715:577-592. [PMID: 37930553 DOI: 10.1007/978-1-0716-3445-5_36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Protein transport across the cytoplasmic membrane is coupled to energy derived from ATP hydrolysis or the proton motive force. A sophisticated, multi-component type III secretion system (T3SS) exports substrate proteins of both the bacterial flagellum and virulence-associated injectisome system of many Gram-negative pathogens. The T3SS is primarily a proton motive force-driven protein exporter. Here, we describe a method to investigate the export of substrate proteins of the flagellar T3SS into the culture supernatant under conditions that manipulate the proton motive force. Further, we describe methods to precisely quantify flagellar protein export into the culture supernatant using a split NanoLuc luciferase, and how fluorescence labeling of the extracellular flagellar filament can bring insights into the protein export rate of individual flagellar T3SS.
Collapse
Affiliation(s)
| | | | - Marc Erhardt
- Humboldt Universität zu Berlin, Berlin, Germany.
- Max Planck Unit for the Science of Pathogens, Berlin, Germany.
| |
Collapse
|
5
|
Su-Arcaro C, Liao W, Bieniek K, Constantino MA, Decker SM, Turner BS, Bansil R. Unraveling the Intertwined Effect of pH on Helicobacter pylori Motility and the Microrheology of the Mucin-Based Medium It Swims in. Microorganisms 2023; 11:2745. [PMID: 38004756 PMCID: PMC10673263 DOI: 10.3390/microorganisms11112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The gastric pathogen, Helicobacter pylori bacteria have to swim across a pH gradient from 2 to 7 in the mucus layer to colonize the gastric epithelium. Previous studies from our group have shown that porcine gastric mucin (PGM) gels at an acidic pH < 4, and H. pylori bacteria are unable to swim in the gel, although their flagella rotate. Changing pH impacts both the rheological properties of gastric mucin and also influences the proton (H+)-pumped flagellar motors of H. pylori as well as their anti-pH sensing receptors. To unravel these intertwined effects of acidic pH on both the viscoelastic properties of the mucin-based mucus as well as the flagellar motors and chemo-receptors of the bacterium, we compared the motility of H. pylori in PGM with that in Brucella broth (BB10) at different pH values using phase contrast microscopy to track the motion of the bacteria. The results show that the distribution of swimming speeds and other characteristics of the bacteria trajectories exhibit pH-dependent differences in both media. The swimming speed exhibits a peak at pH 4 in BB10, and a less pronounced peak at a higher pH of 5 in PGM. At all pH values, the bacteria swam faster and had a longer net displacement in BB10 compared to PGM. While the bacteria were stuck in PGM gels at pH < 4, they swam at these acidic pH values in BB10, although with reduced speed. Decreasing pH leads to a decreased fraction of motile bacteria, with a decreased contribution of the faster swimmers to the distributions of speeds and net displacement of trajectories. The body rotation rate is weakly dependent on pH in BB10, whereas in PGM bacteria that are immobilized in the low pH gel are capable of mechano-sensing and rotate faster. Bacteria can be stuck in the gel in various ways, including the flagella getting entangled in the fibers of the gel or the cell body being stuck to the gel. Our results show that in BB10, swimming is optimized at pH4, reflecting the combined effects of pH sensing by anti-pH tactic receptors and impact on H+ pumping of flagellar motors, while the increase in viscosity of PGM with decreasing pH and gelation below pH 4 lead to further reduction in swimming speed, with optimal swimming at pH 5 and immobilization of bacteria below pH 4.
Collapse
Affiliation(s)
- Clover Su-Arcaro
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Wentian Liao
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Katarzyna Bieniek
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Maira A. Constantino
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Savannah M. Decker
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Bradley S. Turner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Rama Bansil
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| |
Collapse
|
6
|
Chen J, Zou Y, Zheng T, Huang S, Guo L, Lin J, Zheng Q. The in Vitro Fermentation of Cordyceps militaris Polysaccharides Changed the Simulated Gut Condition and Influenced Gut Bacterial Motility and Translocation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14193-14204. [PMID: 36305603 DOI: 10.1021/acs.jafc.2c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The motility ability of intestinal lipopolysaccharide (LPS)-producing bacteria determines their translocation to the enterohepatic circulation and works as an infectious complication. In this study, the health effects of Cordyceps militaris polysaccharides (CMPs) were re-evaluated based on whether these polysaccharides could affect the motility of gut commensal LPS-producing bacteria and impede their translocation. The results showed that CMP-m fermentation in the gut could change the chemical environment, leading to a decrease in velocity and a shift in the motility pattern. Further study suggested that detachment/fragmentation of flagella, decreased motor forces, and changed chemical conditions might account for this weakened motility. The adhesion and invasion abilities of gut bacteria were also reduced, with lower expression of virulence-related genes. These results indicated that the health regulation effects of CMP-m might be through decreasing the motility of LPS-producing bacteria, hindering their translocation and therefore reducing the LPS level in the enterohepatic circulation.
Collapse
Affiliation(s)
- Jieming Chen
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Yuan Zou
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Taotao Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Shishi Huang
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Liqiong Guo
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Junfang Lin
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| | - Qianwang Zheng
- Institute of Food Biotechnology and College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou 510640, China
| |
Collapse
|
7
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA. .,InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China.,Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China. .,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
8
|
Xiong BJ, Stanley CE, Dusny C, Schlosser D, Harms H, Wick LY. pH Distribution along Growing Fungal Hyphae at Microscale. J Fungi (Basel) 2022; 8:599. [PMID: 35736082 PMCID: PMC9224906 DOI: 10.3390/jof8060599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Creating unique microenvironments, hyphal surfaces and their surroundings allow for spatially distinct microbial interactions and functions at the microscale. Using a microfluidic system and pH-sensitive whole-cell bioreporters (Synechocystis sp. PCC6803) attached to hyphae, we spatially resolved the pH along surfaces of growing hyphae of the basidiomycete Coprinopsis cinerea. Time-lapse microscopy analysis of ratiometric fluorescence signals of >2400 individual bioreporters revealed an overall pH drop from 6.3 ± 0.4 (n = 2441) to 5.0 ± 0.3 (n = 2497) within 7 h after pH bioreporter loading to hyphal surfaces. The pH along hyphal surfaces varied significantly (p < 0.05), with pH at hyphal tips being on average ~0.8 pH units lower than at more mature hyphal parts near the entrance of the microfluidic observation chamber. Our data represent the first dynamic in vitro analysis of surface pH along growing hyphae at the micrometre scale. Such knowledge may improve our understanding of spatial, pH-dependent hyphal processes, such as the degradation of organic matter or mineral weathering.
Collapse
Affiliation(s)
- Bi-Jing Xiong
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Claire E. Stanley
- Department of Bioengineering, Imperial College of London, South Kensington Campus, London SW7 2AZ, UK;
| | - Christian Dusny
- Helmholtz Centre for Environmental Research-UFZ, Department of Solar Materials, Permoserstraβe 15, 04318 Leipzig, Germany;
| | - Dietmar Schlosser
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Hauke Harms
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| | - Lukas Y. Wick
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Microbiology, Permoserstraβe 15, 04318 Leipzig, Germany; (B.-J.X.); (D.S.); (H.H.)
| |
Collapse
|
9
|
Xu J, Arakaki R, Tachibana S, Yamashiro T. Fermentation products of the fungus Monascus spp. impairs the physiological activities of toxin-producing Vibrio cholerae. Microbiol Res 2022; 258:126995. [DOI: 10.1016/j.micres.2022.126995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/15/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
|
10
|
Photodynamic control of bacterial motility by means of azobenzene molecules. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol 2021; 204:e0042021. [PMID: 34694904 DOI: 10.1128/jb.00420-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
Collapse
|
12
|
Biquet-Bisquert A, Labesse G, Pedaci F, Nord AL. The Dynamic Ion Motive Force Powering the Bacterial Flagellar Motor. Front Microbiol 2021; 12:659464. [PMID: 33927708 PMCID: PMC8076557 DOI: 10.3389/fmicb.2021.659464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bacterial flagellar motor (BFM) is a rotary molecular motor embedded in the cell membrane of numerous bacteria. It turns a flagellum which acts as a propeller, enabling bacterial motility and chemotaxis. The BFM is rotated by stator units, inner membrane protein complexes that stochastically associate to and dissociate from individual motors at a rate which depends on the mechanical and electrochemical environment. Stator units consume the ion motive force (IMF), the electrochemical gradient across the inner membrane that results from cellular respiration, converting the electrochemical energy of translocated ions into mechanical energy, imparted to the rotor. Here, we review some of the main results that form the base of our current understanding of the relationship between the IMF and the functioning of the flagellar motor. We examine a series of studies that establish a linear proportionality between IMF and motor speed, and we discuss more recent evidence that the stator units sense the IMF, altering their rates of dynamic assembly. This, in turn, raises the question of to what degree the classical dependence of motor speed on IMF is due to stator dynamics vs. the rate of ion flow through the stators. Finally, while long assumed to be static and homogeneous, there is mounting evidence that the IMF is dynamic, and that its fluctuations control important phenomena such as cell-to-cell signaling and mechanotransduction. Within the growing toolbox of single cell bacterial electrophysiology, one of the best tools to probe IMF fluctuations may, ironically, be the motor that consumes it. Perfecting our incomplete understanding of how the BFM employs the energy of ion flow will help decipher the dynamical behavior of the bacterial IMF.
Collapse
Affiliation(s)
- Anaïs Biquet-Bisquert
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Gilles Labesse
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Francesco Pedaci
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| | - Ashley L Nord
- Centre de Biologie Structurale (CBS), INSERM, CNRS, Université Montpellier, Montpellier, France
| |
Collapse
|
13
|
Bouteiller M, Dupont C, Bourigault Y, Latour X, Barbey C, Konto-Ghiorghi Y, Merieau A. Pseudomonas Flagella: Generalities and Specificities. Int J Mol Sci 2021; 22:ijms22073337. [PMID: 33805191 PMCID: PMC8036289 DOI: 10.3390/ijms22073337] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/21/2022] Open
Abstract
Flagella-driven motility is an important trait for bacterial colonization and virulence. Flagella rotate and propel bacteria in liquid or semi-liquid media to ensure such bacterial fitness. Bacterial flagella are composed of three parts: a membrane complex, a flexible-hook, and a flagellin filament. The most widely studied models in terms of the flagellar apparatus are E. coli and Salmonella. However, there are many differences between these enteric bacteria and the bacteria of the Pseudomonas genus. Enteric bacteria possess peritrichous flagella, in contrast to Pseudomonads, which possess polar flagella. In addition, flagellar gene expression in Pseudomonas is under a four-tiered regulatory circuit, whereas enteric bacteria express flagellar genes in a three-step manner. Here, we use knowledge of E. coli and Salmonella flagella to describe the general properties of flagella and then focus on the specificities of Pseudomonas flagella. After a description of flagellar structure, which is highly conserved among Gram-negative bacteria, we focus on the steps of flagellar assembly that differ between enteric and polar-flagellated bacteria. In addition, we summarize generalities concerning the fuel used for the production and rotation of the flagellar macromolecular complex. The last part summarizes known regulatory pathways and potential links with the type-six secretion system (T6SS).
Collapse
Affiliation(s)
- Mathilde Bouteiller
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yvann Bourigault
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Corinne Barbey
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- LMSM, Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Normandy University, Université de Rouen, 27000 Evreux, France; (M.B.); (C.D.); (Y.B.); (X.L.); (C.B.); (Y.K.-G.)
- SFR NORVEGE, Structure Fédérative de Recherche Normandie Végétale, FED 4277, 76821 Mont-Saint-Aignan, France
- Correspondence:
| |
Collapse
|
14
|
Hong X, Wang Y, Chen S, Zhu J. Efficacy of Ten Structurally Related Essential Oil Components on Anti-biofilm and Anti-quorum Sensing against Fish Spoilers Pseudomonas and Aeromonas. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2021. [DOI: 10.1080/10498850.2021.1895943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Xiaoli Hong
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Yaying Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Shuai Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| | - Junli Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Schroeder HA, Newby J, Schaefer A, Subramani B, Tubbs A, Gregory Forest M, Miao E, Lai SK. LPS-binding IgG arrests actively motile Salmonella Typhimurium in gastrointestinal mucus. Mucosal Immunol 2020; 13:814-823. [PMID: 32123309 DOI: 10.1038/s41385-020-0267-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/10/2019] [Accepted: 12/27/2019] [Indexed: 02/04/2023]
Abstract
The gastrointestinal (GI) mucosa is coated with a continuously secreted mucus layer that serves as the first line of defense against invading enteric bacteria. We have previously shown that antigen-specific immunoglobulin G (IgG) can immobilize viruses in both human airway and genital mucus secretions through multiple low-affinity bonds between the array of virion-bound IgG and mucins, thereby facilitating their rapid elimination from mucosal surfaces and preventing mucosal transmission. Nevertheless, it remains unclear whether weak IgG-mucin crosslinks could reinforce the mucus barrier against the permeation of bacteria driven by active flagella beating, or in predominantly MUC2 mucus gel. Here, we performed high-resolution multiple particle tracking to capture the real-time motion of hundreds of individual fluorescent Salmonella Typhimurium in fresh, undiluted GI mucus from Rag1-/- mice, and analyzed the motion using a hidden Markov model framework. In contrast to control IgG, the addition of anti-lipopolysaccharide IgG to GI mucus markedly reduced the progressive motility of Salmonella by lowering the swim speed and retaining individual bacteria in an undirected motion state. Effective crosslinking of Salmonella to mucins was dependent on Fc N-glycans. Our findings implicate IgG-mucin crosslinking as a broadly conserved function that reduces mucous penetration of both bacterial and viral pathogens.
Collapse
Affiliation(s)
- Holly A Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Jay Newby
- Department of Applied and Computational Mathematics, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alison Schaefer
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Babu Subramani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Alan Tubbs
- Department of Microbiology and Immunology, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - M Gregory Forest
- Department of Applied and Computational Mathematics, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Ed Miao
- Department of Microbiology and Immunology, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA. .,UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill, Chapel Hill, 27599, NC, USA.
| |
Collapse
|
16
|
Morimoto YV, Namba K, Minamino T. GFP Fusion to the N-Terminus of MotB Affects the Proton Channel Activity of the Bacterial Flagellar Motor in Salmonella. Biomolecules 2020; 10:E1255. [PMID: 32872412 PMCID: PMC7564593 DOI: 10.3390/biom10091255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022] Open
Abstract
The bacterial flagellar motor converts the energy of proton flow through the MotA/MotB complex into mechanical works required for motor rotation. The rotational force is generated by electrostatic interactions between the stator protein MotA and the rotor protein FliG. The Arg-90 and Glu-98 from MotA interact with Asp-289 and Arg-281 of FliG, respectively. An increase in the expression level of the wild-type MotA/MotB complex inhibits motility of the gfp-motBfliG(R281V) mutant but not the fliG(R281V) mutant, suggesting that the MotA/GFP-MotB complex cannot work together with wild-type MotA/MotB in the presence of the fliG(R281V) mutation. However, it remains unknown why. Here, we investigated the effect of the GFP fusion to MotB at its N-terminus on the MotA/MotB function. Over-expression of wild-type MotA/MotB significantly reduced the growth rate of the gfp-motBfliG(R281V) mutant. The over-expression of the MotA/GFP-MotB complex caused an excessive proton leakage through its proton channel, thereby inhibiting cell growth. These results suggest that the GFP tag on the MotB N-terminus affects well-regulated proton translocation through the MotA/MotB proton channel. Therefore, we propose that the N-terminal cytoplasmic tail of MotB couples the gating of the proton channel with the MotA-FliG interaction responsible for torque generation.
Collapse
Affiliation(s)
- Yusuke V. Morimoto
- Department of Physics and Information Technology, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
- RIKEN Spring-8 Center & Center for Biosystems Dynamics Research (BDR), 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; (K.N.); (T.M.)
| |
Collapse
|
17
|
Ibrahim S, Rezk MY, Ismail M, Abdelrahman T, Sharkawy M, Abdellatif A, Allam NK. Coaxial nanofibers outperform uniaxial nanofibers for the loading and release of pyrroloquinoline quinone (PQQ) for biomedical applications. NANOSCALE ADVANCES 2020; 2:3341-3349. [PMID: 36134273 PMCID: PMC9417322 DOI: 10.1039/d0na00311e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/06/2020] [Indexed: 06/16/2023]
Abstract
Pyrroloquinoline quinone (PQQ), present in breast milk and various foods, is highly recommended as an antioxidant, anti-inflammatory agent, and a cofactor in redox reactions in several biomedical fields. Moreover, PQQ has neuroprotective effects on nervous system disorders and immunosuppressive effects on different diseases. Herein, we report on the optimum fabrication of electrospun CS/PVA coaxial, core/shell, and uniaxial nanofibers. The morphological, elemental, and chemical structure of the fabricated nanofibers were investigated and discussed. PQQ, as a drug, was loaded on the uniaxial nanofibers and in the core of the coaxial nanofibers and the sustained and controlled release of PQQ was compared and discussed. The results revealed the privilege of the coaxial over the uniaxial nanofibers in the sustained release and reduction of the initial burst of PQQ. Remarkably, the results revealed a higher degree of swelling for CS/PVA hollow nanofibers compared to that of the uniaxial and the coaxial nanofibers. The coaxial nanofibers showed a lower release rate than the uniaxial nanofibers. Moreover, the CS/PVA coaxial nanofibers loaded with PQQ were found to enhance cell viability and proliferation. Therefore, the CS/PVA coaxial nanofibers loaded with PQQ assembly is considered a superior drug delivery system for PQQ release.
Collapse
Affiliation(s)
- Sara Ibrahim
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Marwan Y Rezk
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Mohammed Ismail
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | | | - Mona Sharkawy
- Zoology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed Abdellatif
- Biology Department, School of Sciences and Engineering, American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
18
|
Spirochete Flagella and Motility. Biomolecules 2020; 10:biom10040550. [PMID: 32260454 PMCID: PMC7225975 DOI: 10.3390/biom10040550] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host-pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics.
Collapse
|
19
|
Abstract
We confine a dense suspension of motile Escherichia coli inside a spherical droplet in a water-in-oil emulsion, creating a "bacterially" propelled droplet. We show that droplets move in a persistent random walk, with a persistence time τ∼ 0.3 s, a long-time diffusion coefficient D∼ 0.5 μm2 s-1, and an average instantaneous speed V∼ 1.5 μm s-1 when the bacterial suspension is at the maximum studied concentration. Several droplets are analyzed, varying the drop radius and bacterial concentration. We show that the persistence time, diffusion coefficient and average speed increase with the bacterial concentration inside the drop, but are largely independent of the droplet size. By measuring the turbulent-like motion of the bacteria inside the drop, we demonstrate that the mean velocity of the bacteria near the bottom of the drop, which is separated from a glass substrate by a thin lubrication oil film, is antiparallel to the instantaneous velocity of the drop. This suggests that the driving mechanism is a slippery rolling of the drop over the substrate, caused by the collective motion of the bacteria. Our results show that microscopic organisms can transfer useful mechanical energy to their confining environment, opening the way to the assembly of mesoscopic motors composed of microswimmers.
Collapse
Affiliation(s)
- Gabriel Ramos
- Departamento de Física, FCFM, Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile.
| | | | | |
Collapse
|
20
|
Yu ZJ, Li H, Yao JH, Wu JJ, Zhang YX, Xiao L. Effects of Different Energy Substrates and Nickel and Cadmium Ions on the Growth of Acidithiobacillus ferrooxidans and Its Application for Disposal of Ni-Cd Batteries. Appl Biochem Biotechnol 2020; 191:387-396. [DOI: 10.1007/s12010-020-03251-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 10/25/2022]
|
21
|
Nakamura S, Hanaizumi Y, Morimoto YV, Inoue Y, Erhardt M, Minamino T, Namba K. Direct observation of speed fluctuations of flagellar motor rotation at extremely low load close to zero. Mol Microbiol 2019; 113:755-765. [DOI: 10.1111/mmi.14440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering Tohoku University Sendai Japan
| | - Yuta Hanaizumi
- Department of Applied Physics, Graduate School of Engineering Tohoku University Sendai Japan
| | - Yusuke V. Morimoto
- Faculty of Computer Science and Systems Engineering, Department of Physics and Information Technology Kyushu Institute of Technology Fukuoka Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences Osaka University Osaka Japan
| | - Marc Erhardt
- Institut für Biologie/Bakterienphysiologie Humboldt‐Universität zu Berlin Berlin Germany
| | - Tohru Minamino
- Graduate School of Frontier Biosciences Osaka University Osaka Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences Osaka University Osaka Japan
- RIKEN Spring‐8 Center and Center for Biosystems Dynamics Research Osaka Japan
- JEOL YOKOGUSHI Research Alliance Laboratories Osaka University Osaka Japan
| |
Collapse
|
22
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|
23
|
Padilla-Vaca F, Vargas-Maya NI, Elizarrarás-Vargas NU, Rangel-Serrano Á, Cardoso-Reyes LR, Razo-Soria T, Membrillo-Hernández J, Franco B. Flotillin homologue is involved in the swimming behavior of Escherichia coli. Arch Microbiol 2019; 201:999-1008. [PMID: 31062059 DOI: 10.1007/s00203-019-01670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/22/2023]
Abstract
Cellular membrane is a key component for maintaining cell shape and integrity. The classical membrane structure and function by Singer and Nicolson groundbreaking model has depicted the membrane as a homogeneous fluid structure. This view has changed by the discovery of discrete domains containing different lipid compositions, called lipid rafts, which play a key role in signal transduction in eukaryotic cells. In the past few years, lipid raft-like structures have been found in bacteria also, constituted by cardiolipin and other modified lipids, perhaps involved in generating a specific site for protein clustering. Here, we report the analysis of a protein termed YqiK from Escherichia coli, a prohibitin homolog that has been implicated in stress sensing by the formation of membrane-associated microdomains. The E. coli yqiK-deficient mutant strain showed an enhanced swimming behavior and was resistant to ampicillin but its response to other stressing conditions was similar to that of the wild-type strain. The abnormal swimming behavior is reversed when the protein is expressed in trans from a plasmid. Also, we demonstrate that YqiK is not redundant with QmcA, another flotillin homolog found in E. coli. Our results, along with the data available in the literature, suggest that YqiK may be involved in the formation of discrete membrane-associated signaling complexes that regulate and agglomerate signaling proteins to generate cell response to chemotaxis.
Collapse
Affiliation(s)
- Felipe Padilla-Vaca
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Naurú Idalia Vargas-Maya
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Narciso Ulises Elizarrarás-Vargas
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Ángeles Rangel-Serrano
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Luis Rafael Cardoso-Reyes
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Tannia Razo-Soria
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico
| | - Jorge Membrillo-Hernández
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Mexico
| | - Bernardo Franco
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, Guanajuato, Gto, 36050, Mexico.
| |
Collapse
|
24
|
Evaluation of the Duty Ratio of the Bacterial Flagellar Motor by Dynamic Load Control. Biophys J 2019; 116:1952-1959. [PMID: 31053259 DOI: 10.1016/j.bpj.2019.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 01/01/2023] Open
Abstract
The bacterial flagellar motor is one of the most complex and sophisticated nanomachineries in nature. A duty ratio D is a fraction of time that the stator and the rotor interact and is a fundamental property to characterize the motor but remains to be determined. It is known that the stator units of the motor bind to and dissociate from the motor dynamically to control the motor torque depending on the load on the motor. At low load, at which the kinetics such as proton translocation speed limits the rotation rate, the dependency of the rotation rate on the number of stator units N implies D: the dependency becomes larger for smaller D. Contradicting observations supporting both the small and large D have been reported. A dilemma is that it is difficult to explore a broad range of N at low load because the stator units easily dissociate, and N is limited to one or two at vanishing load. Here, we develop an electrorotation method to dynamically control the load on the flagellar motor of Salmonella with a calibrated magnitude of the torque. By instantly reducing the load for keeping N high, we observed that the speed at low load depends on N, implying a small duty ratio. We recovered the torque-speed curves of individual motors and evaluated the duty ratio to be 0.14 ± 0.04 from the correlation between the torque at high load and the rotation rate at low load.
Collapse
|
25
|
Effects of fermentation products of the commensal bacterium Clostridium ramosum on motility, intracellular pH, and flagellar synthesis of enterohemorrhagic Escherichia coli. Arch Microbiol 2019; 201:841-846. [PMID: 30963197 DOI: 10.1007/s00203-019-01656-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The flagellum and motility are crucial virulence factors for many pathogenic bacteria. In general, pathogens invade and translocate through motility and adhere to specific tissue via flagella. Therefore, the motility and flagella of pathogens are effectual targets for attenuation. Here, we show that the fermentation products of Clostridium ramosum, a commensal intestinal bacterium, decrease the intracellular pH of enterohemorrhagic Escherichia coli (EHEC) and influence its swimming motility. Quantifications of flagellar rotation in individual EHEC cells showed an increase in reversal frequency and a decrease in rotation rate in the presence of C. ramosum fermentation products. Furthermore, the C. ramosum fermentation products affected synthesis of flagellar filaments. The results were reproduced by a combination of organic acids under acidic conditions. Short-chain fatty acids produced by microbes in the gut flora are beneficial for the host, e.g. they prevent infection. Thus, C. ramosum could affect the physiologies of other enteric microbes and host tissues.
Collapse
|
26
|
Sakai T, Miyata T, Terahara N, Mori K, Inoue Y, Morimoto YV, Kato T, Namba K, Minamino T. Novel Insights into Conformational Rearrangements of the Bacterial Flagellar Switch Complex. mBio 2019; 10:e00079-19. [PMID: 30940700 PMCID: PMC6445934 DOI: 10.1128/mbio.00079-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/26/2019] [Indexed: 01/01/2023] Open
Abstract
The flagellar motor can spin in both counterclockwise (CCW) and clockwise (CW) directions. The flagellar motor consists of a rotor and multiple stator units, which act as a proton channel. The rotor is composed of the transmembrane MS ring made of FliF and the cytoplasmic C ring consisting of FliG, FliM, and FliN. The C ring is directly involved in rotation and directional switching. The Salmonella FliF-FliG deletion fusion motor missing 56 residues from the C terminus of FliF and 94 residues from the N terminus of FliG keeps a domain responsible for the interaction with the stator intact, but its motor function is reduced significantly. Here, we report the structure and function of the FliF-FliG deletion fusion motor. The FliF-FliG deletion fusion not only resulted in a strong CW switch bias but also affected rotor-stator interactions coupled with proton translocation through the proton channel of the stator unit. The energy coupling efficiency of the deletion fusion motor was the same as that of the wild-type motor. Extragenic suppressor mutations in FliG, FliM, or FliN not only relieved the strong CW switch bias but also increased the motor speed at low load. The FliF-FliG deletion fusion made intersubunit interactions between C ring proteins tighter compared to the wild-type motor, whereas the suppressor mutations affect such tighter intersubunit interactions. We propose that a change of intersubunit interactions between the C ring proteins may be required for high-speed motor rotation as well as direction switching.IMPORTANCE The bacterial flagellar motor is a bidirectional rotary motor for motility and chemotaxis, which often plays an important role in infection. The motor is a large transmembrane protein complex composed of a rotor and multiple stator units, which also act as a proton channel. Motor torque is generated through their cyclic association and dissociation coupled with proton translocation through the proton channel. A large cytoplasmic ring of the motor, called C ring, is responsible for rotation and switching by interacting with the stator, but the mechanism remains unknown. By analyzing the structure and function of the wild-type motor and a mutant motor missing part of the C ring connecting itself with the transmembrane rotor ring while keeping a stator-interacting domain for bidirectional torque generation intact, we found interesting clues to the change in the C ring conformation for the switching and rotation involving loose and tight intersubunit interactions.
Collapse
Affiliation(s)
- Tomofumi Sakai
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Naoya Terahara
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koichiro Mori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yumi Inoue
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Takayuki Kato
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
- RIKEN SPring-8 Center, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
27
|
Chotigarpa R, Lampang KN, Pikulkaew S, Okonogi S, Silman P, Mektrirat R. Antiseptic effect of natural teat dip containing lactic acid against mastitis-causing Escherichia coli. Vet World 2019; 12:397-401. [PMID: 31089309 PMCID: PMC6487238 DOI: 10.14202/vetworld.2019.397-401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/04/2019] [Indexed: 11/16/2022] Open
Abstract
Aim: This study aimed to estimate the enumeration of total bacteria and coliform on teat skin from dairy cows and evaluate the efficacy of the natural rice gel containing 5% v/v lactic acid (NGL) against Escherichia coli standard and field strains isolated from bovine teat skin. Materials and Methods: A total of 100 bacterial teat skin samples (25 cows) were collected from dairy cows in smallholder farm. The cows were housed in freestall barns. The colonization of total bacteria and E. coli on teat skin was measured by 3M Petrifilm method. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of lactic acid were evaluated for reference strain of E. coli ATCC 25922 and two field strains of E. coli. The natural teat sanitizer was formulated using 5% NGL with modified rice gel. In vitro antiseptic efficacy of 5% NGL was determined by time-kill kinetic assay. E. coli morphology after exposure with 5% NGL was examined under a scanning electron microscope (SEM). Results: The total bacteria and coliform counts from bovine teat skin were 2.11×104 and 1.54×101 colony-forming units/ml, respectively. The MIC and MBC of lactic acid on the tested bacteria were 0.5% v/v. The natural teat dip was successfully prepared with minimum change in consistency after 1 year of storage at 4°C. The reduction rate of 5% NGL on E. coli ATCC 25922 and field strain showed 32.77% and 27.58%, respectively. An appearance under SEM of non-viable E. coli after being incubated with 5% NGL clearly showed atypical form and rough surface cell membrane. Conclusion: The rice gel containing 5% v/v lactic acid is a promising preparation as a natural teat antiseptic for reducing bacteria on teat skin. It was shown to be effective against E. coli causing bovine mastitis in dairy cows.
Collapse
Affiliation(s)
- Rinrada Chotigarpa
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kannika Na Lampang
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Surachai Pikulkaew
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pirote Silman
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Raktham Mektrirat
- Department of Veterinary Biosciences and Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Probing chemotaxis activity in Escherichia coli using fluorescent protein fusions. Sci Rep 2019; 9:3845. [PMID: 30846802 PMCID: PMC6405996 DOI: 10.1038/s41598-019-40655-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial chemotaxis signaling may be interesting for the development of rapid biosensor assays, but is difficult to quantify. Here we explore two potential fluorescent readouts of chemotactically active Escherichia coli cells. In the first, we probed interactions between the chemotaxis signaling proteins CheY and CheZ by fusing them individually with non-fluorescent parts of stable or unstable ‘split’-Green Fluorescent Protein. Wild-type chemotactic cells but not mutants lacking the CheA kinase produced distinguishable fluorescence foci, two-thirds of which localize at the cell poles with the chemoreceptors and one-third at motor complexes. Fluorescent foci based on stable split-eGFP displayed small fluctuations in cells exposed to attractant or repellent, but those based on an unstable ASV-tagged eGFP showed a higher dynamic behaviour both in the foci intensity changes and the number of foci per cell. For the second readout, we expressed the pH-sensitive fluorophore pHluorin in the cyto- and periplasm of chemotactically active E. coli. Calibrations of pHluorin fluorescence as a function of pH demonstrated that cells accumulating near a chemo-attractant temporally increase cytoplasmic pH while decreasing periplasmic pH. Both readouts thus show promise for biosensor assays based on bacterial chemotaxis activity.
Collapse
|
29
|
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the Salmonella H +-Driven Flagellar Motor. J Bacteriol 2019; 201:JB.00727-18. [PMID: 30642987 DOI: 10.1128/jb.00727-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
The bacterial flagellar motor is composed of a rotor and a dozen stators and converts the ion flux through the stator into torque. Each stator unit alternates in its attachment to and detachment from the rotor even during rotation. In some species, stator assembly depends on the input energy, but it remains unclear how an electrochemical potential across the membrane (e.g., proton motive force [PMF]) or ion flux is involved in stator assembly dynamics. Here, we focused on pH dependence of a slow motile MotA(M206I) mutant of Salmonella The MotA(M206I) motor produces torque comparable to that of the wild-type motor near stall, but its rotation rate is considerably decreased as the external load is reduced. Rotation assays of flagella labeled with 1-μm beads showed that the rotation rate of the MotA(M206I) motor is increased by lowering the external pH whereas that of the wild-type motor is not. Measurements of the speed produced by a single stator unit using 1-μm beads showed that the unit speed of the MotA(M206I) is about 60% of that of the wild-type and that a decrease in external pH did not affect the MotA(M206I) unit speed. Analysis of the subcellular stator localization revealed that the number of functional stators is restored by lowering the external pH. The pH-dependent improvement of stator assembly was observed even when the PMF was collapsed and proton transfer was inhibited. These results suggest that MotA-Met206 is responsible for not only load-dependent energy coupling between the proton influx and rotation but also pH-dependent stator assembly.IMPORTANCE The bacterial flagellar motor is a rotary nanomachine driven by the electrochemical transmembrane potential (ion motive force). About 10 stators (MotA/MotB complexes) are docked around a rotor, and the stator recruitment depends on the load, ion motive force, and coupling ion flux. The MotA(M206I) mutation slows motor rotation and decreases the number of docked stators in Salmonella We show that lowering the external pH improves the assembly of the mutant stators. Neither the collapse of the ion motive force nor a mutation mimicking the proton-binding state inhibited stator localization to the motor. These results suggest that MotA-Met206 is involved in torque generation and proton translocation and that stator assembly is stabilized by protonation of the stator.
Collapse
|
30
|
Salmonella Typhimurium is Attracted to Egg Yolk and Repelled by Albumen. Curr Microbiol 2019; 76:393-397. [PMID: 30600359 DOI: 10.1007/s00284-018-1619-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
Abstract
Salmonella Typhimurium is the causative agent of non-typhoidal, foodborne salmonellosis. Contamination of hen eggs by the bacterium is a common source of S. Typhimurium infection. S. Typhimurium is peritrichous, and flagellum-dependent motility and chemotaxis are believed to facilitate egg contamination despite the presence of many antimicrobial egg components. We performed motility and chemotaxis assays to demonstrate that S. Typhimurium cells are attracted to egg yolks and are repelled by albumen. The bacterial flagellar motor shows bidirectional rotation, and counterclockwise-biased rotation allows cells to swim smoothly. A rotation assay for a single flagellum showed that, in comparison with thin albumen, the thick albumen more strongly affected the directional bias of the flagellar rotation, resulting in a remarkable suppression of the migration distance. Nevertheless, the S. Typhimurium cells retained positive chemotaxis toward the yolk in the presence of the albumens, suggesting that motility facilitates the growth of S. Typhimurium and survival in eggs.
Collapse
|
31
|
Modulation of Enterohaemorrhagic Escherichia coli Survival and Virulence in the Human Gastrointestinal Tract. Microorganisms 2018; 6:microorganisms6040115. [PMID: 30463258 PMCID: PMC6313751 DOI: 10.3390/microorganisms6040115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/16/2018] [Accepted: 11/18/2018] [Indexed: 01/05/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is a major foodborne pathogen responsible for human diseases ranging from diarrhoea to life-threatening complications. Survival of the pathogen and modulation of virulence gene expression along the human gastrointestinal tract (GIT) are key features in bacterial pathogenesis, but remain poorly described, due to a paucity of relevant model systems. This review will provide an overview of the in vitro and in vivo studies investigating the effect of abiotic (e.g., gastric acid, bile, low oxygen concentration or fluid shear) and biotic (e.g., gut microbiota, short chain fatty acids or host hormones) parameters of the human gut on EHEC survival and/or virulence (especially in relation with motility, adhesion and toxin production). Despite their relevance, these studies display important limitations considering the complexity of the human digestive environment. These include the evaluation of only one single digestive parameter at a time, lack of dynamic flux and compartmentalization, and the absence of a complex human gut microbiota. In a last part of the review, we will discuss how dynamic multi-compartmental in vitro models of the human gut represent a novel platform for elucidating spatial and temporal modulation of EHEC survival and virulence along the GIT, and provide new insights into EHEC pathogenesis.
Collapse
|
32
|
Energy Requirements for Protein Secretion via the Flagellar Type III Secretion System. Methods Mol Biol 2018; 1615:449-457. [PMID: 28667628 DOI: 10.1007/978-1-4939-7033-9_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein transport across the cytoplasmic membrane is coupled to energy derived from adenosine triphosphate hydrolysis or the protein motive force (pmf). A sophisticated, multi-component type III secretion system exports substrate proteins of both the bacterial flagellum and virulence-associated injectisome system of many Gram-negative pathogens. The type-III secretion system is primarily a pmf-driven protein exporter. Here, I describe methods to investigate the export of substrate proteins into the culture supernatant under conditions that manipulate the pmf.
Collapse
|
33
|
Miño GL, Baabour M, Chertcoff R, Gutkind G, Clément E, Auradou H, Ippolito I. <i>E coli</i> Accumulation behind an Obstacle. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/aim.2018.86030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Pourjaberi SNS, Terahara N, Namba K, Minamino T. The role of a cytoplasmic loop of MotA in load-dependent assembly and disassembly dynamics of the MotA/B stator complex in the bacterial flagellar motor. Mol Microbiol 2017; 106:646-658. [DOI: 10.1111/mmi.13843] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Affiliation(s)
| | - Naoya Terahara
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
- RIKEN; Quantitative Biology Center, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences; Osaka University, 1-3 Yamadaoka; Suita Osaka 565-0871 Japan
| |
Collapse
|
35
|
Cresci GAM, Mayor PC, Thompson SA. Effect of butyrate and Lactobacillus GG on a butyrate receptor and transporter during Campylobacter jejuni exposure. FEMS Microbiol Lett 2017; 364:3045906. [PMID: 28333199 DOI: 10.1093/femsle/fnx046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 02/22/2017] [Indexed: 12/20/2022] Open
Abstract
Campylobacter jejuni frequently infects humans causing many gastrointestinal symptoms, fever, fatigue and several long-term debilitating diseases. Current treatment for campylobacteriosis includes rehydration and in some cases, antibiotic therapy. Probiotics are used to treat several gastrointestinal diseases. Butyrate is a short-chain fatty acid known to promote intestinal health. Interaction of butyrate with its respective receptor (HCAR2) and transporter (SLC5A8), both expressed in the intestine, is associated with water and electrolyte absorption as well as providing defense against colon cancer and inflammation. Alterations in gut microbiota influence the presence of HCAR2 and SLC5A8 in the intestine. We hypothesized that adherence and/or invasion of C. jejuni and alterations in HCAR2 and SLC5A8 expression would be minimized with butyrate or Lactobacillus GG (LGG) pretreatment of Caco-2 cells. We found that both C. jejuni adhesion but not invasion was reduced with butyrate pretreatment. While LGG pretreatment did not prevent C. jejuni adhesion, it did result in reduced invasion which was associated with altered cell supernate pH. Both butyrate and LGG protected HCAR2 and SLC5A8 protein expression following C. jejuni infection. These results suggest that the first stages of C. jejuni infection of Caco-2 cells may be minimized by LGG and butyrate pretreatment.
Collapse
Affiliation(s)
- Gail A M Cresci
- Pediatric Research Center, Department of Gastroenterology, Pediatrics Institute and Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, OH 44195, USA
| | - Paul C Mayor
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Stuart A Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
36
|
Morimoto YV, Namba K, Minamino T. Measurements of Free-swimming Speed of Motile Salmonella Cells in Liquid Media. Bio Protoc 2017; 7:e2093. [PMID: 34458423 DOI: 10.21769/bioprotoc.2093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 11/02/2022] Open
Abstract
Bacteria such as Escherichia coli and Salmonella enterica swim in liquid media using the bacterial flagella. The flagellum consists of the basal body (rotary motor), the hook (universal joint) and the filament (helical screw). Since mutants with a defect in flagellar assembly and function cannot swim smoothly, motility assay is an easy way to characterize flagellar mutants. Here, we describe how to measure free-swimming speeds of Salmonella motile cells in liquid media. Free-swimming behavior under a microscope shows a significant variation among bacterial cells.
Collapse
Affiliation(s)
- Yusuke V Morimoto
- Quantitative Biology Center, RIKEN, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Quantitative Biology Center, RIKEN, Suita, Osaka, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
37
|
Abe T, Nakamura S, Kudo S. Bioconvection induced by bacterial chemotaxis in a capillary assay. Biochem Biophys Res Commun 2016; 483:277-282. [PMID: 28025150 DOI: 10.1016/j.bbrc.2016.12.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/18/2022]
Abstract
Bacterial chemotaxis allows cells to swim toward a more favorable environment. Capillary assays are a major method for exploring bacterial responses to attractive and repellent chemicals, but the accumulation process obtained using a capillary containing chemicals has not been investigated fully. In this study, we quantitatively analyzed the response of Salmonella cells to serine as an attractant diffusing from a capillary placed in a cell suspension. Video microscopy showed that cells gradually accumulated near the tip of the capillary and thereafter directed flows were generated. Flow analysis using microspheres as tracers showed that the flow comprised millimeter-scale convection, which originated at the point source where serine was supplied by the capillary. The generation of convection was attributable to cell accumulation and gravitational force, thereby suggesting that it is a variant of bioconvection. We recorded the time courses of the changes in cell numbers and the convection flow speed at different positions near the capillary, which showed that the number of cells increased initially until an almost saturated level, and the convection flow speed then accelerated as the cell accumulation area increased in size. This result indicates that cell accumulation at the stimulation source and enlargement of the accumulation area were essential for generating the convection.
Collapse
Affiliation(s)
- Takahiro Abe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, 980-8579, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
38
|
Darshan N, Manonmani HK. Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Express 2016; 6:50. [PMID: 27460563 PMCID: PMC4961660 DOI: 10.1186/s13568-016-0222-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
The antimicrobial activity of prodigiosin from Serratia nematodiphila darsh1, a bacterial pigment was tested against few food borne bacterial pathogens Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The mode of action of prodigiosin was studied. Prodigiosin induced bactericidal activity indicating a stereotypical set of biochemical and morphological feature of Programmed cell death (PCD). PCD involves DNA fragmentation, generation of ROS, and expression of a protein with caspase-like substrate specificity in bacterial cells. Prodigiosin was observed to be internalized into bacterial cells and was localized predominantly in the membrane and the nuclear fraction, thus, facilitating intracellular trafficking and then binding of prodigiosin to the bacterial DNA. Corresponding to an increasing concentration of prodigiosin, the level of certain proteases were observed to increase in bacteria studied, thus initiating the onset of PCD. Prodigiosin at a sub-inhibitory concentration inhibits motility of pathogens. Our observations indicated that prodigiosin could be a promising antibacterial agent and could be used in the prevention of bacterial infections.
Collapse
|
39
|
Ito M, Takahashi Y. Nonconventional cation-coupled flagellar motors derived from the alkaliphilic Bacillus and Paenibacillus species. Extremophiles 2016; 21:3-14. [PMID: 27771767 DOI: 10.1007/s00792-016-0886-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Prior to 2008, all previously studied conventional bacterial flagellar motors appeared to utilize either H+ or Na+ as coupling ions. Membrane-embedded stator complexes support conversion of energy using transmembrane electrochemical ion gradients. The main H+-coupled stators, known as MotAB, differ from Na+-coupled stators, PomAB of marine bacteria, and MotPS of alkaliphilic Bacillus. However, in 2008, a MotAB-type flagellar motor of alkaliphilic Bacillus clausii KSM-K16 was revealed as an exception with the first dual-function motor. This bacterium was identified as the first bacterium with a single stator-rotor that can utilize both H+ and Na+ for ion-coupling at different pH ranges. Subsequently, another exception, a MotPS-type flagellar motor of alkaliphilic Bacillus alcalophilus AV1934, was reported to utilize Na+ plus K+ and Rb+ as coupling ions for flagellar rotation. In addition, the alkaline-tolerant bacterium Paenibacillus sp. TCA20, which can utilize divalent cations such as Ca2+, Mg2+, and Sr2+, was recently isolated from a hot spring in Japan, which contains a high Ca2+ concentration. These findings show that bacterial flagellar motors isolated from unique environments utilize unexpected coupling ions. This suggests that bacteria that grow in different extreme environments adapt to local conditions and evolve their motility machinery.
Collapse
Affiliation(s)
- Masahiro Ito
- Faculty of Life Sciences, Toyo University, Oura-gun, Gunma, 374-0193, Japan. .,Bio-nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-8585, Japan.
| | - Yuka Takahashi
- Bio-nano Electronics Research Center, Toyo University, Kawagoe, Saitama, 350-8585, Japan
| |
Collapse
|
40
|
Han MJ. Exploring the proteomic characteristics of the Escherichia coli B and K-12 strains in different cellular compartments. J Biosci Bioeng 2016; 122:1-9. [DOI: 10.1016/j.jbiosc.2015.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 12/03/2015] [Indexed: 11/26/2022]
|
41
|
A novel cell autolysis system for cost-competitive downstream processing. Appl Microbiol Biotechnol 2016; 100:9103-9110. [DOI: 10.1007/s00253-016-7669-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 11/27/2022]
|
42
|
Shen DK, Blocker AJ. MxiA, MxiC and IpaD Regulate Substrate Selection and Secretion Mode in the T3SS of Shigella flexneri. PLoS One 2016; 11:e0155141. [PMID: 27171191 PMCID: PMC4865121 DOI: 10.1371/journal.pone.0155141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
Type III secretion systems (T3SSs) are central virulence devices for many Gram-negative bacterial pathogens of humans, animals & plants. Upon physical contact with eukaryotic host cells, they translocate virulence-mediating proteins, known as effectors, into them during infection. T3SSs are gated from the outside by host-cell contact and from the inside via two cytoplasmic negative regulators, MxiC and IpaD in Shigella flexneri, which together control the effector secretion hierarchy. Their absence leads to premature and increased secretion of effectors. Here, we investigated where and how these regulators act. We demonstrate that the T3SS inner membrane export apparatus protein MxiA plays a role in substrate selection. Indeed, using a genetic screen, we identified two amino acids located on the surface of MxiA's cytoplasmic region (MxiAC) which, when mutated, upregulate late effector expression and, in the case of MxiAI674V, also secretion. The cytoplasmic region of MxiA, but not MxiAN373D and MxiAI674V, interacts directly with the C-terminus of MxiC in a two-hybrid assay. Efficient T3S requires a cytoplasmic ATPase and the proton motive force (PMF), which is composed of the ΔΨ and the ΔpH. MxiA family proteins and their regulators are implicated in utilization of the PMF for protein export. However, our MxiA point mutants show similar PMF utilisation to wild-type, requiring primarily the ΔΨ. On the other hand, lack of MxiC or IpaD, renders the faster T3S seen increasingly dependent on the ΔpH. Therefore, MxiA, MxiC and IpaD act together to regulate substrate selection and secretion mode in the T3SS of Shigella flexneri.
Collapse
Affiliation(s)
- Da-Kang Shen
- School of Cellular & Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Ariel J. Blocker
- Schools of Cellular & Molecular Medicine and Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
43
|
Xu J, Nakamura S, Islam MS, Guo Y, Ihara K, Tomioka R, Masuda M, Yoneyama H, Isogai E. Mannose-Binding Lectin Inhibits the Motility of Pathogenic Salmonella by Affecting the Driving Forces of Motility and the Chemotactic Response. PLoS One 2016; 11:e0154165. [PMID: 27104738 PMCID: PMC4841586 DOI: 10.1371/journal.pone.0154165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 04/08/2016] [Indexed: 01/05/2023] Open
Abstract
Mannose-binding lectin (MBL) is a key pattern recognition molecule in the lectin pathway of the complement system, an important component of innate immunity. MBL functions as an opsonin which enhances the sequential immune process such as phagocytosis. We here report an inhibitory effect of MBL on the motility of pathogenic bacteria, which occurs by affecting the energy source required for motility and the signaling pathway of chemotaxis. When Salmonella cells were treated with a physiological concentration of MBL, their motile fraction and free-swimming speed decreased. Rotation assays of a single flagellum showed that the flagellar rotation rate was significantly reduced by the addition of MBL. Measurements of the intracellular pH and membrane potential revealed that MBL affected a driving force for the Salmonella flagellum, the electrochemical potential difference of protons. We also found that MBL treatment increased the reversal frequency of Salmonella flagellar rotation, which interfered with the relative positive chemotaxis toward an attractive substrate. We thus propose that the motility inhibition effect of MBL may be secondarily involved in the attack against pathogens, potentially facilitating the primary role of MBL in the complement system.
Collapse
Affiliation(s)
- Jun Xu
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- * E-mail: (SN); (JX)
| | - Md. Shafiqul Islam
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Yijie Guo
- Department of Immunobiology and Pathogenic Biology, Medical School of Xi’an Jiaotong University, Xi’an, China
| | - Kohei Ihara
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Rintaro Tomioka
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Mizuki Masuda
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hiroshi Yoneyama
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- Department of Animal Microbiology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
44
|
Minamino T, Morimoto YV, Hara N, Aldridge PD, Namba K. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export. PLoS Pathog 2016; 12:e1005495. [PMID: 26943926 PMCID: PMC4778876 DOI: 10.1371/journal.ppat.1005495] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration. For construction of the bacterial flagellum beyond the inner and outer membranes, the flagellar type III export apparatus transports fourteen flagellar proteins with their copy numbers ranging from a few to tens of thousands to the distal growing end of the flagellar structure. The export apparatus consists of a transmembrane export gate complex and a cytoplasmic ATPase complex. Here, we show that the export engine of the flagellar type III export apparatus is robust in maintaining its export activity against internal and external perturbations arising from genetic variations and/or environmental changes. When the cytoplasmic ATPase complex is absent, the export gate complex is able to utilize sodium motive force (SMF) across the cytoplasmic membrane as a fuel in addition to proton motive force (PMF). However, the export gate utilizes only PMF as the energy source when the ATPase complex is active. An export gate protein FlhA shows an intrinsic ion channel activity. These observations suggest that the export gate intrinsically uses both PMF and SMF for protein export and that the ATPase complex switches the export gate into a highly efficient PMF-driven export engine to become much more robust against environmental perturbations.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka, Japan
- * E-mail: (TM); (KN)
| | - Yusuke V. Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, Japan
| | - Noritaka Hara
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka, Japan
| | - Phillip D. Aldridge
- Centre for Bacterial Cell Biology, Medical Sciences New Building, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1–3 Yamadaoka, Suita, Osaka, Japan
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka, Japan
- * E-mail: (TM); (KN)
| |
Collapse
|
45
|
Figueroa-Morales N, Leonardo Miño G, Rivera A, Caballero R, Clément E, Altshuler E, Lindner A. Living on the edge: transfer and traffic of E. coli in a confined flow. SOFT MATTER 2015; 11:6284-6293. [PMID: 26161542 DOI: 10.1039/c5sm00939a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We quantitatively study the transport of E. coli near the walls of confined microfluidic channels, and in more detail along the edges formed by the interception of two perpendicular walls. Our experiments establish the connection between bacterial motion at the flat surface and at the edges and demonstrate the robustness of the upstream motion at the edges. Upstream migration of E. coli at the edges is possible at much larger flow rates compared to motion at the flat surfaces. Interestingly, the speed of bacteria at the edges mainly results from collisions between bacteria moving along this single line. We show that upstream motion not only takes place at the edge but also in an "edge boundary layer" whose size varies with the applied flow rate. We quantify the bacterial fluxes along the bottom walls and the edges and show that they result from both the transport velocity of bacteria and the decrease of surface concentration with increasing flow rate due to erosion processes. We rationalize our findings as a function of local variations in the shear rate in the rectangular channels and hydrodynamic attractive forces between bacteria and walls.
Collapse
Affiliation(s)
- Nuris Figueroa-Morales
- PMMH, UMR 7636 CNRS-ESPCI-Universités Pierre et Marie Curie and Denis Diderot, 10, rue Vauquelin, 75231 Paris Cedex 5, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Nakamura S, Morimoto YV, Kudo S. A lactose fermentation product produced by Lactococcus lactis subsp. lactis, acetate, inhibits the motility of flagellated pathogenic bacteria. MICROBIOLOGY-SGM 2015; 161:701-7. [PMID: 25573770 DOI: 10.1099/mic.0.000031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/02/2015] [Indexed: 01/17/2023]
Abstract
Many strains of lactic acid bacteria have been used for the production of probiotics. Some metabolites produced by lactic acid bacteria impair the motilities of pathogenic bacteria. Because bacterial motility is strongly associated with virulence, the metabolic activities of lactic acid bacteria are effective for suppressing bacterial infections. Here we show that lactose fermentation by Lactococcus lactis subsp. lactis inhibits the motility of Salmonella enterica serovar Typhimurium. A single-cell tracking and rotation assay for a single flagellum showed that the swimming behaviour of Salmonella was severely but transiently impaired through disruption of flagellar rotation on exposure to media cultivated with Lac. lactis. Using a pH-sensitive fluorescent protein, we observed that the intracellular pH of Salmonella was decreased because of some fermentation products of Lac. lactis. We identified acetate as the lactose fermentation product of Lac. lactis triggering the paralysis of Salmonella flagella. The motilities of Pseudomonas, Vibrio and Leptospira strains were also severely disrupted by lactose utilization by Lac. lactis. These results highlight the potential use of Lac. lactis for preventing infections by multiple bacterial species.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yusuke V Morimoto
- Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
47
|
Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis. Sci Rep 2014; 4:7579. [PMID: 25531309 PMCID: PMC4273619 DOI: 10.1038/srep07579] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
For self-assembly of the bacterial flagellum, a specific protein export apparatus utilizes ATP and proton motive force (PMF) as the energy source to transport component proteins to the distal growing end. The export apparatus consists of a transmembrane PMF-driven export gate and a cytoplasmic ATPase complex composed of FliH, FliI and FliJ. The FliI(6)FliJ complex is structurally similar to the α(3)β(3)γ complex of F(O)F(1)-ATPase. FliJ allows the gate to efficiently utilize PMF to drive flagellar protein export but it remains unknown how. Here, we report the role of ATP hydrolysis by the FliI(6)FliJ complex. The export apparatus processively transported flagellar proteins to grow flagella even with extremely infrequent or no ATP hydrolysis by FliI mutation (E211D and E211Q, respectively). This indicates that the rate of ATP hydrolysis is not at all coupled with the export rate. Deletion of FliI residues 401 to 410 resulted in no flagellar formation although this FliI deletion mutant retained 40% of the ATPase activity, suggesting uncoupling between ATP hydrolysis and activation of the gate. We propose that infrequent ATP hydrolysis by the FliI6FliJ ring is sufficient for gate activation, allowing processive translocation of export substrates for efficient flagellar assembly.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke V. Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Phillip D. Aldridge
- Centre for Bacterial Cell Biology, Medical Sciences New Building, Newcastle University, Richardson Road, Newcastle upon Tyne, United Kingdom, NE2 4AX
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Riken Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|
48
|
Abstract
AbstractThe effects of ionizing radiation on bacteria are generally evaluated from the dose-dependent survival ratio, which is determined by colony-forming ability and mutation rate. The mutagenic damage to cellular DNA induced by radiation has been extensively investigated; however, the effects of irradiation on the cellular machinery in situ remain unclear. In the present work, we irradiated Escherichia coli cells in liquid media with gamma rays from 60Co (in doses up to 8 kGy). The swimming speeds of the cells were measured using a microscope. We found that the swimming speed was unaltered in cells irradiated with a lethal dose of gamma rays. However, the fraction of motile cells decreased in a dose-dependent manner. Similar results were observed when protein synthesis was inhibited by treatment with kanamycin. Evaluation of bacterial swimming speed and the motile fraction after irradiation revealed that some E. coli cells without the potential of cell growth and division remained motile for several hours after irradiation.
Collapse
|
49
|
Nakamura S, Minamino T, Kami-Ike N, Kudo S, Namba K. Effect of the MotB(D33N) mutation on stator assembly and rotation of the proton-driven bacterial flagellar motor. Biophysics (Nagoya-shi) 2014; 10:35-41. [PMID: 27493496 PMCID: PMC4629662 DOI: 10.2142/biophysics.10.35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/28/2014] [Indexed: 01/21/2023] Open
Abstract
The bacterial flagellar motor generates torque by converting the energy of proton translocation through the transmembrane proton channel of the stator complex formed by MotA and MotB. The MotA/B complex is thought to be anchored to the peptidoglycan (PG) layer through the PG-binding domain of MotB to act as the stator. The stator units dynamically associate with and dissociate from the motor during flagellar motor rotation, and an electrostatic interaction between MotA and a rotor protein FliG is required for efficient stator assembly. However, the association and dissociation mechanism of the stator units still remains unclear. In this study, we analyzed the speed fluctuation of the flagellar motor of Salmonella enterica wild-type cells carrying a plasmid encoding a nonfunctional stator complex, MotA/B(D33N), which lost the proton conductivity. The wild-type motor rotated stably but the motor speed fluctuated considerably when the expression level of MotA/B(D33N) was relatively high compared to MotA/B. Rapid accelerations and decelerations were frequently observed. A quantitative analysis of the speed fluctuation and a model simulation suggested that the MotA/B(D33N) stator retains the ability to associate with the motor at a low affinity but dissociates more rapidly than the MotA/B stator. We propose that the stator dissociation process depends on proton translocation through the proton channel.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Tohru Minamino
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Keiichi Namba
- Graduate School of Frontier Bioscience, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Riken Quantitative Biology Center, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
50
|
Castillo DJ, Nakamura S, Morimoto YV, Che YS, Kami-Ike N, Kudo S, Minamino T, Namba K. The C-terminal periplasmic domain of MotB is responsible for load-dependent control of the number of stators of the bacterial flagellar motor. Biophysics (Nagoya-shi) 2013; 9:173-81. [PMID: 27493556 PMCID: PMC4629673 DOI: 10.2142/biophysics.9.173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/07/2013] [Indexed: 12/29/2022] Open
Abstract
The bacterial flagellar motor is made of a rotor and stators. In Salmonella it is thought that about a dozen MotA/B complexes are anchored to the peptidoglycan layer around the motor through the C-terminal peptidoglycan-binding domain of MotB to become active stators as well as proton channels. MotB consists of 309 residues, forming a single transmembrane helix (30–50), a stalk (51–100) and a C-terminal peptidoglycan-binding domain (101–309). Although the stalk is dispensable for torque generation by the motor, it is required for efficient motor performance. Residues 51 to 72 prevent premature proton leakage through the proton channel prior to stator assembly into the motor. However, the role of residues 72–100 remains unknown. Here, we analyzed the torque-speed relationship of the MotB(Δ72–100) motor. At a low speed near stall, this mutant motor produced torque at the wild-type level. Unlike the wild-type motor, however, torque dropped off drastically by slight decrease in external load and then showed a slow exponential decay over a wide range of load by its further reduction. Since it is known that the stator is a mechano-sensor and that the number of active stators changes in a load-dependent manner, we interpreted this unusual torque-speed relationship as anomaly in load-dependent control of the number of active stators. The results suggest that residues 72–100 of MotB is required for proper load-dependent control of the number of active stators around the rotor.
Collapse
Affiliation(s)
- David J Castillo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramakiaza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yusuke V Morimoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | - Yong-Suk Che
- Department of Frontier Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo 184-8584, Japan
| | - Nobunori Kami-Ike
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seishi Kudo
- Department of Applied Physics, Tohoku University, 6-6-05 Aoba, Aramakiaza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Quantitative Biology Center, RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| |
Collapse
|