1
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
2
|
Naha A, Haeusser DP, Margolin W. Anchors: A way for FtsZ filaments to stay membrane bound. Mol Microbiol 2023; 120:525-538. [PMID: 37503768 PMCID: PMC10593102 DOI: 10.1111/mmi.15067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/29/2023]
Abstract
Most bacteria use the tubulin homolog FtsZ to organize their cell division. FtsZ polymers initially assemble into mobile complexes that circle around a ring-like structure at the cell midpoint, followed by the recruitment of other proteins that will constrict the cytoplasmic membrane and synthesize septal peptidoglycan to divide the cell. Despite the need for FtsZ polymers to associate with the membrane, FtsZ lacks intrinsic membrane binding ability. Consequently, FtsZ polymers have evolved to interact with the membrane through adaptor proteins that both bind FtsZ and the membrane. Here, we discuss recent progress in understanding the functions of these FtsZ membrane tethers. Some, such as FtsA and SepF, are widely conserved and assemble into varied oligomeric structures bound to the membrane through an amphipathic helix. Other less-conserved proteins, such as EzrA and ZipA, have transmembrane domains, make extended structures, and seem to bind to FtsZ through two separate interactions. This review emphasizes that most FtsZs use multiple membrane tethers with overlapping functions, which not only attach FtsZ polymers to the membrane but also organize them in specific higher-order structures that can optimize cell division activity. We discuss gaps in our knowledge of these concepts and how future studies can address them.
Collapse
Affiliation(s)
- Arindam Naha
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| | - Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
- Department of Biology, Canisius College, Buffalo, NY 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, UTHealth-Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Zou Y, Li Y, Dillon JAR. The distinctive cell division interactome of Neisseria gonorrhoeae. BMC Microbiol 2017; 17:232. [PMID: 29233095 PMCID: PMC5727935 DOI: 10.1186/s12866-017-1140-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacterial cell division is an essential process driven by the formation of a Z-ring structure, as a cytoskeletal scaffold at the mid-cell, followed by the recruitment of various proteins which form the divisome. The cell division interactome reflects the complement of different interactions between all divisome proteins. To date, only two cell division interactomes have been characterized, in Escherichia coli and in Streptococcus pneumoniae. The cell divison proteins encoded by Neisseria gonorrhoeae include FtsZ, FtsA, ZipA, FtsK, FtsQ, FtsI, FtsW, and FtsN. The purpose of the present study was to characterize the cell division interactome of N. gonorrhoeae using several different methods to identify protein-protein interactions. We also characterized the specific subdomains of FtsA implicated in interactions with FtsZ, FtsQ, FtsN and FtsW. RESULTS Using a combination of bacterial two-hybrid (B2H), glutathione S-transferase (GST) pull-down assays, and surface plasmon resonance (SPR), nine interactions were observed among the eight gonococcal cell division proteins tested. ZipA did not interact with any other cell division proteins. Comparisons of the N. gonorrhoeae cell division interactome with the published interactomes from E. coli and S. pneumoniae indicated that FtsA-FtsZ and FtsZ-FtsK interactions were common to all three species. FtsA-FtsW and FtsK-FtsN interactions were only present in N. gonorrhoeae. The 2A and 2B subdomains of FtsANg were involved in interactions with FtsQ, FtsZ, and FtsN, and the 2A subdomain was involved in interaction with FtsW. CONCLUSIONS Results from this research indicate that N. gonorrhoeae has a distinctive cell division interactome as compared with other microorganisms.
Collapse
Affiliation(s)
- Yinan Zou
- Department of Microbiology and Immunology, College of Medicine, Saskatoon, SK, S7N 5E5, Canada.,Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada
| | - Yan Li
- Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada
| | - Jo-Anne R Dillon
- Department of Microbiology and Immunology, College of Medicine, Saskatoon, SK, S7N 5E5, Canada. .,Vaccine and Infectious Disease Organization, International Vaccine Centre, Saskatoon, SK, S7N 5E3, Canada. .,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK, S7N 5A5, Canada.
| |
Collapse
|
4
|
Abstract
The first step in bacterial cytokinesis is the assembly of a stable but dynamic cytokinetic ring made up of the essential tubulin homolog FtsZ at the future site of division. Although FtsZ and its role in cytokinesis have been studied extensively, the precise architecture of the in vivo medial FtsZ ring (Z ring) is not well understood. Recent advances in superresolution imaging suggest that the Z ring comprises short, discontinuous, and loosely bundled FtsZ polymers, some of which are tethered to the membrane. A diverse array of regulatory proteins modulate the assembly, stability, and disassembly of the Z ring via direct interactions with FtsZ. Negative regulators of FtsZ play a critical role in ensuring the accurate positioning of FtsZ at the future site of division and in maintaining Z ring dynamics by controlling FtsZ polymer assembly/disassembly processes. Positive regulators of FtsZ are essential for tethering FtsZ polymers to the membrane and promoting the formation of stabilizing lateral interactions, permitting assembly of a mature Z ring. The past decade has seen the identification of several factors that promote FtsZ assembly, presumably through a variety of distinct molecular mechanisms. While a few of these proteins are broadly conserved, many positive regulators of FtsZ assembly are limited to small groups of closely related organisms, suggesting that FtsZ assembly is differentially modulated across bacterial species. In this review, we focus on the roles of positive regulators in Z ring assembly and in maintaining the integrity of the cytokinetic ring during the early stages of division.
Collapse
|
5
|
Lutkenhaus J, Pichoff S, Du S. Bacterial cytokinesis: From Z ring to divisome. Cytoskeleton (Hoboken) 2012; 69:778-90. [PMID: 22888013 DOI: 10.1002/cm.21054] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 11/07/2022]
Abstract
Ancestral homologues of the major eukaryotic cytoskeletal families, tubulin and actin, play critical roles in cytokinesis of bacterial cells. FtsZ is the ancestral homologue of tubulin and assembles into the Z ring that determines the division plane. FtsA, a member of the actin family, is involved in coordinating cell wall synthesis during cytokinesis. FtsA assists in the formation of the Z ring and also has a critical role in recruiting downstream division proteins to the Z ring to generate the divisome that divides the cell. Spatial regulation of cytokinesis occurs at the stage of Z ring assembly and regulation of cell size occurs at this stage or during Z ring maturation.
Collapse
Affiliation(s)
- Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas.
| | | | | |
Collapse
|
6
|
ZipA is required for FtsZ-dependent preseptal peptidoglycan synthesis prior to invagination during cell division. J Bacteriol 2012; 194:5334-42. [PMID: 22843850 DOI: 10.1128/jb.00859-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rod-shaped bacteria grow by a repetitive cycle of elongation followed by division, and the mechanisms responsible for these two processes have been studied for decades. However, little is known about what happens during the transition between the two activities. At least one event occurs after elongation ends and before division commences, that being the insertion of new cell wall peptidoglycan into a narrowly circumscribed ribbon around midcell where septation is destined to take place. This insertion does not depend on the presence of the septation-specific protein PBP3 and is therefore known as PBP3-independent peptidoglycan synthesis (PIPS). Here we report that only FtsZ and ZipA are required to generate PIPS in wild-type Escherichia coli. PIPS does not require the participation of other members of the divisome, the MreB-directed cell wall elongation complex, alternate peptidoglycan synthases, the major peptidoglycan amidases, or any of the low-molecular-weight penicillin binding proteins. ZipA-directed PIPS may represent an intermediate stage that connects cell wall elongation to septal invagination and may be the reason ZipA is essential in the gammaproteobacteria.
Collapse
|
7
|
Du Y, Arvidson CG. RpoH mediates the expression of some, but not all, genes induced in Neisseria gonorrhoeae adherent to epithelial cells. Infect Immun 2006; 74:2767-76. [PMID: 16622214 PMCID: PMC1459707 DOI: 10.1128/iai.74.5.2767-2776.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae (gonococcus [GC]), is highly adapted to the human host, the only known reservoir for gonococcal infection. However, since it is sexually transmitted, infection of a new host likely requires a regulatory response on the part of the gonococcus to respond to this significant change in environment. We previously showed that adherence of gonococci to epithelial cells results in changes of gene expression in the bacteria that presumably prepare them for subsequent steps in the infection process. Expression of the heat shock sigma factor gene, rpoH, was shown to be important for the invasion step, as gonococci depleted for rpoH were reduced in their ability to invade epithelial cells. Here, we show that of the genes induced in adherent gonococci, two are part of the gonococcal RpoH regulon. When RpoH is depleted, expression of these genes is no longer induced by host cell contact, indicating that RpoH is mediating the host cell induction response of these genes. One RpoH-dependent gene, NGO0376, is shown to be important for invasion of epithelial cells, consistent with earlier observations that RpoH is necessary for this step of infection. Two genes, NGO1684 and NGO0340, while greatly induced by host cell contact, were found to be RpoH independent, indicating that more than one regulator is involved in the response to host cell contact. Furthermore, NGO0340, but not NGO1684, was shown to be important for both adherence and invasion of epithelial cells, suggesting a complex regulatory network in the response of gonococci to contact with host cells.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | |
Collapse
|
8
|
Brettin T, Altherr MR, Du Y, Mason RM, Friedrich A, Potter L, Langford C, Keller TJ, Jens J, Howie H, Weyand NJ, Clary S, Prichard K, Wachocki S, Sodergren E, Dillard JP, Weinstock G, So M, Arvidson CG. Expression capable library for studies of Neisseria gonorrhoeae, version 1.0. BMC Microbiol 2005; 5:50. [PMID: 16137322 PMCID: PMC1236931 DOI: 10.1186/1471-2180-5-50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 09/01/2005] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The sexually transmitted disease, gonorrhea, is a serious health problem in developed as well as in developing countries, for which treatment continues to be a challenge. The recent completion of the genome sequence of the causative agent, Neisseria gonorrhoeae, opens up an entirely new set of approaches for studying this organism and the diseases it causes. Here, we describe the initial phases of the construction of an expression-capable clone set representing the protein-coding ORFs of the gonococcal genome using a recombination-based cloning system. RESULTS The clone set thus far includes 1672 of the 2250 predicted ORFs of the N. gonorrhoeae genome, of which 1393 (83%) are sequence-validated. Included in this set are 48 of the 61 ORFs of the gonococcal genetic island of strain MS11, not present in the sequenced genome of strain FA1090. L-arabinose-inducible glutathione-S-transferase (GST)-fusions were constructed from random clones and each was shown to express a fusion protein of the predicted size following induction, demonstrating the use of the recombination cloning system. PCR amplicons of each ORF used in the cloning reactions were spotted onto glass slides to produce DNA microarrays representing 2035 genes of the gonococcal genome. Pilot experiments indicate that these arrays are suitable for the analysis of global gene expression in gonococci. CONCLUSION This archived set of Gateway entry clones will facilitate high-throughput genomic and proteomic studies of gonococcal genes using a variety of expression and analysis systems. In addition, the DNA arrays produced will allow us to generate gene expression profiles of gonococci grown in a wide variety of conditions. Together, the resources produced in this work will facilitate experiments to dissect the molecular mechanisms of gonococcal pathogenesis on a global scale, and ultimately lead to the determination of the functions of unknown genes in the genome.
Collapse
Affiliation(s)
- Thomas Brettin
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Michael R Altherr
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Roxie M Mason
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Alexandra Friedrich
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Laura Potter
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
- Leicester Warwick Medical School, University of Warwick, Coventry, UK
| | - Chris Langford
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Thomas J Keller
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Jason Jens
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| | - Heather Howie
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Nathan J Weyand
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Susan Clary
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Kimberly Prichard
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Susi Wachocki
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Erica Sodergren
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX 77030, USA
| | - Joseph P Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin Medical School, Madison, WI 53706, USA
| | - George Weinstock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston TX 77030, USA
| | - Magdalene So
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97201-3098, USA
| | - Cindy Grove Arvidson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
9
|
Du Y, Lenz J, Arvidson CG. Global gene expression and the role of sigma factors in Neisseria gonorrhoeae in interactions with epithelial cells. Infect Immun 2005; 73:4834-45. [PMID: 16040997 PMCID: PMC1201249 DOI: 10.1128/iai.73.8.4834-4845.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Like many bacterial pathogens, Neisseria gonorrhoeae must adapt to environmental changes in order to successfully colonize and proliferate in a new host. Modulation of gene expression in response to environmental signals is an efficient mechanism used by bacteria to achieve this goal. Using DNA microarrays and a tissue culture model for gonococcal infection, we examined global changes in gene expression in N. gonorrhoeae in response to adherence to host cells. Among those genes induced upon adherence to human epithelial cells in culture was rpoH, which encodes a homolog of the heat shock sigma factor, sigma(32) (RpoH), as well as genes of the RpoH regulon, groEL and groES. Attempts to construct an rpoH null mutant in N. gonorrhoeae were unsuccessful, suggesting that RpoH is essential for viability of N. gonorrhoeae. The extracytoplasmic sigma factor, RpoE (sigma(E)), while known to regulate rpoH in other bacteria, was found not to be necessary for the up-regulation of rpoH in gonococci upon adherence to host cells. To examine the role of RpoH in host cell interactions, an N. gonorrhoeae strain conditionally expressing rpoH was constructed. The results of our experiments showed that while induction of rpoH expression is not necessary for adherence of gonococci to epithelial cells, it is important for the subsequent invasion step, as gonococci depleted for rpoH invade cells two- to threefold less efficiently than a wild-type strain. Taken together, these results indicate that sigma(32), but not sigma(E), is important for the response of gonococci in the initial steps of an infection.
Collapse
Affiliation(s)
- Ying Du
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824-1101, USA
| | | | | |
Collapse
|