1
|
Koler M, Parkinson JS, Vaknin A. Signal integration in chemoreceptor complexes. Proc Natl Acad Sci U S A 2024; 121:e2312064121. [PMID: 38530894 PMCID: PMC10998596 DOI: 10.1073/pnas.2312064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Motile bacteria use large receptor arrays to detect chemical and physical stimuli in their environment, process this complex information, and accordingly bias their swimming in a direction they deem favorable. The chemoreceptor molecules form tripod-like trimers of receptor dimers through direct contacts between their cytoplasmic tips. A pair of trimers, together with a dedicated kinase enzyme, form a core signaling complex. Hundreds of core complexes network to form extended arrays. While considerable progress has been made in revealing the hierarchical structure of the array, the molecular properties underlying signal processing in these structures remain largely unclear. Here we analyzed the signaling properties of nonnetworked core complexes in live cells by following both conformational and kinase control responses to attractant stimuli and to output-biasing lesions at various locations in the receptor molecule. Contrary to the prevailing view that individual receptors are binary two-state devices, we demonstrate that conformational coupling between the ligand binding and the kinase-control receptor domains is, in fact, only moderate. In addition, we demonstrate communication between neighboring receptors through their trimer-contact domains that biases them to adopt similar signaling states. Taken together, these data suggest a view of signaling in receptor trimers that allows significant signal integration to occur within individual core complexes.
Collapse
Affiliation(s)
- Moriah Koler
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT84112
| | - Ady Vaknin
- The Racah Institute of Physics, The Hebrew University, Jerusalem91904, Israel
| |
Collapse
|
2
|
Uchida Y, Hamamoto T, Che YS, Takahashi H, Parkinson JS, Ishijima A, Fukuoka H. The Chemoreceptor Sensory Adaptation System Produces Coordinated Reversals of the Flagellar Motors on an Escherichia coli Cell. J Bacteriol 2022; 204:e0027822. [PMID: 36448786 PMCID: PMC9765175 DOI: 10.1128/jb.00278-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
In isotropic environments, an Escherichia coli cell exhibits coordinated rotational switching of its flagellar motors, produced by fluctuations in the intracellular concentration of phosphorylated CheY (CheY-P) emanating from chemoreceptor signaling arrays. In this study, we show that these CheY-P fluctuations arise through modifications of chemoreceptors by two sensory adaptation enzymes: the methyltransferase CheR and the methylesterase CheB. A cell containing CheR, CheB, and the serine chemoreceptor Tsr exhibited motor synchrony, whereas a cell lacking CheR and CheB or containing enzymatically inactive forms did not. Tsr variants with different combinations of methylation-mimicking Q residues at the adaptation sites also failed to show coordinated motor switching in cells lacking CheR and CheB. Cells containing CheR, CheB, and Tsr [NDND], a variant in which the adaptation site residues are not substrates for CheR or CheB modifications, also lacked motor synchrony. TsrΔNWETF, which lacks a C-terminal pentapeptide-binding site for CheR and CheB, and the ribose-galactose receptor Trg, which natively lacks this motif, failed to produce coordinated motor switching, despite the presence of CheR and CheB. However, addition of the NWETF sequence to Trg enabled Trg-NWETF to produce motor synchrony, as the sole receptor type in cells containing CheR and CheB. Finally, CheBc, the catalytic domain of CheB, supported motor coordination in combination with CheR and Tsr. These results indicate that the coordination of motor switching requires CheR/CheB-mediated changes in receptor modification state. We conclude that the opposing receptor substrate-site preferences of CheR and CheB produce spontaneous blinking of the chemoreceptor array's output activity. IMPORTANCE Under steady-state conditions with no external stimuli, an Escherichia coli cell coordinately switches the rotational direction of its flagellar motors. Here, we demonstrate that the CheR and CheB enzymes of the chemoreceptor sensory adaptation system mediate this coordination. Stochastic fluctuations in receptor adaptation states trigger changes in signal output from the receptor array, and this array blinking generates fluctuations in CheY-P concentration that coordinate directional switching of the flagellar motors. Thus, in the absence of chemoeffector gradients, the sensory adaptation system controls run-tumble swimming of the cell, its optimal foraging strategy.
Collapse
Affiliation(s)
- Yumiko Uchida
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tatsuki Hamamoto
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yong-Suk Che
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Miyagi, Japan
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Akihiko Ishijima
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hajime Fukuoka
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Gupta R, Yuan J, Lele PP. Bacterial Proprioception: Can a Bacterium Sense Its Movement? Front Microbiol 2022; 13:928408. [PMID: 35875555 PMCID: PMC9302961 DOI: 10.3389/fmicb.2022.928408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution of the bacterial flagellum gave rise to motility and repurposing of a signaling network, now termed the chemotaxis network, enabled biasing of cell movements. This made it possible for the bacterium to seek out favorable chemical environments. To enable chemotaxis, the chemotaxis network sensitively detects extracellular chemical stimuli and appropriately modulates flagellar functions. Additionally, the flagellar motor itself is capable of detecting mechanical stimuli and adapts its structure and function in response, likely triggering a transition from planktonic to surface-associated lifestyles. Recent work has shown a link between the flagellar motor's response to mechanical stimuli and the chemotactic output. Here, we elaborate on this link and discuss how it likely helps the cell sense and adapt to changes in its swimming speeds in different environments. We discuss the mechanism whereby the motor precisely tunes its chemotaxis output under different mechanical loads, analogous to proprioception in higher order organisms. We speculate on the roles bacterial proprioception might play in a variety of phenomena including the transition to surface-associated lifestyles such as swarming and biofilms.
Collapse
Affiliation(s)
- Rachit Gupta
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Junhua Yuan
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Pushkar P Lele
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Suppression of cell-cell variation by cooperative interaction of phosphatase and response regulator. Biophys J 2022; 121:319-326. [PMID: 34896368 PMCID: PMC8790193 DOI: 10.1016/j.bpj.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/27/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023] Open
Abstract
In bacterial chemotaxis, the output of chemosensing, the concentration of the response regulator CheY-P that was constantly adjusted by the opposing action of the kinase CheA and the phosphatase CheZ, serves as the input of the ultrasensitive flagellar motor that drives bacterial motility. The steady-state kinase activity exhibits large cell-to-cell variation that may result in similar variation in CheY-P concentration. Here, we found that the in vivo phosphatase activity is highly cooperative with respect to CheY-P concentration, and this suppresses the cell-to-cell variation of CheY-P concentration so that it falls within the operational range of the flagellar motor. Therefore, the cooperativity of the CheZ and CheY-P interaction we identified here provided a mechanism of robust coupling between the output of chemosensing and the input of the flagellar motor. Suppression of cell heterogeneity by cooperativity of protein-protein interaction is likely a common feature in many biological signaling systems.
Collapse
|
5
|
Liu X, Liu Y, Wang Y, Wang D, Johnson KS, Xie Z. The Hypoxia-Associated Localization of Chemotaxis Protein CheZ in Azorhizorbium caulinodans. Front Microbiol 2021; 12:731419. [PMID: 34737727 PMCID: PMC8563088 DOI: 10.3389/fmicb.2021.731419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022] Open
Abstract
Spatial organization of chemotactic proteins is important for cooperative response to external stimuli. However, factors affecting the localization dynamics of chemotaxis proteins are less studied. According to some reports, the polar localization of chemotaxis system I is induced by hypoxia and starvation in Vibrio cholerae. However, in V. cholerae, the chemotaxis system I is not involved in flagellum-mediated chemotaxis, and it may play other alternative cellular functions. In this study, we found that the polar localization of CheZ, a phosphatase regulating chemotactic movement in Azorhizobium caulinodans ORS571, can also be affected by hypoxia and cellular energy-status. The conserved phosphatase active site D165 and the C-terminus of CheZ are essential for the energy-related localization, indicating a cross link between hypoxia-related localization changes and phosphatase activity of CheZ. Furthermore, three of five Aer-like chemoreceptors containing PAS domains participate in the cellular localization of CheZ. In contrast to carbon starvation, free-living nitrogen fixation can alleviate the role of nitrogen limitation and hypoxia on polar localization of CheZ. These results showed that the localization changes induced by hypoxia might be a strategy for bacteria to adapt to complex environment.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yixuan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Dandan Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Kevin Scot Johnson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Zhihong Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| |
Collapse
|
6
|
Liu X, Liu Y, Johnson KS, Dong X, Xie Z. Protein Residues and a Novel Motif Involved in the Cellular Localization of CheZ in Azorhizobium caulinodans ORS571. Front Microbiol 2020; 11:585140. [PMID: 33365019 PMCID: PMC7750401 DOI: 10.3389/fmicb.2020.585140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis is essential for the competitiveness of motile bacteria in complex and harsh environments. The localization of chemotactic proteins in the cell is critical for coordinating a maximal response to chemotactic signals. One chemotaxis protein with a well-defined subcellular localization is the phosphatase CheZ. CheZ localizes to cell poles by binding with CheA in Escherichia coli and other enteric bacteria, or binding with a poorly understood protein called ChePep in epsilon-Proteobacteria. In alpha-Proteobacteria, CheZ lacks CheA-binding sites, and its cellular localization remains unknown. We therefore determined the localization of CheZ in the alpha-Proteobacteria Azorhizobium caulinodans ORS571. A. caulinodans CheZ, also termed as CheZAC, was found to be located to cell poles independently of CheA, and we suspect that either the N-terminal helix or the four-helix bundle of CheZAC is sufficient to locate to cell poles. We also found a novel motif, AXXFQ, which is adjacent to the phosphatase active motif DXXXQ, which effects the monopolar localization of CheZAC. This novel motif consisting of AXXFQ is conserved in CheZ and widely distributed among Proteobacteria. Finally, we found that the substitution of phosphatase active site affects the polar localization of CheZAC. In total, this work characterized the localization pattern of CheZ containing a novel motif, and we mapped the regions of CheZAC that are critical for its polar localization.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yanan Liu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kevin Scot Johnson
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Xiaoyan Dong
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhihong Xie
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Fluctuations in Intracellular CheY-P Concentration Coordinate Reversals of Flagellar Motors in E. coli. Biomolecules 2020; 10:biom10111544. [PMID: 33198296 PMCID: PMC7696710 DOI: 10.3390/biom10111544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/17/2022] Open
Abstract
Signal transduction utilizing membrane-spanning receptors and cytoplasmic regulator proteins is a fundamental process for all living organisms, but quantitative studies of the behavior of signaling proteins, such as their diffusion within a cell, are limited. In this study, we show that fluctuations in the concentration of the signaling molecule, phosphorylated CheY, constitute the basis of chemotaxis signaling. To analyze the propagation of the CheY-P signal quantitatively, we measured the coordination of directional switching between flagellar motors on the same cell. We analyzed the time lags of the switching of two motors in both CCW-to-CW and CW-to-CCW switching (∆tCCW-CW and ∆tCW-CCW). In wild-type cells, both time lags increased as a function of the relative distance of two motors from the polar receptor array. The apparent diffusion coefficient estimated for ∆t values was ~9 µm2/s. The distance-dependency of ∆tCW-CCW disappeared upon loss of polar localization of the CheY-P phosphatase, CheZ. The distance-dependency of the response time for an instantaneously applied serine attractant signal also disappeared with the loss of polar localization of CheZ. These results were modeled by calculating the diffusion of CheY and CheY-P in cells in which phosphorylation and dephosphorylation occur in different subcellular regions. We conclude that diffusion of signaling molecules and their production and destruction through spontaneous activity of the receptor array generates fluctuations in CheY-P concentration over timescales of several hundred milliseconds. Signal fluctuation coordinates rotation among flagella and regulates steady-state run-and-tumble swimming of cells to facilitate efficient responses to environmental chemical signals.
Collapse
|
8
|
Pedetta A, Studdert CA. Truncated, Non-networking Versions of the Coupling Protein CheW Retain Chemoreceptor Control of Kinase CheA. J Mol Biol 2020; 432:576-584. [PMID: 31626809 DOI: 10.1016/j.jmb.2019.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 11/18/2022]
Abstract
Bacterial chemoreceptors control the activity of the associated CheA kinase in response to chemical gradients and, consequently, regulate the swimming behavior of the cell. However, such control is not direct but requires the participation of the essential coupling protein CheW, which is structurally homologous to the carboxy-terminal domain of the kinase. The actual role of this small coupling protein is somehow intriguing. It has been demonstrated that it is absolutely essential for chemoreceptor control of the kinase, in spite of the occurrence of direct contacts between chemoreceptors and CheA. In addition, CheW plays an essential role in the assembly of the large macromolecular arrays that combine chemoreceptors of different specificities, and it is therefore responsible for molecular interactions that provide such arrays with remarkable signaling properties. In this work, we analyze truncated CheW derivatives that are still able to control the kinase but have lost the ability to connect signaling units. We demonstrate that these two activities can work separately and speculate about the significance of the roles of these two different activities in the context of the chemoreceptor cluster.
Collapse
Affiliation(s)
- Andrea Pedetta
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar Del Plata - CONICET, Mar Del Plata, Buenos Aires, Argentina
| | - Claudia Alicia Studdert
- Instituto de Agrobiotecnología Del Litoral, CONICET - Universidad Nacional Del Litoral, Santa Fe, Santa Fe, Argentina.
| |
Collapse
|
9
|
Abstract
Prokaryotic organisms occupy the most diverse set of environments and conditions on our planet. Their ability to sense and respond to a broad range of external cues remain key research areas in modern microbiology, central to behaviors that underlie beneficial and pathogenic interactions of bacteria with multicellular organisms and within complex ecosystems. Advances in our understanding of the one- and two-component signal transduction systems that underlie these sensing pathways have been driven by advances in imaging the behavior of many individual bacterial cells, as well as visualizing individual proteins and protein arrays within living cells. Cryo-electron tomography continues to provide new insights into the structure and function of chemosensory receptors and flagellar motors, while advances in protein labeling and tracking are applied to understand information flow between receptor and motor. Sophisticated microfluidics allow simultaneous analysis of the behavior of thousands of individual cells, increasing our understanding of how variance between individuals is generated, regulated and employed to maximize fitness of a population. In vitro experiments have been complemented by the study of signal transduction and motility in complex in vivo models, allowing investigators to directly address the contribution of motility, chemotaxis and aggregation/adhesion on virulence during infection. Finally, systems biology approaches have demonstrated previously uncharted areas of protein space in which novel two-component signal transduction pathways can be designed and constructed de novo These exciting experimental advances were just some of the many novel findings presented at the 15th Bacterial Locomotion and Signal Transduction conference (BLAST XV) in January 2019.
Collapse
|
10
|
Abstract
The cytoplasmic C ring of the bacterial flagellum is known as the switch complex. It binds the response regulator phospho-CheY to control the direction of flagellar rotation. The C ring of enteric bacteria is well characterized. However, no Gram-positive switch complex had been modeled. Ward et al. (E. Ward, E. A. Kim, J. Panushka, T. Botelho, et al., J Bacteriol 201:e00626-18, 2019, https://doi.org/10.1128/JB.00626-18) propose a structure for the Bacillus subtilis switch complex based on extensive biochemical studies. The work demonstrates that a similar architecture can accommodate different proteins and a reversed signaling logic.
Collapse
|
11
|
Namba T, Shibata T. Propagation of regulatory fluctuations induces coordinated switching of flagellar motors in chemotaxis signaling pathway of single bacteria. J Theor Biol 2018; 454:367-375. [PMID: 29969599 DOI: 10.1016/j.jtbi.2018.06.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
The random motion of E. coli is driven by multiple flagella motors. When all motors rotate in the counter clockwise direction, the bacteria swims smoothly. A recent experimental report by Terasawa et al. [Biophys J,100,2193,(2011)] demonstrated that a coordination of the motors can occur through signaling pathways, and perturbation of a regulatory molecule disrupted the coordination. Here, we develop a mathematical model to show that a large temporal fluctuation in the regulator concentration can induce a correlated switching of the multiple motors. Such a large fluctuation is generated by a chemotaxis receptor cluster in unilateral cell pole, which then exhibits a spatial propagation through the cytoplasm from the receptor position to the motor around cell periphery. Our numerical simulation successfully reproduces synchronized switching and the lag time in the motions of two distant motors, which has been observed experimentally. We further show that the large fluctuation in the regulator concentration at the motor positions can expand the dynamic range that the motor can respond, which confers robustness to the signaling system.
Collapse
Affiliation(s)
- Toshinori Namba
- Department of Mathematical and Life Sciences, Hiroshima University, Higashihiroshima, Japan; Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashihiroshima, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
| |
Collapse
|
12
|
Noncritical Signaling Role of a Kinase-Receptor Interaction Surface in the Escherichia coli Chemosensory Core Complex. J Mol Biol 2018; 430:1051-1064. [PMID: 29453948 DOI: 10.1016/j.jmb.2018.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 11/22/2022]
Abstract
In Escherichia coli chemosensory arrays, transmembrane receptors, a histidine autokinase CheA, and a scaffolding protein CheW interact to form an extended hexagonal lattice of signaling complexes. One interaction, previously assigned a crucial signaling role, occurs between chemoreceptors and the CheW-binding P5 domain of CheA. Structural studies showed a receptor helix fitting into a hydrophobic cleft at the boundary between P5 subdomains. Our work aimed to elucidate the in vivo roles of the receptor-P5 interface, employing as a model the interaction between E. coli CheA and Tsr, the serine chemoreceptor. Crosslinking assays confirmed P5 and Tsr contacts in vivo and their strict dependence on CheW. Moreover, the P5 domain only mediated CheA recruitment to polar receptor clusters if CheW was also present. Amino acid replacements at CheA.P5 cleft residues reduced CheA kinase activity, lowered serine response cooperativity, and partially impaired chemotaxis. Pseudoreversion studies identified suppressors of P5 cleft defects at other P5 groove residues or at surface-exposed residues in P5 subdomain 1, which interacts with CheW in signaling complexes. Our results indicate that a high-affinity P5-receptor binding interaction is not essential for core complex function. Rather, P5 groove residues are probably required for proper cleft structure and/or dynamic behavior, which likely impact conformational communication between P5 subdomains and the strong binding interaction with CheW that is necessary for kinase activation. We propose a model for signal transmission in chemotaxis signaling complexes in which the CheW-receptor interface plays the key role in conveying signaling-related conformational changes from receptors to the CheA kinase.
Collapse
|
13
|
Di Paolo D, Afanzar O, Armitage JP, Berry RM. Single-molecule imaging of electroporated dye-labelled CheY in live Escherichia coli. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0492. [PMID: 27672145 PMCID: PMC5052738 DOI: 10.1098/rstb.2015.0492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2016] [Indexed: 11/12/2022] Open
Abstract
For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level. Here we show that purified CheY proteins labelled with organic dyes can be internalized into E. coli cells in controllable concentrations and imaged with video fluorescence microscopy. The use of this approach is illustrated by showing single CheY molecules diffusing within cells and interacting with the sensory clusters and the flagellar motors in real time. This article is part of the themed issue ‘The new bacteriology’.
Collapse
Affiliation(s)
- Diana Di Paolo
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Oshri Afanzar
- Department of Biological Chemistry, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Richard M Berry
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
14
|
Pedetta A, Massazza DA, Herrera Seitz MK, Studdert CA. Mutational Replacements at the “Glycine Hinge” of the Escherichia coli Chemoreceptor Tsr Support a Signaling Role for the C-Helix Residue. Biochemistry 2017; 56:3850-3862. [DOI: 10.1021/acs.biochem.7b00455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Pedetta
- Instituto
de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - Diego Ariel Massazza
- Instituto
Nacional de Tecnología en Materiales, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - María Karina Herrera Seitz
- Instituto
de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - Claudia Alicia Studdert
- Instituto
de Agrobiotecnología del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| |
Collapse
|
15
|
Heininger A, Yusuf R, Lawrence RJ, Draheim RR. Identification of transmembrane helix 1 (TM1) surfaces important for EnvZ dimerisation and signal output. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1868-75. [PMID: 27155567 DOI: 10.1016/j.bbamem.2016.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/12/2016] [Accepted: 05/03/2016] [Indexed: 02/06/2023]
Abstract
The Escherichia coli sensor kinase EnvZ modulates porin expression in response to various stimuli, including extracellular osmolarity, the presence of procaine and interaction with an accessory protein, MzrA. Two major outer membrane porins, OmpF and OmpC, act as passive diffusion-limited pores that allow compounds, including certain classes of antibiotics such as β-lactams and fluoroquinolones, to enter the bacterial cell. Even though the mechanisms by which EnvZ detects and processes the presence of various stimuli are a fundamental component of microbial physiology, they are not yet fully understood. Here, we assess the role of TM1 during signal transduction in response to the presence of extracellular osmolarity. Various mechanisms of transmembrane communication have been proposed including rotation of individual helices within the transmembrane domain, dynamic movement of the membrane-distal portion of the cytoplasmic domain and regulated intra-protein unfolding. To assess these possibilities, we have created a library of single-Cys-containing EnvZ proteins in order to facilitate sulfhydryl-reactivity experimentation. Our results demonstrate that the major TM1-TM1' interface falls along a single surface consisting of residue positions 19, 23, 26, 30 and 34. In addition, we show that Cys substitutions within the N- and C-terminal regions of TM1 result in drastic changes to EnvZ signal output. Finally, we demonstrate that core residues within TM1 are responsible for both TM1 dimerisation and maintenance of steady-state signal output. Overall, our results suggest that no major rearrangement of the TM1-TM1' interface occurs during transmembrane communication in response to extracellular osmolarity. We conclude by discussing these results within the frameworks of several proposed models for transmembrane communication.
Collapse
Affiliation(s)
- Annika Heininger
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, D-60438 Frankfurt, Germany.
| | - Rahmi Yusuf
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, England, UK.
| | - Robert J Lawrence
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, England, UK.
| | - Roger R Draheim
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, England, UK; Institute of Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth PO1 2DT, England, UK.
| |
Collapse
|
16
|
Single-cell E. coli response to an instantaneously applied chemotactic signal. Biophys J 2015; 107:730-739. [PMID: 25099812 DOI: 10.1016/j.bpj.2014.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/27/2014] [Accepted: 06/10/2014] [Indexed: 01/31/2023] Open
Abstract
In response to an attractant or repellant, an Escherichia coli cell controls the rotational direction of its flagellar motor by a chemotaxis system. When an E. coli cell senses an attractant, a reduction in the intracellular concentration of a chemotaxis protein, phosphorylated CheY (CheY-P), induces counterclockwise (CCW) rotation of the flagellar motor, and this cellular response is thought to occur in several hundred milliseconds. Here, to measure the signaling process occurring inside a single E. coli cell, including the recognition of an attractant by a receptor cluster, the inactivation of histidine kinase CheA, and the diffusion of CheY and CheY-P molecules, we applied a serine stimulus by instantaneous photorelease from a caged compound and examined the cellular response at a temporal resolution of several hundred microseconds. We quantified the clockwise (CW) and CCW durations immediately after the photorelease of serine as the response time and the duration of the response, respectively. The results showed that the response time depended on the distance between the receptor and motor, indicating that the decreased CheY-P concentration induced by serine propagates through the cytoplasm from the receptor-kinase cluster toward the motor with a timing that is explained by the diffusion of CheY and CheY-P molecules. The response time included 240 ms for enzymatic reactions in addition to the time required for diffusion of the signaling molecule. The measured response time and duration of the response also revealed that the E. coli cell senses a similar serine concentration regardless of whether the serine concentration is increasing or decreasing. These detailed quantitative findings increase our understanding of the signal transduction process that occurs inside cells during bacterial chemotaxis.
Collapse
|
17
|
Lertsethtakarn P, Howitt MR, Castellon J, Amieva MR, Ottemann KM. Helicobacter pylori CheZ(HP) and ChePep form a novel chemotaxis-regulatory complex distinct from the core chemotaxis signaling proteins and the flagellar motor. Mol Microbiol 2015; 97:1063-78. [PMID: 26061894 DOI: 10.1111/mmi.13086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 12/20/2022]
Abstract
Chemotaxis is important for Helicobacter pylori to colonize the stomach. Like other bacteria, H. pylori uses chemoreceptors and conserved chemotaxis proteins to phosphorylate the flagellar rotational response regulator, CheY, and modulate the flagellar rotational direction. Phosphorylated CheY is returned to its non-phosphorylated state by phosphatases such as CheZ. In previously studied cases, chemotaxis phosphatases localize to the cellular poles by interactions with either the CheA chemotaxis kinase or flagellar motor proteins. We report here that the H. pylori CheZ, CheZ(HP), localizes to the poles independently of the flagellar motor, CheA, and all typical chemotaxis proteins. Instead, CheZ(HP) localization depends on the chemotaxis regulatory protein ChePep, and reciprocally, ChePep requires CheZ(HP) for its polar localization. We furthermore show that these proteins interact directly. Functional domain mapping of CheZ(HP) determined the polar localization motif lies within the central domain of the protein and that the protein has regions outside of the active site that participate in chemotaxis. Our results suggest that CheZ(HP) and ChePep form a distinct complex. These results therefore suggest the intriguing idea that some phosphatases localize independently of the other chemotaxis and motility proteins, possibly to confer unique regulation on these proteins' activities.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Michael R Howitt
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juan Castellon
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Karen M Ottemann
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95064, USA
| |
Collapse
|
18
|
Yang Y, M Pollard A, Höfler C, Poschet G, Wirtz M, Hell R, Sourjik V. Relation between chemotaxis and consumption of amino acids in bacteria. Mol Microbiol 2015; 96:1272-82. [PMID: 25807888 PMCID: PMC5008178 DOI: 10.1111/mmi.13006] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2015] [Indexed: 11/28/2022]
Abstract
Chemotaxis enables bacteria to navigate chemical gradients in their environment, accumulating toward high concentrations of attractants and avoiding high concentrations of repellents. Although finding nutrients is likely to be an important function of bacterial chemotaxis, not all characterized attractants are nutrients. Moreover, even for potential nutrients, the exact relation between the metabolic value of chemicals and their efficiency as chemoattractants has not been systematically explored. Here we compare the chemotactic response of amino acids with their use by bacteria for two well‐established models of chemotactic behavior, Escherichia coli and Bacillus subtilis. We demonstrate that in E. coli chemotaxis toward amino acids indeed strongly correlates with their utilization. However, no such correlation is observed for B. subtilis, suggesting that in this case, the amino acids are not followed because of their nutritional value but rather as environmental cues.
Collapse
Affiliation(s)
- Yiling Yang
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Abiola M Pollard
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carolin Höfler
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Markus Wirtz
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology & LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.,Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
19
|
Nørholm MHH, von Heijne G, Draheim RR. Forcing the issue: aromatic tuning facilitates stimulus-independent modulation of a two-component signaling circuit. ACS Synth Biol 2015; 4:474-81. [PMID: 25162177 PMCID: PMC4410910 DOI: 10.1021/sb500261t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-component signaling circuits allow bacteria to detect and respond to external stimuli. Unfortunately, the input stimulus remains unidentified for the majority of these circuits. Therefore, development of a synthetic method for stimulus-independent modulation of these circuits is highly desirable because particular physiological or developmental processes could be controlled for biotechnological purposes without the need to identify the stimulus itself. Here, we demonstrate that aromatic tuning, i.e., repositioning the aromatic residues commonly found at the cytoplasmic end of the receptor (EnvZ) transmembrane domain, facilitates stimulus-independent modulation of signal output from the EnvZ/OmpR osmosensing circuit of Escherichia coli. We found that these osmosensing circuits retained the ability to respond appropriately to increased external osmolarity, suggesting that the tuned receptors were not locked in a single conformation. We also noted that circuits containing aromatically tuned variants became more sensitive to changes in the receptor concentration than their wild-type counterpart, suggesting a new way to study mechanisms underpinning receptor concentration-dependent robustness. We believe that aromatic tuning has several advantages compared to previous methods aimed at stimulus-independent modulation of receptors and that it will be generally applicable to a wide-range of two-component circuits.
Collapse
Affiliation(s)
- Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, DK-2970 Hørsholm, Denmark
| | - Gunnar von Heijne
- Department
of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius
väg 16C, SE-10691 Stockholm, Sweden
| | | |
Collapse
|
20
|
Frankel NW, Pontius W, Dufour YS, Long J, Hernandez-Nunez L, Emonet T. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 2014; 3. [PMID: 25279698 PMCID: PMC4210811 DOI: 10.7554/elife.03526] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/28/2014] [Indexed: 11/29/2022] Open
Abstract
Bacterial chemotaxis systems are as diverse as the environments that bacteria inhabit, but how much environmental variation can cells tolerate with a single system? Diversification of a single chemotaxis system could serve as an alternative, or even evolutionary stepping-stone, to switching between multiple systems. We hypothesized that mutations in gene regulation could lead to heritable control of chemotactic diversity. By simulating foraging and colonization of E. coli using a single-cell chemotaxis model, we found that different environments selected for different behaviors. The resulting trade-offs show that populations facing diverse environments would ideally diversify behaviors when time for navigation is limited. We show that advantageous diversity can arise from changes in the distribution of protein levels among individuals, which could occur through mutations in gene regulation. We propose experiments to test our prediction that chemotactic diversity in a clonal population could be a selectable trait that enables adaptation to environmental variability. DOI:http://dx.doi.org/10.7554/eLife.03526.001 Bacterial colonies are generally made up of genetically identical cells. Despite this, a closer look at the members of a bacterial colony shows that these cells can have very different behaviors. For example, some cells may grow more quickly than others, or be more resistant to antibiotics. The mechanisms driving this diversity are only beginning to be identified and understood. Escherichia coli bacteria can move towards, or away from, certain chemicals in their surrounding environment to help them navigate toward favorable conditions. This behavior is known as chemotaxis. The signals from all of these chemicals are processed in E. coli by just one set of proteins, which control the different behaviors that are needed for the bacteria to follow them. Different numbers of these proteins are found in different—but genetically identical—bacteria, and the number of proteins is linked to how the bacteria perform these behaviors. It has been suggested that diversity can be beneficial to the overall bacterial population, as it helps the population survive environmental changes. This suggests that the level of diversity in the population should adapt to the level of diversity in the environment. However, it remains unknown how this adaptation occurs. Frankel et al. developed and combined several models and simulations to investigate whether differences in chemotaxis protein production help an E. coli colony to survive. The models show that in different environments, it can be beneficial for the population as a whole if different cells have different responses to the chemicals present. For example, if a lot of a useful chemical is present, bacteria are more likely to survive by heading straight to the source. If not much chemical is detected, the bacteria may need to move in a more exploratory manner. Frankel et al. find that different amounts of chemotaxis proteins produce these different behaviors. To survive in a changing environment, it is therefore best for the E. coli colony to contain cells that have different amounts of these proteins. Frankel et al. propose that the variability of chemotaxis protein levels between genetically identical cells can change through mutations in the genes that control how many of the proteins are produced, and predict that such mutations allow populations to adapt to environmental changes. The environments simulated in the model were much simpler than would be found in the real world, and Frankel et al. describe experiments that are now being performed to confirm and expand on their results. The model could be used in the future to shed light on the behavior of other cells that are genetically identical but exhibit diverse behaviors, from other bacterial species to more complex cancer cells. DOI:http://dx.doi.org/10.7554/eLife.03526.002
Collapse
Affiliation(s)
- Nicholas W Frankel
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - William Pontius
- Department of Physics, Yale University, New Haven, United States
| | - Yann S Dufour
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Junjiajia Long
- Department of Physics, Yale University, New Haven, United States
| | | | - Thierry Emonet
- Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
21
|
Fukuoka H, Sagawa T, Inoue Y, Takahashi H, Ishijima A. Direct Imaging of Intracellular Signaling Components That Regulate Bacterial Chemotaxis. Sci Signal 2014; 7:ra32. [DOI: 10.1126/scisignal.2004963] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Ames P, Zhou Q, Parkinson JS. HAMP domain structural determinants for signalling and sensory adaptation in Tsr, the Escherichia coli serine chemoreceptor. Mol Microbiol 2013; 91:875-86. [PMID: 24205875 DOI: 10.1111/mmi.12443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2013] [Indexed: 11/30/2022]
Abstract
HAMP domains mediate input-output transactions in many bacterial signalling proteins. To clarify the mechanistic logic of HAMP signalling, we constructed Tsr-HAMP deletion derivatives and characterized their steady-state signal outputs and sensory adaptation properties with flagellar rotation and receptor methylation assays. Tsr molecules lacking the entire HAMP domain or just the HAMP-AS2 helix generated clockwise output signals, confirming that kinase activation is the default output state of the chemoreceptor signalling domain and that attractant stimuli shift HAMP to an overriding kinase-off signalling state to elicit counter-clockwise flagellar responses. Receptors with deletions of the AS1 helices, which free the AS2 helices from bundle-packing constraints, exhibited kinase-off signalling behaviour that depended on three C-terminal hydrophobic residues of AS2. We conclude that AS2/AS2' packing interactions alone can play an important role in controlling output kinase activity. Neither kinase-on nor kinase-off HAMP deletion outputs responded to sensory adaptation control, implying that out-of-range conformations or bundle-packing stabilities of their methylation helices prevent substrate recognition by the adaptation enzymes. These observations support the previously proposed biphasic, dynamic-bundle mechanism of HAMP signalling and additionally show that the structural interplay of helix-packing interactions between HAMP and the adjoining methylation helices is critical for sensory adaptation control of receptor output.
Collapse
Affiliation(s)
- Peter Ames
- Biology Department, University of Utah, Salt Lake City, UT, 84112, USA
| | | | | |
Collapse
|
23
|
Briegel A, Ames P, Gumbart JC, Oikonomou CM, Parkinson JS, Jensen GJ. The mobility of two kinase domains in the Escherichia coli chemoreceptor array varies with signalling state. Mol Microbiol 2013; 89:831-41. [PMID: 23802570 DOI: 10.1111/mmi.12309] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2013] [Indexed: 11/30/2022]
Abstract
Motile bacteria sense their physical and chemical environment through highly cooperative, ordered arrays of chemoreceptors. These signalling complexes phosphorylate a response regulator which in turn governs flagellar motor reversals, driving cells towards favourable environments. The structural changes that translate chemoeffector binding into the appropriate kinase output are not known. Here, we apply high-resolution electron cryotomography to visualize mutant chemoreceptor signalling arrays in well-defined kinase activity states. The arrays were well ordered in all signalling states, with no discernible differences in receptor conformation at 2-3 nm resolution. Differences were observed, however, in a keel-like density that we identify here as CheA kinase domains P1 and P2, the phosphorylation site domain and the binding domain for response regulator target proteins. Mutant receptor arrays with high kinase activities all exhibited small keels and high proteolysis susceptibility, indicative of mobile P1 and P2 domains. In contrast, arrays in kinase-off signalling states exhibited a range of keel sizes. These findings confirm that chemoreceptor arrays do not undergo large structural changes during signalling, and suggest instead that kinase activity is modulated at least in part by changes in the mobility of key domains.
Collapse
Affiliation(s)
- Ariane Briegel
- California Institute of Technology, 1200 E. California Blvd, Pasadena, CA, 91125, USA
| | | | | | | | | | | |
Collapse
|
24
|
Role of energy sensor TlpD of Helicobacter pylori in gerbil colonization and genome analyses after adaptation in the gerbil. Infect Immun 2013; 81:3534-51. [PMID: 23836820 DOI: 10.1128/iai.00750-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori maintains colonization in its human host using a limited set of taxis sensors. TlpD is a proposed energy taxis sensor of H. pylori and dominant under environmental conditions of low bacterial energy yield. We studied the impact of H. pylori TlpD on colonization in vivo using a gerbil infection model which closely mimics the gastric physiology of humans. A gerbil-adapted H. pylori strain, HP87 P7, showed energy-dependent behavior, while its isogenic tlpD mutant lost it. A TlpD-complemented strain regained the wild-type phenotype. Infection of gerbils with the complemented strain demonstrated that TlpD is important for persistent infection in the antrum and corpus and suggested a role of TlpD in horizontal navigation and persistent corpus colonization. As a part of the full characterization of the model and to gain insight into the genetic basis of H. pylori adaptation to the gerbil, we determined the complete genome sequences of the gerbil-adapted strain HP87 P7, two HP87 P7 tlpD mutants before and after gerbil passage, and the original human isolate, HP87. The integrity of the genome, including that of a functional cag pathogenicity island, was maintained after gerbil adaptation. Genetic and phenotypic differences between the strains were observed. Major differences between the gerbil-adapted strain and the human isolate emerged, including evidence of recent recombination. Passage of the tlpD mutant through the gerbil selected for gain-of-function variation in a fucosyltransferase gene, futC (HP0093). In conclusion, a gerbil-adapted H. pylori strain with a stable genome has helped to establish that TlpD has important functions for persistent colonization in the stomach.
Collapse
|
25
|
Othmer HG, Xin X, Xue C. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation. Int J Mol Sci 2013; 14:9205-48. [PMID: 23624608 PMCID: PMC3676780 DOI: 10.3390/ijms14059205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 03/22/2013] [Indexed: 11/16/2022] Open
Abstract
The machinery for transduction of chemotactic stimuli in the bacterium E. coli is one of the most completely characterized signal transduction systems, and because of its relative simplicity, quantitative analysis of this system is possible. Here we discuss models which reproduce many of the important behaviors of the system. The important characteristics of the signal transduction system are excitation and adaptation, and the latter implies that the transduction system can function as a "derivative sensor" with respect to the ligand concentration in that the DC component of a signal is ultimately ignored if it is not too large. This temporal sensing mechanism provides the bacterium with a memory of its passage through spatially- or temporally-varying signal fields, and adaptation is essential for successful chemotaxis. We also discuss some of the spatial patterns observed in populations and indicate how cell-level behavior can be embedded in population-level descriptions.
Collapse
Affiliation(s)
- Hans G. Othmer
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +612-624-8325; Fax: +612-626-2017
| | - Xiangrong Xin
- School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA; E-Mail:
| | - Chuan Xue
- Department of Mathematics, Ohio State University, Columbus, OH 43210, USA; E-Mail:
| |
Collapse
|
26
|
Frank V, Vaknin A. Prolonged stimuli alter the bacterial chemosensory clusters. Mol Microbiol 2013; 88:634-44. [PMID: 23551504 DOI: 10.1111/mmi.12215] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2013] [Indexed: 11/27/2022]
Abstract
The clustering of membrane-bound receptors plays an essential role in various biological systems. A notable model system for studying this phenomenon is the bacterial chemosensory cluster that allows motile bacteria to navigate along chemical gradients in their environment. While the basic structure of these chemosensory clusters is becoming clear, their dynamic nature and operation are not yet understood. By measuring the fluorescence polarization of tagged receptor clusters in live Escherichia coli cells, we provide evidence for stimulus-induced dynamics in these sensory clusters. We find that when a stimulus is applied, the packing of the receptors slowly decreases and that the process reverses when the stimulus is removed. Consistent with these physical changes we find that the effective cooperativity of the kinase response slowly evolves in the presence of a stimulus. Time-lapse fluorescence imaging indicates that, despite these changes, the receptor clusters do not generally dissociate upon ligand binding. These data reveal stimulus-dependent plasticity in chemoreceptor clusters.
Collapse
Affiliation(s)
- Vered Frank
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | | |
Collapse
|
27
|
Adase CA, Draheim RR, Rueda G, Desai R, Manson MD. Residues at the cytoplasmic end of transmembrane helix 2 determine the signal output of the TarEc chemoreceptor. Biochemistry 2013; 52:2729-38. [PMID: 23495653 DOI: 10.1021/bi4002002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Baseline signal output and communication between the periplasmic and cytoplasmic domains of the Escherichia coli aspartate chemoreceptor Tar(Ec) are both strongly influenced by residues at the C-terminus of transmembrane helix 2 (TM2). In particular, the cytoplasmic aromatic anchor, composed of residues Trp-209 and Tyr-210 in wild-type Tar(Ec), is important for determining the CheA kinase-stimulating activity of the receptor and its ability to respond to chemoeffector-induced stimuli. Here, we have studied the effect on Tar(Ec) function of the six-residue sequence at positions 207-212. Moving various combinations of aromatic residues among these positions generates substantial changes in receptor activity. Trp has the largest effect on function, both in maintaining normal activity and in altering activity when it is moved. Tyr has a weaker effect, and Phe has the weakest; however, all three aromatic residues can alter signal output when they are placed in novel positions. We also find that Gly-211 plays an important role in receptor function, perhaps because of the flexibility it introduces into the TM2-HAMP domain connector. The conservation of this Gly residue in the high-abundance chemoreceptors of E. coli and Salmonella enterica suggests that it may be important for the nuanced, bidirectional transmembrane signaling that occurs in these proteins.
Collapse
|
28
|
Herrera Seitz MK, Soto D, Studdert CA. A chemoreceptor from Pseudomonas putida forms active signalling complexes in Escherichia coli. Microbiology (Reading) 2012; 158:2283-2292. [DOI: 10.1099/mic.0.059899-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- M. Karina Herrera Seitz
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Débora Soto
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | - Claudia A. Studdert
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
29
|
Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells. Proc Natl Acad Sci U S A 2012; 109:E1481-8. [PMID: 22556268 DOI: 10.1073/pnas.1200781109] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemoreceptors of Escherichia coli localize to the cell poles and form a highly ordered array in concert with the CheA kinase and the CheW coupling factor. However, a high-resolution structure of the array has been lacking, and the molecular basis of array assembly has thus remained elusive. Here, we use cryoelectron tomography of flagellated E. coli minicells to derive a 3D map of the intact array. Docking of high-resolution structures into the 3D map provides a model of the core signaling complex, in which a CheA/CheW dimer bridges two adjacent receptor trimers via multiple hydrophobic interactions. A further, hitherto unknown, hydrophobic interaction between CheW and the homologous P5 domain of CheA in an adjacent core complex connects the complexes into an extended array. This architecture provides a structural basis for array formation and could explain the high sensitivity and cooperativity of chemotaxis signaling in E. coli.
Collapse
|
30
|
Guillon L, El Mecherki M, Altenburger S, Graumann PL, Schalk IJ. High cellular organization of pyoverdine biosynthesis in Pseudomonas aeruginosa: clustering of PvdA at the old cell pole. Environ Microbiol 2012; 14:1982-94. [PMID: 22498339 DOI: 10.1111/j.1462-2920.2012.02741.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pyoverdine I (PVDI) is the major siderophore produced by Pseudomonas aeruginosa PAO1 to import iron. Its biosynthesis requires the coordinated action of cytoplasmic, periplasmic and membrane proteins. The individual enzymatic activities of these proteins are well known. However, their subcellular distribution in particular areas of the cytoplasm, periplasm, or within the membrane has never been investigated. We used chromosomal replacement to generate P.aeruginosa strains producing fluorescent fusions with PvdA, one of the initial enzymes in the biosynthetic pathway of PVDI in the cytoplasm, and PvdQ, involved in the maturation of PVDI in the periplasm. Cellular fractionation indicated that a substantial amount of PvdA-YFP was located in the membrane fraction. Epifluorescence microscopy imaging showed that PvdA-YFP was mainly clustered at the old cell pole of bacteria, indicating a polar segregation of the protein. Epifluorescence and TIRF imaging on cells expressing labelled PvdQ showed that this enzyme was uniformly distributed in the periplasm, in contrast with PvdA-YFP. The description of the intracellular distribution of these enzymes contributes to the understanding of the PVDI biosynthetic pathway.
Collapse
Affiliation(s)
- Laurent Guillon
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, F-67413 Illkirch, Strasbourg, France
| | | | | | | | | |
Collapse
|
31
|
Fukuoka H, Inoue Y, Ishijima A. Coordinated regulation of multiple flagellar motors by the Escherichia coli chemotaxis system. Biophysics (Nagoya-shi) 2012; 8:59-66. [PMID: 27857608 PMCID: PMC5070452 DOI: 10.2142/biophysics.8.59] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/29/2012] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli cells swim toward a favorable environment by chemotaxis. The chemotaxis system regulates the swimming behavior of the bacteria by controlling the rotational direction of their flagellar motors. Extracellular stimuli sensed by chemoreceptors are transduced to an intracellular signal molecule, phosphorylated CheY (CheY-P), that switches the rotational direction of the flagellar motors from counterclockwise (CCW) to clockwise (CW) or from CW to CCW. Many studies have focused on identifying the proteins involved in the chemotaxis system, and findings on the structures and intracellular localizations of these proteins have largely elucidated the molecular pathway. On the other hand, quantitative evaluations of the chemotaxis system, including the process of intracellular signaling by the propagation of CheY-P and the rotational switching of flagellar motor by binding of CheY-P molecules, are still uncertain. For instance, scientific consensus has held that the flagellar motors of an E. coli cell switch rotational direction asynchronously. However, recent work shows that the rotational switching of any two different motors on a single E. coli cell is highly coordinated; a sub-second switching delay between motors is clearly correlated with the relative distance of each motor from the chemoreceptor patch located at one pole of the cell. In this review of previous studies and our recent findings, we discuss the regulatory mechanism of the multiple flagellar motors on an individual E. coli cell and the intracellular signaling process that can be inferred from this coordinated switching.
Collapse
Affiliation(s)
- Hajime Fukuoka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Yuichi Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Akihiko Ishijima
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
32
|
Adase CA, Draheim RR, Manson MD. The residue composition of the aromatic anchor of the second transmembrane helix determines the signaling properties of the aspartate/maltose chemoreceptor Tar of Escherichia coli. Biochemistry 2012; 51:1925-32. [PMID: 22339259 DOI: 10.1021/bi201555x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Repositioning of the tandem aromatic residues (Trp-209 and Tyr-210) at the cytoplasmic end of the second transmembrane helix (TM2) modulates the signal output of the aspartate/maltose chemoreceptor of Escherichia coli (Tar(Ec)). Here, we directly assessed the effect of the residue composition of the aromatic anchor by studying the function of a library of Tar(Ec) variants that possess all possible combinations of Ala, Phe, Tyr, and Trp at positions 209 and 210. We identified three important properties of the aromatic anchor. First, a Trp residue at position 209 was required to maintain clockwise (CW) signal output in the absence of adaptive methylation, but adaptive methylation restored the ability of all of the mutant receptors to generate CW rotation. Second, when the aromatic anchor was replaced with tandem Ala residues, signaling was less compromised than when an Ala residue occupied position 209 and an aromatic residue occupied position 210. Finally, when Trp was present at position 209, the identity of the residue at position 210 had little effect on baseline signal output or aspartate chemotaxis, although maltose taxis was significantly affected by some substitutions at position 210. All of the mutant receptors we constructed supported some level of aspartate and maltose taxis in semisolid agar swim plates, but those without Trp at position 209 were overmethylated in their baseline signaling state. These results show the importance of the cytoplasmic aromatic anchor of TM2 in maintaining the baseline Tar(Ec) signal output and responsiveness to attractant signaling.
Collapse
Affiliation(s)
- Christopher A Adase
- Department of Biology, Texas A&M University, College Station, Texas 77843, United States
| | | | | |
Collapse
|
33
|
Schulmeister S, Grosse K, Sourjik V. Effects of receptor modification and temperature on dynamics of sensory complexes in Escherichia coli chemotaxis. BMC Microbiol 2011; 11:222. [PMID: 21978288 PMCID: PMC3203854 DOI: 10.1186/1471-2180-11-222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extracellular stimuli in chemotaxis of Escherichia coli and other bacteria are processed by large clusters of sensory complexes. The stable core of these clusters is formed by transmembrane receptors, a kinase CheA, and an adaptor CheW, whereas adaptation enzymes CheR and CheB dynamically associate with the clusters via interactions with receptors and/or CheA. Several biochemical studies have indicated the dependence of the sensory complex stability on the adaptive modification state of receptors and/or on temperature, which may potentially allow environment-dependent tuning of its signalling properties. However, the extent of such regulation in vivo and its significance for chemotaxis remained unclear. RESULTS Here we used fluorescence recovery after photobleaching (FRAP) to confirm in vivo that the exchange of CheA and CheW shows a modest dependency on the level of receptor modification/activity. An even more dramatic effect was observed for the exchange kinetics of CheR and CheB, indicating that their association with clusters may depend on the ability to bind substrate sites on receptors and on the regulatory phosphorylation of CheB. In contrast, environmental temperature did not have a discernible effect on stability of the cluster core. Strain-specific loss of E. coli chemotaxis at high temperature could instead be explained by a heat-induced reduction in the chemotaxis protein levels. Nevertheless, high basal levels of chemotaxis and flagellar proteins in common wild type strains MG1655 and W3110 enabled these strains to maintain their chemotactic ability up to 42°C. CONCLUSIONS Our results confirmed that clusters formed by less modified receptors are more dynamic, which can explain the previously observed adjustment of the chemotaxis response sensitivity according to the level of background stimulation. We further propose that the dependency of CheR exchange on the availability of unmethylated sites on receptors is important to improve the overall chemotaxis efficiency by suppressing molecular noise under conditions of high ligand concentrations. Moreover, the observed stability of the cluster core at high temperature is in line with the overall thermal robustness of the chemotaxis pathway and allows maintenance of chemotaxis up to 42°C in the common wild type strains of E. coli.
Collapse
Affiliation(s)
- Sonja Schulmeister
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Mutational analysis of N381, a key trimer contact residue in Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 2011; 193:6452-60. [PMID: 21965562 DOI: 10.1128/jb.05887-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemoreceptors such as Tsr, the serine receptor, function in trimer-of-dimer associations to mediate chemotactic behavior in Escherichia coli. The two subunits of each receptor homodimer occupy different positions in the trimer, one at its central axis and the other at the trimer periphery. Residue N381 of Tsr contributes to trimer stability through interactions with its counterparts in a central cavity surrounded by hydrophobic residues at the trimer axis. To assess the functional role of N381, we created and characterized a full set of amino acid replacements at this Tsr residue. We found that every amino acid replacement at N381 destroyed Tsr function, and all but one (N381G) of the mutant receptors also blocked signaling by Tar, the aspartate chemoreceptor. Tar jamming reflects the formation of signaling-defective mixed trimers of dimers, and in vivo assays with a trifunctional cross-linking reagent demonstrated trimer-based interactions between Tar and Tsr-N381 mutants. Mutant Tsr molecules with a charged amino acid or proline replacement exhibited the most severe trimer formation defects. These trimer-defective receptors, as well as most of the trimer-competent mutant receptors, were unable to form ternary signaling complexes with the CheA kinase and with CheW, which couples CheA to receptor control. Some of the trimer-competent mutant receptors, particularly those with a hydrophobic amino acid replacement, may not bind CheW/CheA because they form conformationally frozen or distorted trimers. These findings indicate that trimer dynamics probably are important for ternary complex assembly and that N381 may not be a direct binding determinant for CheW/CheA at the trimer periphery.
Collapse
|
35
|
Mutational analysis of the control cable that mediates transmembrane signaling in the Escherichia coli serine chemoreceptor. J Bacteriol 2011; 193:5062-72. [PMID: 21803986 DOI: 10.1128/jb.05683-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During transmembrane signaling by Escherichia coli Tsr, changes in ligand occupancy in the periplasmic serine-binding domain promote asymmetric motions in a four-helix transmembrane bundle. Piston displacements of the signaling TM2 helix in turn modulate the HAMP bundle on the cytoplasmic side of the membrane to control receptor output signals to the flagellar motors. A five-residue control cable joins TM2 to the HAMP AS1 helix and mediates conformational interactions between them. To explore control cable structural features important for signal transmission, we constructed and characterized all possible single amino acid replacements at the Tsr control cable residues. Only a few lesions abolished Tsr function, indicating that the chemical nature and size of the control cable side chains are not individually critical for signal control. Charged replacements at I214 mimicked the signaling consequences of attractant or repellent stimuli, most likely through aberrant structural interactions of the mutant side chains with the membrane interfacial environment. Prolines at residues 214 to 217 also caused signaling defects, suggesting that the control cable has helical character. However, proline did not disrupt function at G213, the first control cable residue, which might serve as a structural transition between the TM2 and AS1 helix registers. Hydrophobic amino acids at S217, the last control cable residue, produced attractant-mimic effects, most likely by contributing to packing interactions within the HAMP bundle. These results suggest a helix extension mechanism of Tsr transmembrane signaling in which TM2 piston motions influence HAMP stability by modulating the helicity of the control cable segment.
Collapse
|
36
|
Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site. J Bacteriol 2011; 193:4709-18. [PMID: 21764922 DOI: 10.1128/jb.00070-11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.
Collapse
|
37
|
Frank V, Koler M, Furst S, Vaknin A. The physical and functional thermal sensitivity of bacterial chemoreceptors. J Mol Biol 2011; 411:554-66. [PMID: 21718703 DOI: 10.1016/j.jmb.2011.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/29/2011] [Accepted: 06/03/2011] [Indexed: 10/18/2022]
Abstract
The bacterium Escherichia coli exhibits chemotactic behavior at temperatures ranging from approximately 20 °C to at least 42 °C. This behavior is controlled by clusters of transmembrane chemoreceptors made from trimers of dimers that are linked together by cross-binding to cytoplasmic components. By detecting fluorescence energy transfer between various components of this system, we studied the underlying molecular behavior of these receptors in vivo and throughout their operating temperature range. We reveal a sharp modulation in the conformation of unclustered and clustered receptor trimers and, consequently, in kinase activity output. These modulations occurred at a characteristic temperature that depended on clustering and were lower for receptors at lower adaptational states. However, in the presence of dynamic adaptation, the response of kinase activity to a stimulus was sustained up to 45 °C, but sensitivity notably decreased. Thus, this molecular system exhibits a clear thermal sensitivity that emerges at the level of receptor trimers, but both receptor clustering and adaptation support the overall robust operation of the system at elevated temperatures.
Collapse
Affiliation(s)
- Vered Frank
- The Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
38
|
Abstract
The chemoreceptor-CheA kinase-CheW coupling protein complex, with ancillary associated proteins, is at the heart of chemotactic signal transduction in bacteria. The goal of this work was to determine the cellular stoichiometry of the chemotaxis signaling proteins in Bacillus subtilis. Quantitative immunoblotting was used to determine the total number of chemotaxis proteins in a single cell of B. subtilis. Significantly higher levels of chemoreceptors and much lower levels of CheA kinase were measured in B. subtilis than in Escherichia coli. The resulting cellular ratio of chemoreceptor dimers per CheA dimer in B. subtilis is roughly 23.0 ± 4.5 compared to 3.4 ± 0.8 receptor dimers per CheA dimer observed in E. coli, but the ratios of the coupling protein CheW to the CheA dimer are nearly identical in the two organisms. The ratios of CheB to CheR in B. subtilis are also very similar, although the overall levels of modification enzymes are higher. When the potential binding partners of CheD are deleted, the levels of CheD drop significantly. This finding suggests that B. subtilis selectively degrades excess chemotaxis proteins to maintain optimum ratios. Finally, the two cytoplasmic receptors were observed to localize among the other receptors at the cell poles and appear to participate in the chemoreceptor complex. These results suggest that there are many novel features of B. subtilis chemotaxis compared with the mechanism in E. coli, but they are built on a common core.
Collapse
|
39
|
Zhou Q, Ames P, Parkinson JS. Biphasic control logic of HAMP domain signalling in the Escherichia coli serine chemoreceptor. Mol Microbiol 2011; 80:596-611. [PMID: 21306449 DOI: 10.1111/j.1365-2958.2011.07577.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HAMP domains mediate input-output communication in many bacterial signalling proteins. To explore the dynamic bundle model of HAMP signalling (Zhou et al., Mol. Microbiol. 73: 801, 2009), we characterized the signal outputs of 118 HAMP missense mutants of the serine chemoreceptor, Tsr, by flagellar rotation patterns. Receptors with proline or charged amino acid replacements at critical hydrophobic packing residues in the AS1 and AS2 HAMP helices had locked kinase-off outputs, indicating that drastic destabilization of the Tsr-HAMP bundle prevents kinase activation, both in the absence and presence of the sensory adaptation enzymes, CheB and CheR. Attractant-mimic lesions that enhance the structural stability of the HAMP bundle also suppressed kinase activity, demonstrating that Tsr-HAMP has two kinase-off output states at opposite extremes of its stability range. HAMP mutants with locked-on kinase outputs appeared to have intermediate bundle stabilities, implying a biphasic relationship between HAMP stability and kinase activity. Some Tsr-HAMP mutant receptors exhibited reversed output responses to CheB and CheR action that are readily explained by a biphasic control logic. The findings of this study provide strong support for a three-state dynamic bundle model of HAMP signalling in Tsr, and possibly in other bacterial transducers as well.
Collapse
Affiliation(s)
- Qin Zhou
- Biology Department, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
40
|
Kentner D, Sourjik V. Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annu Rev Microbiol 2010; 64:373-90. [DOI: 10.1146/annurev.micro.112408.134205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Kentner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
41
|
Spatial organization in bacterial chemotaxis. EMBO J 2010; 29:2724-33. [PMID: 20717142 DOI: 10.1038/emboj.2010.178] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/07/2010] [Indexed: 11/09/2022] Open
Abstract
Spatial organization of signalling is not an exclusive property of eukaryotic cells. Despite the fact that bacterial signalling pathways are generally simpler than those in eukaryotes, there are several well-documented examples of higher-order intracellular signalling structures in bacteria. One of the most prominent and best-characterized structures is formed by proteins that control bacterial chemotaxis. Signals in chemotaxis are processed by ordered arrays, or clusters, of receptors and associated proteins, which amplify and integrate chemotactic stimuli in a highly cooperative manner. Receptor clusters further serve to scaffold protein interactions, enhancing the efficiency and specificity of the pathway reactions and preventing the formation of signalling gradients through the cell body. Moreover, clustering can also ensure spatial separation of multiple chemotaxis systems in one bacterium. Assembly of receptor clusters appears to be a stochastic process, but bacteria evolved mechanisms to ensure optimal cluster distribution along the cell body for partitioning to daughter cells at division.
Collapse
|
42
|
Mutational analysis of the transmembrane helix 2-HAMP domain connection in the Escherichia coli aspartate chemoreceptor tar. J Bacteriol 2010; 193:82-90. [PMID: 20870768 DOI: 10.1128/jb.00953-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmembrane helix 2 (TM2) of the Tar chemoreceptor undergoes an inward piston-like displacement of 1 to 3 Å upon binding aspartate. This signal is transmitted to the kinase-control module via the HAMP domain. Within Tar, the HAMP domain forms a parallel four-helix bundle consisting of a dimer of two amphipathic helices connected by a flexible linker. In the nuclear magnetic resonance structure of an archaeal HAMP domain, residues corresponding to the MLLT sequence between Arg-214 at the end of TM2 and Pro-219 of Tar are an N-terminal helical extension of AS1. We modified this region to test whether it behaves as a continuous helical connection between TM2 and HAMP. First, one to four Gly residues were inserted between Thr-218 and Pro-219. Second, the MLLT sequence was replaced with one to nine Gly residues. Third, the sequence was shortened or extended with residues compatible with helix formation. Cells expressing receptors in which the MLLT sequence was shortened to MLL or in which the MLLT sequence was replaced by four Gly residues performed good aspartate chemotaxis. Other mutant receptors supported diminished aspartate taxis. Most mutant receptors had biased signal outputs and/or abnormal patterns of adaptive methylation. We interpret these results to indicate that a strong, permanent helical connection between TM2 and the HAMP domain is not necessary for normal transmembrane signaling.
Collapse
|
43
|
Abstract
Aspartyl-phosphate phosphatases underlie the rapid responses of bacterial chemotaxis. One such phosphatase, CheZ, was originally proposed to be restricted to beta and gamma proteobacter, suggesting only a small subset of microbes relied on this protein. A putative CheZ phosphatase was identified genetically in the epsilon proteobacter Helicobacter pylori (Mol Micro 61:187). H. pylori utilizes a chemotaxis system consisting of CheAY, three CheVs, CheW, CheY(HP) and the putative CheZ to colonize the host stomach. Here we investigate whether this CheZ has phosphatase activity. We phosphorylated potential targets in vitro using either a phosphodonor or the CheAY kinase and [gamma-(32)P]-ATP, and found that H. pylori CheZ (CheZ(HP)) efficiently dephosphorylates CheY(HP) and CheAY and has additional weak activity on CheV2. We detected no phosphatase activity towards CheV1 or CheV3. Mutations corresponding to Escherichia coli CheZ active site residues or deletion of the C-terminal region inactivate CheZ(HP) phosphatase activity, suggesting the two CheZs function similarly. Bioinformatics analysis suggests that CheZ phosphatases are found in all proteobacteria classes, as well as classes Aquificae, Deferribacteres, Nitrospira and Sphingobacteria, demonstrating that CheZ phosphatases are broadly distributed within Gram-negative bacteria.
Collapse
Affiliation(s)
- Paphavee Lertsethtakarn
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
44
|
Yu YD, Choi Y, Teo YY, Dalby AR. Developing stochastic models for spatial inference: bacterial chemotaxis. PLoS One 2010; 5:e10464. [PMID: 20498704 PMCID: PMC2869353 DOI: 10.1371/journal.pone.0010464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 04/05/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Biological systems are inherently inhomogeneous and spatial effects play a significant role in processes such as pattern formation. At the cellular level proteins are often localised either through static attachment or via a dynamic equilibrium. As well as spatial heterogeneity many cellular processes exhibit stochastic fluctuations and so to make inferences about the location of molecules there is a need for spatial stochastic models. A test case for spatial models has been bacterial chemotaxis which has been studied extensively as a model of signal transduction. RESULTS By creating specific models of a cellular system that incorporate the spatial distributions of molecules we have shown how the fit between simulated and experimental data can be used to make inferences about localisation, in the case of bacterial chemotaxis. This method allows the robust comparison of different spatial models through alternative model parameterisations. CONCLUSIONS By using detailed statistical analysis we can reliably infer the parameters for the spatial models, and also to evaluate alternative models. The statistical methods employed in this case are particularly powerful as they reduce the need for a large number of simulation replicates. The technique is also particularly useful when only limited molecular level data is available or where molecular data is not quantitative.
Collapse
Affiliation(s)
- Yoon-Dong Yu
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Yoonjoo Choi
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Yik-Ying Teo
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew R. Dalby
- Department of Statistics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
45
|
Silversmith RE. Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol 2010; 13:177-83. [PMID: 20133180 DOI: 10.1016/j.mib.2010.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/05/2010] [Accepted: 01/07/2010] [Indexed: 11/18/2022]
Abstract
Signal termination in two-component systems occurs by loss of the phosphoryl group from the response regulator protein. This review explores our current understanding of the structures, catalytic mechanisms and means of regulation of the known families of phosphatases that catalyze response regulator dephosphorylation. The CheZ and CheC/CheX/FliY families, despite different overall structures, employ identical catalytic strategies using an amide side chain to orient a water molecule for in-line attack of the aspartyl phosphate. Spo0E phosphatases contain sequence and structural features that suggest a strategy similar to the chemotaxis phosphatases but the mechanism used by the Rap phosphatases is not yet elucidated. Identification of features shared by phosphatase families may aid in the identification of currently unrecognized classes of response regulator phosphatases.
Collapse
Affiliation(s)
- Ruth E Silversmith
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA.
| |
Collapse
|
46
|
Introducing simulated cellular architecture to the quantitative analysis of fluorescent microscopy. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 100:25-32. [PMID: 19628003 DOI: 10.1016/j.pbiomolbio.2009.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biological cells are complex and highly dynamic: many macromolecules are organized in loose assemblies, clusters or highly structured complexes, others exist most of the time as freely diffusing monomers. They move between regions and compartments through diffusion and enzyme-mediated transport, within a heavily crowded cytoplasm. To make sense of this complexity, computational models, and, in turn, quantitative in vivo data are needed. An array of fluorescent microscopy methods is available, but due to the inherent noise and complexity inside the cell, they are often hard to interpret. Using the example of fluorescence recovery after photobleaching (FRAP) and the bacterial chemotaxis system, we are here introducing detailed spatial simulations as a new approach in analysing such data.
Collapse
|
47
|
Abstract
Specific CheA-short (CheA(S)) residues, L123 and L126, were identified as critical for CheZ binding. In the CheA(S) 'P1-CheZ nuclear magnetic resonance structure, these residues form an interaction surface on alpha-helix E in the 'P1 domain. Both L123 and L126 are buried in CheA-long (CheA(L)), providing an explanation for why CheA(L) fails to bind CheZ.
Collapse
|
48
|
Abstract
CheZ localizes to chemoreceptor patches by binding CheA-short (CheA(S)). Residues 70 to 134 of CheZ, constituting the apical loops and part of the dimerization domain, suffice for localization. Replacements of Tyr-118, Ile-119, Leu-123, Arg-124, and Leu-126 of CheA interfere with localization. These residues are exposed in the 'P1 domain of CheA(S).
Collapse
|
49
|
Structural basis for the localization of the chemotaxis phosphatase CheZ by CheAS. J Bacteriol 2009; 191:5842-4. [PMID: 19502407 DOI: 10.1128/jb.00323-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CheA-short interacts with CheZ to localize CheZ to cell poles. The fifth helical region (residues 112 to 133) from the phosphotransfer domain of CheA interacts with CheZ and becomes ordered and helical, although it lacks a stable fold in the CheA fragment comprising residues 98 to 150 alone. One CheA molecule binds to one CheZ dimer.
Collapse
|
50
|
The Helicobacter pylori anti-sigma factor FlgM is predominantly cytoplasmic and cooperates with the flagellar basal body protein FlhA. J Bacteriol 2009; 191:4824-34. [PMID: 19465658 DOI: 10.1128/jb.00018-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori requires flagellar motility and orientation to persist actively in its habitat. A particular feature of flagella in most Helicobacter species including H. pylori is a membraneous flagellar sheath. The anti-sigma factor FlgM of H. pylori is unusual, since it lacks an N-terminal domain present in other FlgM homologs, e.g., FlgM of Salmonella spp., whose regulatory function is intimately coupled to its secretion through the flagellar type III secretion system. The aim of the present study was to characterize the localization and secretion of the short H. pylori FlgM in the presence of a flagellar sheath and to elucidate its interaction with other flagellar proteins, such as the basal body protein FlhA, which was previously shown to cooperate with FlgM for regulation. H. pylori FlgM was only released into the medium in minor amounts in wild-type bacteria, where the bulk amount of the protein was retained in the cytoplasm. Some FlgM was detected in the flagellar fraction. FlgM was expressed in flhA mutants and was less soluble and differentially localized in bacterial fractions of the flhA mutant in comparison to wild-type bacteria. FlgM-green fluorescent protein and FlgM-V5 translational fusions were generated and expressed in H. pylori. FlgM displayed a predominantly polar distribution and interacted with the C-terminal domain of FlhA (FlhA(C)). We suggest that, in H. pylori, FlgM secretion may not be paramount for its regulatory function and that protein interactions at the flagellar basal body may determine the turnover and localization of functional FlgM.
Collapse
|