1
|
Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G. Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2016; 2:39-48. [PMID: 29062960 PMCID: PMC5625738 DOI: 10.1016/j.synbio.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 11/26/2022] Open
Abstract
The usefulness of genetic/metabolic engineering for further improvement of industrial strains is subject of discussion because of the general lack of knowledge on genetic alterations introduced by iterative cycles of random mutagenesis in such strains. An industrial clavulanic acid (CA)-overproducer Streptomyces clavuligerus DEPA was assessed to understand proteome-wide changes that have occurred in a local industrial CA overproducer developed through succesive mutagenesis programs. The proteins that could be identified corresponded to 33 distinct ORFs for underrepresented ones and 60 ORFs for overrepresented ones. Three CA biosynthetic enzymes were overrepresented in S. clavuligerus DEPA; carboxyethylarginine synthase (Ceas2), clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-lactam-synthase (Bls2) whereas the enzymes of two other secondary metabolites were underrepresented along with two important global regulators [two-component system (TCS) response regulator (SCLAV_2102) and TetR-family transcriptional regulator (SCLAV_3146)] that might be related with CA production and/or differentiation. γ-butyrolactone biosynthetic protein AvaA2 was 2.6 fold underrepresented in S. clavuligerus DEPA. The levels of two glycolytic enzymes, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and phosophoglycerate kinase were found decreased while those of dihydrolipoyl dehydrogenase (E3) and isocitrate dehydrogenase, with two isoforms were found as significantly increased. A decrease of amino acid metabolism, methionine biosynthesis in particular, as well as S-adenosylmethionine synthetase appeared as one of the prominent mechanisms of success of S. clavuligerus DEPA strain as a prolific producer of CA. The levels of two enzymes of shikimate pathway that leads to the production of aromatic amino acids and aromatic secondary metabolites were also underrepresented. Some of the overrepresented stress proteins in S. clavuligerus DEPA included polynucleotide phosphorylase/polyadenylase (PNPase), ATP-dependent DNA helicase, two isoforms of an anti-sigma factor and thioredoxin reductase. Downregulation of important proteins of cell wall synthesis and division was recorded and a protein with β-lactamase domain (SCLAV_p1007) appeared in 12 isoforms, 5 of which were drastically overrepresented in DEPA strain. These results described herein provide useful information for rational engineering to improve CA production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Birgit Voigt
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
2
|
Bralley P, Gatewood ML, Jones GH. Transcription of the rpsO-pnp operon of Streptomyces coelicolor involves four temporally regulated, stress responsive promoters. Gene 2013; 536:177-85. [PMID: 24211388 DOI: 10.1016/j.gene.2013.10.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/30/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Primer extension with RNA from an RNase III null mutant of Streptomyces coelicolor M145 and a primer complementary to the polynucleotide phosphorylase gene revealed two major extension products. Two different extension products were observed using RNA from either wild type M145 or the null mutant with a primer complementary to rpsO. Mapping of the 5'-ends of these extension products to the rpsO-pnp intergenic region indicated that all four putative transcription start sites were preceded by possible promoter sequences. These putative promoters were synthesized by the PCR and cloned into pIPP2, a xylE-based streptomycete promoter probe vector. Transfer of the pIPP2 derivatives to S. coelicolor and catechol dioxygenase assays demonstrated that all four cloned fragments had promoter activity in vivo. The activities of the four promoters changed over the course of growth of S. coelicolor and studies in three sigma factor mutant strains demonstrated that three of the promoters were σ(B) dependent. Northern blotting studies showed that the levels of the rpsO-pnp transcripts remained relatively constant over the course of growth of S. coelicolor M145, but that on a molar basis, the levels of the readthrough and pnp transcripts were considerably lower than those of rpsO. PNPase is a cold shock protein in S. coelicolor and the activity of the rpsO-pnp promoters increased during cold shock at 10°, resulting in a two-fold increase in PNPase activity, compared with the activity at 30°.
Collapse
Affiliation(s)
| | | | - George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322 USA.
| |
Collapse
|
3
|
Comparative proteomic analysis of Streptomyces lividans Wild-Type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis. Appl Environ Microbiol 2013; 79:5907-17. [PMID: 23872561 DOI: 10.1128/aem.02280-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Streptomyces lividans TK24 is a strain that naturally produces antibiotics at low levels, but dramatic overproduction of antibiotics occurs upon interruption of the ppk gene. However, the role of the Ppk enzyme in relation to the regulation of antibiotic biosynthesis remains poorly understood. In order to gain a better understanding of the phenotype of the ppk mutant, the proteomes of the wild-type (wt) and ppk mutant strains, grown for 96 h on R2YE medium limited in phosphate, were analyzed. Intracellular proteins were separated on two-dimensional (2D) gels, spots were quantified, and those showing a 3-fold variation or more were identified by mass spectrometry. The expression of 12 proteins increased and that of 29 decreased in the ppk mutant strain. Our results suggested that storage lipid degradation rather than hexose catabolism was taking place in the mutant. In order to validate this hypothesis, the triacylglycerol contents of the wt and ppk mutant strains of S. lividans as well as that of Streptomyces coelicolor M145, a strain that produces antibiotics at high levels and is closely related to S. lividans, were assessed using electron microscopy and thin-layer chromatography. These studies highlighted the large difference in triacylglycerol contents of the three strains and confirmed the hypothetical link between storage lipid metabolism and antibiotic biosynthesis in Streptomyces.
Collapse
|
4
|
Gatewood ML, Bralley P, Weil MR, Jones GH. RNA-Seq and RNA immunoprecipitation analyses of the transcriptome of Streptomyces coelicolor identify substrates for RNase III. J Bacteriol 2012; 194:2228-37. [PMID: 22389483 PMCID: PMC3347082 DOI: 10.1128/jb.06541-11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/23/2012] [Indexed: 11/20/2022] Open
Abstract
RNase III is a key enzyme in the pathways of RNA degradation and processing in bacteria and has been suggested as a global regulator of antibiotic production in Streptomyces coelicolor. Using RNA-Seq, we have examined the transcriptomes of S. coelicolor M145 and an RNase III (rnc)-null mutant of that strain. RNA preparations with reduced levels of structural RNAs were prepared by subtractive hybridization prior to RNA-Seq analysis. We initially identified 7,800 transcripts of known and putative protein-coding genes in M145 and the null mutant, JSE1880, along with transcripts of 21 rRNA genes and 65 tRNA genes. Approximately 3,100 of the protein-coding transcripts were categorized as low-abundance transcripts. For further analysis, we selected those transcripts of known and putative protein-coding genes whose levels changed by ≥ 2-fold between the two S. coelicolor strains and organized those transcripts into 16 functional categories. We refined our analysis by performing RNA immunoprecipitation of the mRNA preparation from JSE1880 using a mutant RNase III protein that binds to transcripts but does not cleave them. This analysis identified ca. 800 transcripts that were enriched in the RNA immunoprecipitates, including 28 transcripts whose levels also changed by ≥ 2-fold in the RNA-Seq analysis. We compare our results with those obtained by microarray analysis of the S. coelicolor transcriptome and with studies describing the characterization of small noncoding RNAs. We have also used the RNA immunoprecipitation results to identify new substrates for RNase III cleavage.
Collapse
Affiliation(s)
| | | | - M. Ryan Weil
- Emory Genome Center, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
5
|
Mohanty BK, Kushner SR. Bacterial/archaeal/organellar polyadenylation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 2:256-76. [PMID: 21344039 DOI: 10.1002/wrna.51] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although the first poly(A) polymerase (PAP) was discovered in Escherichia coli in 1962, the study of polyadenylation in bacteria was largely ignored for the next 30 years. However, with the identification of the structural gene for E. coli PAP I in 1992, it became possible to analyze polyadenylation using both biochemical and genetic approaches. Subsequently, it has been shown that polyadenylation plays a multifunctional role in prokaryotic RNA metabolism. Although the bulk of our current understanding of prokaryotic polyadenylation comes from studies on E. coli, recent limited experiments with Cyanobacteria, organelles, and Archaea have widened our view on the diversity, complexity, and universality of the polyadenylation process. For example, the identification of polynucleotide phosphorylase (PNPase), a reversible phosphorolytic enzyme that is highly conserved in bacteria, as an additional PAP in E. coli caught everyone by surprise. In fact, PNPase has now been shown to be the source of post-transcriptional RNA modifications in a wide range of cells of prokaryotic origin including those that lack a eubacterial PAP homolog. Accordingly, the past few years have witnessed increased interest in the mechanism and role of post-transcriptional modifications in all species of prokaryotic origin. However, the fact that many of the poly(A) tails are very short and unstable as well as the presence of polynucleotide tails has posed significant technical challenges to the scientific community trying to unravel the mystery of polyadenylation in prokaryotes. This review discusses the current state of knowledge regarding polyadenylation and its functions in bacteria, organelles, and Archaea.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, GA 30605, USA
| | | |
Collapse
|
6
|
Expression of a polycistronic messenger RNA involved in antibiotic production in an rnc mutant of Streptomyces coelicolor. Arch Microbiol 2011; 194:147-55. [PMID: 21830128 DOI: 10.1007/s00203-011-0740-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/02/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
Abstract
RNase III is a double strand specific endoribonuclease that is involved in the regulation of gene expression in bacteria. In Streptomyces coelicolor, an RNase III (rnc) null mutant manifests decreased ability to synthesize antibiotics, suggesting that RNase III globally regulates antibiotic production in that species. As RNase III is involved in the processing of ribosomal RNAs in S. coelicolor and other bacteria, an alternative explanation for the effects of the rnc mutation on antibiotic production would involve the formation of defective ribosomes in the absence of RNase III. Those ribosomes might be unable to translate the long polycistronic messenger RNAs known to be produced by operons containing genes for antibiotic production. To examine this possibility, we have constructed a reporter plasmid whose insert encodes an operon derived from the actinorhodin cluster of S. coelicolor. We show that an rnc null mutant of S. coelicolor is capable of translating the polycistronic message transcribed from the operon. We show further that RNA species with the mobilities expected for mature 16S and 23S ribosomal RNAs are produced in the rnc mutant even though the mutant contains higher levels of the 30S rRNA precursor than the wild-type strain.
Collapse
|
7
|
RNase III-dependent expression of the rpsO-pnp operon of Streptomyces coelicolor. J Bacteriol 2011; 193:4371-9. [PMID: 21742867 DOI: 10.1128/jb.00452-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have examined the expression of the rpsO-pnp operon in an RNase III (rnc) mutant of Streptomyces coelicolor. Western blotting demonstrated that polynucleotide phosphorylase (PNPase) levels increased in the rnc mutant, JSE1880, compared with the parental strain, M145, and this observation was confirmed by polymerization assays. It was observed that rpsO-pnp mRNA levels increased in the rnc mutant by 1.6- to 4-fold compared with M145. This increase was observed in exponential, transition, and stationary phases, and the levels of the readthrough transcript, initiated upstream of rpsO in the rpsO-pnp operon; the pnp transcript, initiated in the rpsO-pnp intergenic region; and the rpsO transcript all increased. The increased levels of these transcripts in JSE1880 reflected increased chemical half-lives for each of the three. We demonstrated further that overexpression of the rpsO-pnp operon led to significantly higher levels of PNPase activity in JSE1880 compared to M145, reflecting the likelihood that PNPase expression is autoregulated in an RNase III-dependent manner in S. coelicolor. To explore further the increase in the level of the pnp transcript initiated in the intergenic region in JSE1880, we utilized that transcript as a substrate in assays employing purified S. coelicolor RNase III. These assays revealed the presence of hitherto-undiscovered sites of RNase III cleavage of the pnp transcript. The position of those sites was determined by primer extension, and they were shown to be situated in the loops of a stem-loop structure.
Collapse
|
8
|
Jones GH. Integrative, xylE-based promoter probe vectors for use in Streptomyces. Plasmid 2011; 65:219-25. [PMID: 21324338 DOI: 10.1016/j.plasmid.2011.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 10/18/2022]
Abstract
Two promoter probe plasmid vectors, designated pIPP1 and pIPP2, were constructed from the existing plasmids pXE4 and pSET152. pIPP1 and 2 use the xylE gene of Pseudomonas putida as a reporter and can be transferred to streptomycetes by conjugation from Escherichia coli. The function of these plasmids as promoter probes was demonstrated in Streptomyces antibioticus and Streptomyces coelicolor using the phenoxazinone synthase and polynucleotide phosphorylase promoters from S. antibioticus. xylE activity could be detected in colonies on agar plates or via the in vitro assay for catechol dioxygenase. The integration into the S. antibioticus chromosome of the constructs containing the phsA promoter was verified by Southern blotting. The presence of the bla locus in pIPP1 allows the recovery of putative promoters by marker rescue.
Collapse
Affiliation(s)
- George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
9
|
Transcriptional and post-transcriptional regulation of the Escherichia coli luxS mRNA; involvement of the sRNA MicA. PLoS One 2010; 5:e13449. [PMID: 20976191 PMCID: PMC2956633 DOI: 10.1371/journal.pone.0013449] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/23/2010] [Indexed: 01/02/2023] Open
Abstract
Background The small RNA (sRNA) MicA has been shown to post-transcriptionally regulate translation of the outer membrane protein A (OmpA) in Escherichia coli. It uses an antisense mechanism to down-regulate OmpA protein synthesis and induce mRNA degradation. MicA is genomically localized between the coding regions of the gshA and luxS genes and is divergently transcribed from its neighbours. Transcription of the luxS gene which originates within or upstream of the MicA sequence would thus be complementary to the sRNA. LuxS regulation is as yet unclear. Methodology/Principal Findings In this report, I show that the luxS mRNA exists as three long (major) transcripts of sizes that suggest just such interaction. The sRNA MicA's expression affects the abundance of each of these luxS transcripts. The involvement of the ribonuclease, RNase III in the accumulation of the shortest transcript is demonstrated. When MicA accumulates during growth, or is induced to be over-expressed, the cleaved mRNA species is observed to increase in intensity. Using primer extension and 5′-RACE experiments in combination with sRNA overexpression plasmids, I identify the exact origin of two of the three luxS transcripts, one of which is seen to result from a previously unidentified σS dependent promoter. Conclusions/Significance The presented data provides strong evidence that MicA functions in cis and in trans, targeting both luxS mRNA as well as the previously established ompA and phoP regulation. The proposed luxS regulation by MicA would be in tandem with another sRNA CyaR, shown recently to be involved in inhibiting translation of the luxS mRNA. Regulation of luxS expression is additionally shown to occur on a transcriptional level via σS with variable transcript levels in different growth phases unlike what was previously assumed. This is the first known case of an sRNA in E. coli which targets both in cis (luxS mRNA) and in trans (ompA and phoP mRNAs).
Collapse
|
10
|
Obana N, Shirahama Y, Abe K, Nakamura K. Stabilization of Clostridium perfringens collagenase mRNA by VR-RNA-dependent cleavage in 5′ leader sequence. Mol Microbiol 2010; 77:1416-28. [DOI: 10.1111/j.1365-2958.2010.07258.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
11
|
Siculella L, Damiano F, di Summa R, Tredici SM, Alduina R, Gnoni GV, Alifano P. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) as a negative modulator of polynucleotide phosphorylase activity in a 'rare' actinomycete. Mol Microbiol 2010; 77:716-29. [PMID: 20545843 DOI: 10.1111/j.1365-2958.2010.07240.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the beginning of the idiophase the highly phosphorylated guanylic nucleotides guanosine 5'-diphosphate 3'-diphosphate (ppGpp) and guanosine 5'-triphosphate 3'-diphosphate (pppGpp), collectively referred to as (p)ppGpp, activate stress survival adaptation programmes and trigger secondary metabolism in actinomycetes. The major target of (p)ppGpp is the RNA polymerase, where it binds altering the enzyme activity. In this study analysis of the polynucleotide phosphorylase (PNPase)-encoding gene pnp mRNA, in Nonomuraea sp. ATCC 39727 wild-type, constitutively stringent and relaxed strains, led us to hypothesize that in actinomycetes (p)ppGpp may modulate gene expression at the level of RNA decay also. This hypothesis was supported by: (i) in vitro evidence that ppGpp, at physiological levels, inhibited both polynucleotide polymerase and phosphorolytic activities of PNPase in Nonomuraea sp., but not in Escherichia coli, (ii) in vivo data showing that the pnp mRNA and the A40926 antibiotic cluster-specific dpgA mRNA were stabilized during the idiophase in the wild-type strain but not in a relaxed mutant and (iii) measurement of chemical decay of pulse-labelled bulk mRNA. The results of biochemical tests suggest competitive inhibition of ppGpp with respect to nucleoside diphosphates in polynucleotide polymerase assays and mixed inhibition with respect to inorganic phosphate when the RNA phosphorolytic activity was determined.
Collapse
Affiliation(s)
- Luisa Siculella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
Bratlie MS, Johansen J, Drabløs F. Relationship between operon preference and functional properties of persistent genes in bacterial genomes. BMC Genomics 2010; 11:71. [PMID: 20109203 PMCID: PMC2837039 DOI: 10.1186/1471-2164-11-71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 01/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genes in bacteria may be organised into operons, leading to strict co-expression of the genes that participate in the same operon. However, comparisons between different bacterial genomes have shown that much of the operon structure is dynamic on an evolutionary time scale. This indicates that there are opposing effects influencing the tendency for operon formation, and these effects may be reflected in properties like evolutionary rate, complex formation, metabolic pathways and gene fusion. RESULTS We have used multi-species protein-protein comparisons to generate a high-quality set of genes that are persistent in bacterial genomes (i.e. they have close to universal distribution). We have analysed these genes with respect to operon participation and important functional properties, including evolutionary rate and protein-protein interactions. CONCLUSIONS Genes for ribosomal proteins show a very slow rate of evolution. This is consistent with a strong tendency for the genes to participate in operons and for their proteins to be involved in essential and well defined complexes. Persistent genes for non-ribosomal proteins can be separated into two classes according to tendency to participate in operons. Those with a strong tendency for operon participation make proteins with fewer interaction partners that seem to participate in relatively static complexes and possibly linear pathways. Genes with a weak tendency for operon participation tend to produce proteins with more interaction partners, but possibly in more dynamic complexes and convergent pathways. Genes that are not regulated through operons are therefore more evolutionary constrained than the corresponding operon-associated genes and will on average evolve more slowly.
Collapse
Affiliation(s)
- Marit S Bratlie
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, N-7006 Trondheim, Norway
| | | | | |
Collapse
|
13
|
Kinetics of polynucleotide phosphorylase: comparison of enzymes from Streptomyces and Escherichia coli and effects of nucleoside diphosphates. J Bacteriol 2007; 190:98-106. [PMID: 17965156 DOI: 10.1128/jb.00327-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the activity of polynucleotide phosphorylase (PNPase) from Streptomyces coelicolor, Streptomyces antibioticus, and Escherichia coli in phosphorolysis using substrates derived from the rpsO-pnp operon of S. coelicolor. The Streptomyces and E. coli enzymes were both able to digest a substrate with a 3' single-stranded tail although E. coli PNPase was more effective in digesting this substrate than were the Streptomyces enzymes. The kcat for the E. coli enzyme was ca. twofold higher than that observed with the S. coelicolor enzyme. S. coelicolor PNPase was more effective than its E. coli counterpart in digesting a substrate possessing a 3' stem-loop structure, and the Km for the E. coli enzyme was ca. twice that of the S. coelicolor enzyme. Electrophoretic mobility shift assays revealed an increased affinity of S. coelicolor PNPase for the substrate possessing a 3' stem-loop structure compared with the E. coli enzyme. We observed an effect of nucleoside diphosphates on the activity of the S. coelicolor PNPase but not the E. coli enzyme. In the presence of a mixture of 20 microM ADP, CDP, GDP, and UDP, the Km for the phosphorolysis of the substrate with the 3' stem-loop was some fivefold lower than the value observed in the absence of nucleoside diphosphates. No effect of nucleoside diphosphates on the phosphorolytic activity of E. coli PNPase was observed. To our knowledge, this is the first demonstration of an effect of nucleoside diphosphates, the normal substrates for polymerization by PNPase, on the phosphorolytic activity of that enzyme.
Collapse
|
14
|
Charaniya S, Mehra S, Lian W, Jayapal KP, Karypis G, Hu WS. Transcriptome dynamics-based operon prediction and verification in Streptomyces coelicolor. Nucleic Acids Res 2007; 35:7222-36. [PMID: 17959654 PMCID: PMC2175336 DOI: 10.1093/nar/gkm501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Streptomyces spp. produce a variety of valuable secondary metabolites, which are regulated in a spatio-temporal manner by a complex network of inter-connected gene products. Using a compilation of genome-scale temporal transcriptome data for the model organism, Streptomyces coelicolor, under different environmental and genetic perturbations, we have developed a supervised machine-learning method for operon prediction in this microorganism. We demonstrate that, using features dependent on transcriptome dynamics and genome sequence, a support vector machines (SVM)-based classification algorithm can accurately classify >90% of gene pairs in a set of known operons. Based on model predictions for the entire genome, we verified the co-transcription of more than 250 gene pairs by RT-PCR. These results vastly increase the database of known operons in S. coelicolor and provide valuable information for exploring gene function and regulation to harness the potential of this differentiating microorganism for synthesis of natural products.
Collapse
Affiliation(s)
- Salim Charaniya
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN 55455-0132, USA
| | | | | | | | | | | |
Collapse
|
15
|
Palecková P, Bobek J, Felsberg J, Mikulík K. Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Folia Microbiol (Praha) 2007; 51:517-24. [PMID: 17455787 DOI: 10.1007/bf02931615] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Transition from exponential phase of growth to stationary phase in Streptomyces aureofaciens is characterized by a decrease in the rate of translation and induction of tetracycline (Ttc) biosynthesis. In exponential phase, no significant changes were found in the activity of ribosomes at binding of ternary complex Phe-tRNA.EF-Tu.GTP to the A-site on ribosomes. Overexpression of Ttc in stationary phase is accompanied by a decrease in the binding of the ternary complex Phe-tRNA.EF-Tu.GTP to the A-site of ribosome and a formation of an aggregate with Ttc by part of the ribosomes. Antibiotics that cause ribosome to stall or pause could increase the requirement for tmRNA in the process called trans-translation. We found differences in the level of tmRNA during the development of S. aureofaciens. Subinhibitory concentrations of Ttc, streptomycin and chloramphenicol induced an increase in the tmRNA level in cells from the exponential phase of growth. In vitro trans-translation system of S. aureofaciens was sensitive to Ttc at a concentration of > 15 micromol/L; the trans-translation system can thus be considered to contribute to resistance against Ttc produced only at sublethal concentrations. These experiments suggest that the main role of the rising tmRNA level at the beginning of the Ttc production is connected with ribosome rescue.
Collapse
Affiliation(s)
- P Palecková
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | | | | |
Collapse
|
16
|
Bralley P, Gust B, Chang S, Chater KF, Jones GH. RNA 3'-tail synthesis in Streptomyces: in vitro and in vivo activities of RNase PH, the SCO3896 gene product and polynucleotide phosphorylase. MICROBIOLOGY-SGM 2006; 152:627-636. [PMID: 16514143 DOI: 10.1099/mic.0.28363-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As in other bacteria, 3'-tails are added post-transcriptionally to Streptomyces coelicolor RNA. These tails are heteropolymeric, and although there are several candidates, the enzyme responsible for their synthesis has not been definitively identified. This paper reports on three candidates for this role. First, it is confirmed that the product of S. coelicolor gene SCO3896, although it bears significant sequence similarity to Escherichia coli poly(A) polymerase I, is a tRNA nucleotidyltransferase, not a poly(A) polymerase. It is further shown that SCO2904 encodes an RNase PH homologue that possesses the polymerization and phosphorolysis activities expected for enzymes of that family. S. coelicolor RNase PH can add poly(A) tails to a model RNA transcript in vitro. However, disruption of the RNase PH gene has no effect on RNA 3'-tail length or composition in S. coelicolor; thus, RNase PH does not function as the RNA 3'-polyribonucleotide polymerase [poly(A) polymerase] in that organism. These results strongly suggest that the enzyme responsible for RNA 3'-tail synthesis in S. coelicolor and other streptomycetes is polynucleotide phosphorylase (PNPase). Moreover, this study shows that both PNPase and the product of SCO3896 are essential. It is possible that the dual functions of PNPase in the synthesis and degradation of RNA 3'-tails make it indispensable in Streptomyces.
Collapse
Affiliation(s)
| | - Bertolt Gust
- Department of Molecular Microbiology, The John Innes Centre, Norwich NR4 7UH, UK
| | - Samantha Chang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Keith F Chater
- Department of Molecular Microbiology, The John Innes Centre, Norwich NR4 7UH, UK
| | - George H Jones
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Affiliation(s)
- Uriel Z Littauer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
18
|
Sawers RG. Evidence for novel processing of the anaerobically inducible dicistronic focA-pfl mRNA transcript in Escherichia coli. Mol Microbiol 2005; 58:1441-53. [PMID: 16313628 DOI: 10.1111/j.1365-2958.2005.04915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The anaerobically inducible dicistronic focA-pfl operon is transcribed from three co-ordinately regulated promoters that are located 5' of the operon. Remarkably, the 5' ends of four further highly abundant operon-internal transcripts are located within the focA gene, with a fifth transcript mapping in the intergenic region between focA and pfl. The findings of this study demonstrate that the bulk of these five operon-internal transcripts are the result of processing. Processing was independent of the broad-spectrum endoribonucleases associated with mRNA turnover and still occurred when the upstream regulatory region of the operon was replaced with two different heterologous promoters recognized by Escherichia coli core RNA polymerase, including the tetP promoter. However, when the T7Phi10 promoter was introduced upstream of the focA-pfl operon, mainly full-length transcript and a minor amount of two processing products were observed. T7 RNA polymerase mutants that exhibit reduced elongation speed did not restore the wild-type transcript-processing pattern. Moreover, processing was independent of focA translation. Taken together, these data suggest that processing of the focA-pfl transcripts occurs by a novel mechanism that might require the action of E. coli core RNA polymerase.
Collapse
Affiliation(s)
- R Gary Sawers
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
19
|
Chang SA, Bralley P, Jones GH. The absB Gene Encodes a Double Strand-specific Endoribonuclease That Cleaves the Read-through Transcript of the rpsO-pnp Operon in Streptomyces coelicolor. J Biol Chem 2005; 280:33213-9. [PMID: 16076842 DOI: 10.1074/jbc.m503440200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The absB locus of Streptomyces coelicolor encodes a homolog of bacterial RNase III. We cloned and overexpressed the absB gene product and purified a decahistidine-tagged version of the protein. We show here that AbsB is active against double-stranded RNA transcripts derived from synthetic DNAs but is inactive with single-stranded homopolymers. We thus designate the absB product RNase IIIS. Using T7 RNA polymerase and a cloned template containing the rpsO-pnp intergenic region, we synthesized an RNA substrate representing a portion of the read-through transcript normally produced in S. coelicolor. This transcript contains the sequences that form the putative rpsO terminator and those that form an intergenic stem-loop structure thought to be the site for RNase IIIS processing of the read-through transcript. We show that RNase IIIS does cleave that model transcript, with primary and secondary cleavage sites in an internal loop in the stem-loop structure. We have identified the primary and secondary cleavage sites by primer extension and demonstrate the further processing of the initial cleavage products. Thus, as is the case in Escherichia coli, the read-through transcript from rpsO-pnp is cleaved by RNase IIIS in S. coelicolor. However, the cleavage sites are different in the two systems. The positions of the cleavage sites in the stem-loop of the S. coelicolor transcript are more akin to those identified in the processing of bacteriophage T7 mRNAs. A kinetic assay for RNase IIIS was developed, and kinetic parameters for the reaction utilizing the model transcript from rpsO-pnp were determined.
Collapse
Affiliation(s)
- Samantha A Chang
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|