1
|
Mazzamurro F, Chirakadavil JB, Durieux I, Poiré L, Plantade J, Ginevra C, Jarraud S, Wilharm G, Charpentier X, P. C. Rocha E. Intragenomic conflicts with plasmids and chromosomal mobile genetic elements drive the evolution of natural transformation within species. PLoS Biol 2024; 22:e3002814. [PMID: 39401218 PMCID: PMC11472951 DOI: 10.1371/journal.pbio.3002814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/27/2024] [Indexed: 10/17/2024] Open
Abstract
Natural transformation is the only mechanism of genetic exchange controlled by the recipient bacteria. We quantified its rates in 786 clinical strains of the human pathogens Legionella pneumophila (Lp) and 496 clinical and environmental strains of Acinetobacter baumannii (Ab). The analysis of transformation rates in the light of phylogeny revealed they evolve by a mixture of frequent small changes and a few large quick jumps across 6 orders of magnitude. In standard conditions close to half of the strains of Lp and a more than a third in Ab are below the detection limit and thus presumably non-transformable. Ab environmental strains tend to have higher transformation rates than the clinical ones. Transitions to non-transformability were frequent and usually recent, suggesting that they are deleterious and subsequently purged by natural selection. Accordingly, we find that transformation decreases genetic linkage in both species, which might accelerate adaptation. Intragenomic conflicts with chromosomal mobile genetic elements (MGEs) and plasmids could explain these transitions and a GWAS confirmed systematic negative associations between transformation and MGEs: plasmids and other conjugative elements in Lp, prophages in Ab, and transposable elements in both. In accordance with the hypothesis of modulation of transformation rates by genetic conflicts, transformable strains have fewer MGEs in both species and some MGEs inactivate genes implicated in the transformation with heterologous DNA (in Ab). Innate defense systems against MGEs are associated with lower transformation rates, especially restriction-modification systems. In contrast, CRISPR-Cas systems are associated with higher transformation rates suggesting that adaptive defense systems may facilitate cell protection from MGEs while preserving genetic exchanges by natural transformation. Ab and Lp have different lifestyles, gene repertoires, and population structure. Nevertheless, they exhibit similar trends in terms of variation of transformation rates and its determinants, suggesting that genetic conflicts could drive the evolution of natural transformation in many bacteria.
Collapse
Affiliation(s)
- Fanny Mazzamurro
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
- Collège Doctoral–Sorbonne Université, Paris, France
| | - Jason Baby Chirakadavil
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Isabelle Durieux
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Ludovic Poiré
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Julie Plantade
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Christophe Ginevra
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Sophie Jarraud
- Centre national de Référence des Légionelles–Centre de biologie Nord, Lyon, Cedex 04, France
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Wernigerode Branch, Wernigerode, Germany
| | - Xavier Charpentier
- CIRI, Centre International de Recherche en Infectiologie–Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, Villeurbanne, France
| | - Eduardo P. C. Rocha
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, Paris, France
| |
Collapse
|
2
|
Higgs C, Kumar LS, Stevens K, Strachan J, Korman T, Horan K, Daniel D, Russell M, McDevitt CA, Sherry NL, Stinear TP, Howden BP, Gorrie CL. Comparison of contemporary invasive and non-invasive Streptococcus pneumoniae isolates reveals new insights into circulating anti-microbial resistance determinants. Antimicrob Agents Chemother 2023; 67:e0078523. [PMID: 37823632 PMCID: PMC10649040 DOI: 10.1128/aac.00785-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen with a high burden of disease. Non-invasive isolates (those found in non-sterile sites) are thought to be a key source of invasive isolates (those found in sterile sites) and a reservoir of anti-microbial resistance (AMR) determinants. Despite this, pneumococcal surveillance has almost exclusively focused on invasive isolates. We aimed to compare contemporaneous invasive and non-invasive isolate populations to understand how they interact and identify differences in AMR gene distribution. We used a combination of whole-genome sequencing and phenotypic anti-microbial susceptibility testing and a data set of invasive (n = 1,288) and non-invasive (n = 186) pneumococcal isolates, collected in Victoria, Australia, between 2018 and 2022. The non-invasive population had increased levels of antibiotic resistance to multiple classes of antibiotics including beta-lactam antibiotics penicillin and ceftriaxone. We identified genomic intersections between the invasive and non-invasive populations and no distinct phylogenetic clustering of the two populations. However, this analysis revealed sub-populations overrepresented in each population. The sub-populations that had high levels of AMR were overrepresented in the non-invasive population. We determined that WamR-Pneumo was the most accurate in silico tool for predicting resistance to the antibiotics tested. This tool was then used to assess the allelic diversity of the penicillin-binding protein genes, which acquire mutations leading to beta-lactam antibiotic resistance, and found that they were highly conserved (≥80% shared) between the two populations. These findings show the potential of non-invasive isolates to serve as reservoirs of AMR determinants.
Collapse
Affiliation(s)
- Charlie Higgs
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Lamali Sadeesh Kumar
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kerrie Stevens
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Janet Strachan
- Communicable Diseases Branch, Department of Health, Victoria, Australia
| | - Tony Korman
- Department of Microbiology, Monash Health, Clayton, Victoria, Australia
| | - Kristy Horan
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Diane Daniel
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Madeline Russell
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Norelle L. Sherry
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Claire L. Gorrie
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Centre for Pathogen Genomics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Gibson PS, Veening JW. Gaps in the wall: understanding cell wall biology to tackle amoxicillin resistance in Streptococcus pneumoniae. Curr Opin Microbiol 2023; 72:102261. [PMID: 36638546 DOI: 10.1016/j.mib.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
Streptococcus pneumoniae is the most common cause of community-acquired pneumonia, and one of the main pathogens responsible for otitis media infections in children. Amoxicillin (AMX) is a broad-spectrum β-lactam antibiotic, used frequently for the treatment of bacterial respiratory tract infections. Here, we discuss the pneumococcal response to AMX, including the mode of action of AMX, the effects on autolysin regulation, and the evolution of resistance through natural transformation. We discuss current knowledge gaps in the synthesis and translocation of peptidoglycan and teichoic acids, major constituents of the pneumococcal cell wall and critical to AMX activity. Furthermore, an outlook of AMX resistance research is presented, including the development of natural competence inhibitors to block evolution via horizontal gene transfer, and the use of high-throughput essentiality screens for the discovery of novel cotherapeutics.
Collapse
Affiliation(s)
- Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
4
|
Gibson PS, Bexkens E, Zuber S, Cowley LA, Veening JW. The acquisition of clinically relevant amoxicillin resistance in Streptococcus pneumoniae requires ordered horizontal gene transfer of four loci. PLoS Pathog 2022; 18:e1010727. [PMID: 35877768 PMCID: PMC9352194 DOI: 10.1371/journal.ppat.1010727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding how antimicrobial resistance spreads is critical for optimal application of new treatments. In the naturally competent human pathogen Streptococcus pneumoniae, resistance to β-lactam antibiotics is mediated by recombination events in genes encoding the target proteins, resulting in reduced drug binding affinity. However, for the front-line antibiotic amoxicillin, the exact mechanism of resistance still needs to be elucidated. Through successive rounds of transformation with genomic DNA from a clinically resistant isolate, we followed amoxicillin resistance development. Using whole genome sequencing, we showed that multiple recombination events occurred at different loci during one round of transformation. We found examples of non-contiguous recombination, and demonstrated that this could occur either through multiple D-loop formation from one donor DNA molecule, or by the integration of multiple DNA fragments. We also show that the final minimum inhibitory concentration (MIC) differs depending on recipient genome, explained by differences in the extent of recombination at key loci. Finally, through back transformations of mutant alleles and fluorescently labelled penicillin (bocillin-FL) binding assays, we confirm that pbp1a, pbp2b, pbp2x, and murM are the main resistance determinants for amoxicillin resistance, and that the order of allele uptake is important for successful resistance evolution. We conclude that recombination events are complex, and that this complexity contributes to the highly diverse genotypes of amoxicillin-resistant pneumococcal isolates.
Collapse
Affiliation(s)
- Paddy S. Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Evan Bexkens
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sylvia Zuber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lauren A. Cowley
- Department of Biology & Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Comparative genomics of invasive Streptococcus pneumoniae CC320/271 serotype 19F/19A before the introduction of pneumococcal vaccine in India. Mol Biol Rep 2021; 48:3265-3276. [PMID: 33876375 DOI: 10.1007/s11033-021-06353-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
The emergence of multi drug resistant clone CC320 serotype19F/19A and their capsular (cps) antigenic variants due to selective pressures such as vaccine had been reported worldwide. Hence, it is important to identify the prevalent clones, sequence types and cps variants of serotype 19F/19A in India, where PCV13 has been recently introduced. Multi-locus sequence typing (MLST) was performed for all (n = 21) invasive S. pneumoniae isolates of serotype 19A (n = 5) and 19F (n = 16) collected between the years 2012 and 2018 from children less than 5 years. The genome characterization by whole genome sequencing for the Sequence types (STs) 320 and 271(n = 7) were performed and compared with another six Indian WGSs of similar STs available from the GPS platform. The predominant STs in the serotype 19F/19A study isolates were of CC320: ST 320, 236 and 271, associated with PMEN clone Taiwan19F-14. The WGSs of CC320 study isolates showed high genomic similarity to the Taiwan19F-14 clone, and the penicillin binding protein (PBP) amino acid sequence similarity was 100% for PBP1A, 93% for PBP 2B and 2X. Whilst PBP comparison with other global MDR ST320 strains revealed that the ST320 clones in India are of low-level penicillin resistance. The presence of a few ST320/19A/19F invasive isolates with high similarity to the Taiwan clone suggests slow and gradual expansion of Taiwan19F-14 associated CC320 clones in India. Since serotype 19F/19A is covered by PCV13 vaccine, the expansion of 19F/19A cones with non-PCV13 vaccine serotype in India should be monitored.
Collapse
|
6
|
Manenzhe RI, Dube FS, Wright M, Lennard K, Mounaud S, Lo SW, Zar HJ, Nierman WC, Nicol MP, Moodley C. Characterization of Pneumococcal Colonization Dynamics and Antimicrobial Resistance Using Shotgun Metagenomic Sequencing in Intensively Sampled South African Infants. Front Public Health 2020; 8:543898. [PMID: 33072693 PMCID: PMC7536305 DOI: 10.3389/fpubh.2020.543898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/17/2020] [Indexed: 11/13/2022] Open
Abstract
Background: There remains a significant proportion of deaths due to pneumococcal pneumonia in infants from low- and middle-income countries despite the marginal global declines recorded in the past decade. Monitoring changes in pneumococcal carriage is key to understanding vaccination-induced shifts in the ecology of carriage, patterns of antimicrobial resistance, and impact on health. We longitudinally investigated pneumococcal carriage dynamics in PCV-13 vaccinated infants by collecting nasopharyngeal (NP) samples at 2-weekly intervals from birth through the first year of life from 137 infants. As a proof of concept, 196 NP samples were retrieved from a subset of 23 infants to explore strain-level pneumococcal colonization patterns and associated antimicrobial-resistance determinants. These were selected on the basis of changes in serotype and antibiogram over time. NP samples underwent short-term enrichment for streptococci prior to total nucleic acid extraction and whole metagenome shotgun sequencing (WMGS). Reads were assembled and aligned to pneumococcal reference genomes for the extraction of pneumococcal and non-pneumococcal bacterial reads. Pneumococcal contigs were aligned to the Antibiotic Resistance Gene-ANNOTation database of acquired AMR genes. In silico pneumococcal capsular and multilocus sequence typing were performed. Results: Of the 196 samples sequenced, 174 had corresponding positive cultures for pneumococci, of which, 152 were assigned an in silico serotype. Metagenomic sequencing detected a single pneumococcal serotype in 85% (129/152), and co-colonization in 15% (23/152) of the samples. Twenty-two different pneumococcal serotypes were identified, with 15B/15C and 16F being the most common non-PCV13 serotypes, while 23F and 19A were the most common PCV13 serotypes. Twenty-six different sequence types (STs), including four novel STs were identified in silico. Mutations in the folA and folP genes, associated with cotrimoxazole resistance, were detected in 89% (87/98) of cotrimoxazole-non-susceptible pneumococci, as well as in the pbp1a and pbp2x genes, in penicillin non-susceptible ST705215B/15C isolates. Conclusions: Metagenomic sequencing of NP samples is a valuable culture-independent technique for a detailed evaluation of the pneumococcal component and resistome of the NP microbiome. This method allowed for the detection of novel STs, as well as co-colonization, with a predominance of non-PCV13 serotypes in this cohort. Forty-eight resistance genes, as well as mutations associated with resistance were detected, but the correlation with phenotypic non-susceptibility was lower than expected.
Collapse
Affiliation(s)
- Rendani I Manenzhe
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Felix S Dube
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | | | - Katie Lennard
- Division of Computational Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Stephanie W Lo
- Parasites and Microbes Program, The Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and South African - Medical Research Council Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | | | - Mark P Nicol
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Division of Infection and Immunity, University of Western Australia, Perth, WA, Australia
| | - Clinton Moodley
- Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
7
|
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study. Antimicrob Resist Infect Control 2020; 9:48. [PMID: 32178740 PMCID: PMC7077161 DOI: 10.1186/s13756-020-00708-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/11/2020] [Indexed: 01/16/2023] Open
Abstract
Objective To determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates. Methods An in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to remnants of an E. coli K-12 strain containing a phagemid (pBS-E12) strain treated with Sterillium®. A series of 200 experiments was performed using this in vitro model. As a control, a series of 400 experiments was performed where the EUR1 was exposed either to the remnants of an E. coli K-12 strain (not containing a phagemid) (E12) treated with Sterillium® (n = 200) or to dried Sterillium® only (n = 200). The number of experiments that showed growth of an amoxicillin-resistant EUR1 isolate was evaluated in all three groups. An additional 48 experiments were performed in which a different clinical E. coli isolate (EUR2) was exposed to remnants of the pBS-E12 treated with Sterillium®. Whole-genome sequencing and phenotypic testing for AmpC beta-lactamase production was performed to investigate the mechanism behind this resistance development. Results In 22 (11.0%) of 200 experiments in which the EUR1 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained, as opposed to only 2 (1.0%) of 200 experiments involving the exposure of the EUR1 to Sterillium® only (risk difference: 10.0%; 95% CI 5.4–14.6%)) and 1 (0.5%) of 200 experiments involving the exposure of the EUR1 isolate to the remnants of the phagemid-free E12 (risk difference: 10.5%; 95% CI 6.1–14.9%). In 1 (2.1%) of the 48 experiments in which the EUR2 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained. The development of resistance in all experiments was due to mutations in the promoter/attenuator region of the chromosomal AmpC beta-lactamase (cAmpC) gene leading to cAmpC hyperproduction. Conclusion Exposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanol-based hand rub increased the development of amoxicillin resistance. Although phagemids are cloning vectors that are not present in clinical isolates, this finding may have implications for hand disinfection practices in healthcare facilities.
Collapse
|
8
|
Lam T, Maienschein-Cline M, Eddington DT, Morrison DA. Multiplex gene transfer by genetic transformation between isolated S. pneumoniae cells confined in microfluidic droplets. Integr Biol (Camb) 2019; 11:415-424. [PMID: 31990351 PMCID: PMC7011181 DOI: 10.1093/intbio/zyz036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Gene exchange via genetic transformation makes major contributions to antibiotic resistance of the human pathogen, Streptococcus pneumoniae (pneumococcus). The transfers begin when a pneumococcal cell, in a transient specialized physiological state called competence, attacks and lyses another cell, takes up fragments of the liberated DNA, and integrates divergent genes into its genome. Recently, it has been demonstrated that the pneumococcal cells can be enclosed in femtoliter-scale droplets for study of the transformation mechanism, offering the ability to characterize individual cell-cell interactions and overcome the limitations of current methods involving bulk mixed cultures. To determine the relevance and reliability of this new method for study of bacterial genetic transformation, we compared recombination events occurring in 44 recombinants recovered after competence-mediated gene exchange between pairs of cells confined in femtoliter-scale droplets vs. those occurring in exchanges in parallel bulk culture mixtures. The pattern of recombination events in both contexts exhibited the hallmarks of the macro-recombination exchanges previously observed within the more complex natural contexts of biofilms and long-term evolution in the human host.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Dewé TCM, D'Aeth JC, Croucher NJ. Genomic epidemiology of penicillin-non-susceptible Streptococcus pneumoniae. Microb Genom 2019; 5. [PMID: 31609685 PMCID: PMC6861860 DOI: 10.1099/mgen.0.000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Penicillin-non-susceptible Streptococcus pneumoniae (PNSP) were first detected in the 1960s, and are now common worldwide, predominantly through the international spread of a limited number of strains. Extant PNSP are characterized by mosaic pbp2x, pbp2b and pbp1a genes generated by interspecies recombinations, with the extent of these alterations determining the range and concentrations of β-lactams to which the genotype is non-susceptible. The complexity of the genetics underlying these phenotypes has been the subject of both molecular microbiology and genome-wide association and epistasis analyses. Such studies can aid our understanding of PNSP evolution and help improve the already highly-performing bioinformatic methods capable of identifying PNSP from genomic surveillance data.
Collapse
Affiliation(s)
- Tamsin C M Dewé
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Joshua C D'Aeth
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, St. Mary's Campus, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
10
|
Hiller NL, Sá-Leão R. Puzzling Over the Pneumococcal Pangenome. Front Microbiol 2018; 9:2580. [PMID: 30425695 PMCID: PMC6218428 DOI: 10.3389/fmicb.2018.02580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022] Open
Abstract
The Gram positive bacterium Streptococcus pneumoniae (pneumococcus) is a major human pathogen. It is a common colonizer of the human host, and in the nasopharynx, sinus, and middle ear it survives as a biofilm. This mode of growth is optimal for multi-strain colonization and genetic exchange. Over the last decades, the far-reaching use of antibiotics and the widespread implementation of pneumococcal multivalent conjugate vaccines have posed considerable selective pressure on pneumococci. This scenario provides an exceptional opportunity to study the evolution of the pangenome of a clinically important bacterium, and has the potential to serve as a case study for other species. The goal of this review is to highlight key findings in the studies of pneumococcal genomic diversity and plasticity.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- Center of Excellence in Biofilm Research, Allegheny Health Network, Pittsburgh, PA, United States
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Cowley LA, Petersen FC, Junges R, Jimson D. Jimenez M, Morrison DA, Hanage WP. Evolution via recombination: Cell-to-cell contact facilitates larger recombination events in Streptococcus pneumoniae. PLoS Genet 2018; 14:e1007410. [PMID: 29897968 PMCID: PMC6016952 DOI: 10.1371/journal.pgen.1007410] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022] Open
Abstract
Homologous recombination in the genetic transformation model organism Streptococcus pneumoniae is thought to be important in the adaptation and evolution of this pathogen. While competent pneumococci are able to scavenge DNA added to laboratory cultures, large-scale transfers of multiple kb are rare under these conditions. We used whole genome sequencing (WGS) to map transfers in recombinants arising from contact of competent cells with non-competent ‘target’ cells, using strains with known genomes, distinguished by a total of ~16,000 SNPs. Experiments designed to explore the effect of environment on large scale recombination events used saturating purified donor DNA, short-term cell assemblages on Millipore filters, and mature biofilm mixed cultures. WGS of 22 recombinants for each environment mapped all SNPs that were identical between the recombinant and the donor but not the recipient. The mean recombination event size was found to be significantly larger in cell-to-cell contact cultures (4051 bp in filter assemblage and 3938 bp in biofilm co-culture versus 1815 bp with saturating DNA). Up to 5.8% of the genome was transferred, through 20 recombination events, to a single recipient, with the largest single event incorporating 29,971 bp. We also found that some recombination events are clustered, that these clusters are more likely to occur in cell-to-cell contact environments, and that they cause significantly increased linkage of genes as far apart as 60,000 bp. We conclude that pneumococcal evolution through homologous recombination is more likely to occur on a larger scale in environments that permit cell-to-cell contact. Bacteria shuffle their genes far less often than humans do and genes or traits are more directly linked with the singular bacterial parent cell rather than the two parents that are involved in sexual reproduction. However, bacteria do occasionally have sex in the form of homologous recombination by taking up external DNA and incorporating it into their genomes. This happens far less regularly than sexual reproduction happens in human generations but is a known way that bacteria undergo ‘Horizontal gene transfer’. This means that genes can be acquired without being inherited. In this study we show that this form of horizontal gene transfer is more likely to happen in certain environments over others in Streptococcus pneumoniae. In particular, we show that this is more likely to happen in environments that closely mirror the nasopharynx which is the natural habitat of S. pneumoniae.
Collapse
Affiliation(s)
- Lauren A. Cowley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail:
| | | | - Roger Junges
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Med Jimson D. Jimenez
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States of America
| | - William P. Hanage
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, United States of America
| |
Collapse
|
12
|
Current challenges in the accurate identification of Streptococcus pneumoniae and its serogroups/serotypes in the vaccine era. J Microbiol Methods 2017; 141:48-54. [DOI: 10.1016/j.mimet.2017.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022]
|
13
|
Emergence of Multidrug-Resistant Pneumococcal Serotype 35B among Children in the United States. J Clin Microbiol 2016; 55:724-734. [PMID: 27847379 DOI: 10.1128/jcm.01778-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/07/2016] [Indexed: 02/04/2023] Open
Abstract
Streptococcus pneumoniae serotype 35B is a nonvaccine serotype associated with high rates of penicillin nonsusceptibility. An increase in the proportion of multidrug-resistant (MDR) 35B isolates has recently been reported. The genetic events contributing to the emergence of MDR serotype 35B are unknown. The sequence type (ST) composition of 78 serotype 35B isolates obtained from pediatric patients with invasive pneumococcal disease from 1994 to 2014 and 48 isolates from pediatric patients with otitis media (noninvasive) from 2011 to 2014 was characterized by multilocus sequence typing (MLST). The most common STs were ST558 (69.2%), ST156 (10.3%), and ST452 (3.8%). Two major clonal complexes (CC), CC558 and CC156, were identified by eBURST analysis. Overall, 91% (71/78) of isolates were penicillin nonsusceptible and 16.7% (13/78) were MDR. Among all invasive serotype 35B isolates, MDR isolates increased significantly, from 2.9% (1/35) to 27.9% (12/43) (P = 0.004), after the 13-valent pneumococcal conjugate vaccine (PCV13) was introduced. All CC156 isolates were identified after the introduction of PCV13 (0/35 [0%] before versus 9/43 [20.9%] after; P = 0.003) and were MDR. All CC156 isolates had similar antimicrobial susceptibility patterns; in contrast, high variability in antimicrobial susceptibility was observed among CC558 isolates. The distributions of CC558 and CC156 among invasive and noninvasive isolates were not different. The increased prevalence of MDR serotype 35B after the introduction of PCV13 was directly associated with the emergence of ST156. Genotyping suggests that capsular switching has occurred between MDR vaccine serotypes belonging to ST156 (e.g., 9V, 14, and 19A) and serotype 35B.
Collapse
|
14
|
Kim L, McGee L, Tomczyk S, Beall B. Biological and Epidemiological Features of Antibiotic-Resistant Streptococcus pneumoniae in Pre- and Post-Conjugate Vaccine Eras: a United States Perspective. Clin Microbiol Rev 2016; 29:525-52. [PMID: 27076637 PMCID: PMC4861989 DOI: 10.1128/cmr.00058-15] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae inflicts a huge disease burden as the leading cause of community-acquired pneumonia and meningitis. Soon after mainstream antibiotic usage, multiresistant pneumococcal clones emerged and disseminated worldwide. Resistant clones are generated through adaptation to antibiotic pressures imposed while naturally residing within the human upper respiratory tract. Here, a huge array of related commensal streptococcal strains transfers core genomic and accessory resistance determinants to the highly transformable pneumococcus. β-Lactam resistance is the hallmark of pneumococcal adaptability, requiring multiple independent recombination events that are traceable to nonpneumococcal origins and stably perpetuated in multiresistant clonal complexes. Pneumococcal strains with elevated MICs of β-lactams are most often resistant to additional antibiotics. Basic underlying mechanisms of most pneumococcal resistances have been identified, although new insights that increase our understanding are continually provided. Although all pneumococcal infections can be successfully treated with antibiotics, the available choices are limited for some strains. Invasive pneumococcal disease data compiled during 1998 to 2013 through the population-based Active Bacterial Core surveillance program (U.S. population base of 30,600,000) demonstrate that targeting prevalent capsular serotypes with conjugate vaccines (7-valent and 13-valent vaccines implemented in 2000 and 2010, respectively) is extremely effective in reducing resistant infections. Nonetheless, resistant non-vaccine-serotype clones continue to emerge and expand.
Collapse
Affiliation(s)
- Lindsay Kim
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sara Tomczyk
- Epidemiology Section, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Streptococcus Laboratory, Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
15
|
Croucher NJ, Kagedan L, Thompson CM, Parkhill J, Bentley SD, Finkelstein JA, Lipsitch M, Hanage WP. Selective and genetic constraints on pneumococcal serotype switching. PLoS Genet 2015; 11:e1005095. [PMID: 25826208 PMCID: PMC4380333 DOI: 10.1371/journal.pgen.1005095] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pneumoniae isolates typically express one of over 90 immunologically distinguishable polysaccharide capsules (serotypes), which can be classified into “serogroups” based on cross-reactivity with certain antibodies. Pneumococci can alter their serotype through recombinations affecting the capsule polysaccharide synthesis (cps) locus. Twenty such “serotype switching” events were fully characterised using a collection of 616 whole genome sequences from systematic surveys of pneumococcal carriage. Eleven of these were within-serogroup switches, representing a highly significant (p < 0.0001) enrichment based on the observed serotype distribution. Whereas the recombinations resulting in between-serogroup switches all spanned the entire cps locus, some of those that caused within-serogroup switches did not. However, higher rates of within-serogroup switching could not be fully explained by either more frequent, shorter recombinations, nor by genetic linkage to genes involved in β–lactam resistance. This suggested the observed pattern was a consequence of selection for preserving serogroup. Phenotyping of strains constructed to express different serotypes in common genetic backgrounds was used to test whether genotypes were physiologically adapted to particular serogroups. These data were consistent with epistatic interactions between the cps locus and the rest of the genome that were specific to serotype, but not serogroup, meaning they were unlikely to account for the observed distribution of capsule types. Exclusion of these genetic and physiological hypotheses suggested future work should focus on alternative mechanisms, such as host immunity spanning multiple serotypes within the same serogroup, which might explain the observed pattern. Streptococcus pneumoniae is a major respiratory pathogen responsible for a high burden of morbidity and mortality worldwide. Current anti-pneumococcal vaccines target the bacterium’s polysaccharide capsule, of which at least 95 different variants (‘serotypes’) are known, which are classified into ‘serogroups’. Bacteria can change their serotype through genetic recombination, termed ‘switching’, which can allow strains to evade vaccine-induced immunity. By combining epidemiological data with whole genome sequencing, this work finds a robust and unexpected pattern of serotype switching in a sample of bacteria collected following the introduction of routine anti-pneumococcal vaccination: switching was much more likely to exchange one serotype for another within the same serogroup than expected by chance. Several hypotheses are presented and tested to explain this pattern, including limitations of genetic recombination, interactions between the genes that determine serotype and the rest of the genome, and the constraints imposed by bacterial metabolism. This provides novel information on the evolution of S. pneumoniae, particularly regarding how the bacterium might diversify as newer vaccines are introduced.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| | - Lisa Kagedan
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Claudette M. Thompson
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Julian Parkhill
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stephen D. Bentley
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan A. Finkelstein
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
- Division of General Pediatrics, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - William P. Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
16
|
Andam CP, Hanage WP. Mechanisms of genome evolution of Streptococcus. INFECTION GENETICS AND EVOLUTION 2014; 33:334-42. [PMID: 25461843 DOI: 10.1016/j.meegid.2014.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
Abstract
The genus Streptococcus contains 104 recognized species, many of which are associated with human or animal hosts. A globally prevalent human pathogen in this group is Streptococcus pneumoniae (the pneumococcus). While being a common resident of the upper respiratory tract, it is also a major cause of otitis media, pneumonia, bacteremia and meningitis, accounting for a high burden of morbidity and mortality worldwide. Recent findings demonstrate the importance of recombination and selection in driving the population dynamics and evolution of different pneumococcal lineages, allowing them to successfully evade the impacts of selective pressures such as vaccination and antibiotic treatment. We highlight the ability of pneumococci to respond to these pressures through processes including serotype replacement, capsular switching and horizontal gene transfer (HGT) of antibiotic resistance genes. The challenge in controlling this pathogen also lies in the exceptional genetic and phenotypic variation among different pneumococcal lineages, particularly in terms of their pathogenicity and resistance to current therapeutic strategies. The widespread use of pneumococcal conjugate vaccines, which target only a small subset of the more than 90 pneumococcal serotypes, provides us with a unique opportunity to elucidate how the processes of selection and recombination interact to generate a remarkable level of plasticity and heterogeneity in the pneumococcal genome. These processes also play an important role in the emergence and spread of multi-resistant strains, which continues to pose a challenge in disease control and/or eradication. The application of population of genomic approaches at different spatial and temporal scales will help improve strategies to control this global pathogen, and potentially other pathogenic streptococci.
Collapse
Affiliation(s)
- Cheryl P Andam
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA
| | - William P Hanage
- Department of Epidemiology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
17
|
de Been M, van Schaik W, Cheng L, Corander J, Willems RJ. Recent recombination events in the core genome are associated with adaptive evolution in Enterococcus faecium. Genome Biol Evol 2013; 5:1524-35. [PMID: 23882129 PMCID: PMC3762198 DOI: 10.1093/gbe/evt111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species' rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen.
Collapse
Affiliation(s)
- Mark de Been
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
18
|
Cywes-Bentley C, Skurnik D, Zaidi T, Roux D, DeOliveira RB, Garrett WS, Lu X, O’Malley J, Kinzel K, Zaidi T, Rey A, Perrin C, Fichorova RN, Kayatani AKK, Maira-Litràn T, Gening ML, Tsvetkov YE, Nifantiev NE, Bakaletz LO, Pelton SI, Golenbock DT, Pier GB. Antibody to a conserved antigenic target is protective against diverse prokaryotic and eukaryotic pathogens. Proc Natl Acad Sci U S A 2013; 110:E2209-18. [PMID: 23716675 PMCID: PMC3683766 DOI: 10.1073/pnas.1303573110] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial capsular antigens are effective vaccines but are chemically and immunologically diverse, resulting in a major barrier to their use against multiple pathogens. A β-(1→6)-linked poly-N-acetyl-d-glucosamine (PNAG) surface capsule is synthesized by four proteins encoded in genetic loci designated intercellular adhesion in Staphylococcus aureus or polyglucosamine in selected Gram-negative bacterial pathogens. We report that many microbial pathogens lacking an identifiable intercellular adhesion or polyglucosamine locus produce PNAG, including Gram-positive, Gram-negative, and fungal pathogens, as well as protozoa, e.g., Trichomonas vaginalis, Plasmodium berghei, and sporozoites and blood-stage forms of Plasmodium falciparum. Natural antibody to PNAG is common in humans and animals and binds primarily to the highly acetylated glycoform of PNAG but is not protective against infection due to lack of deposition of complement opsonins. Polyclonal animal antibody raised to deacetylated glycoforms of PNAG and a fully human IgG1 monoclonal antibody that both bind to native and deacetylated glycoforms of PNAG mediated complement-dependent opsonic or bactericidal killing and protected mice against local and/or systemic infections by Streptococcus pyogenes, Streptococcus pneumoniae, Listeria monocytogenes, Neisseria meningitidis serogroup B, Candida albicans, and P. berghei ANKA, and against colonic pathology in a model of infectious colitis. PNAG is also a capsular polysaccharide for Neisseria gonorrhoeae and nontypable Hemophilus influenzae, and protects cells from environmental stress. Vaccination targeting PNAG could contribute to immunity against serious and diverse prokaryotic and eukaryotic pathogens, and the conserved production of PNAG suggests that it is a critical factor in microbial biology.
Collapse
Affiliation(s)
- Colette Cywes-Bentley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - David Skurnik
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tanweer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Damien Roux
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Rosane B. DeOliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wendy S. Garrett
- Departments of Immunology and Infectious Diseases, Genetics and Complex Diseases, Dana–Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115
| | - Xi Lu
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Jennifer O’Malley
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Kathryn Kinzel
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Astrid Rey
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Christophe Perrin
- Sanofi Research and Development, Therapeutic Strategic Unit, Infectious Disease, 31270 Toulouse, France
| | - Raina N. Fichorova
- Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02115
| | - Alexander K. K. Kayatani
- Vaccine Branch, Military Malaria Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Tomas Maira-Litràn
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| | - Marina L. Gening
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Moscow 119991, Russia
| | - Lauren O. Bakaletz
- The Research Institute at Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, OH 43205; and
| | - Stephen I. Pelton
- Department of Pediatric Infectious Diseases, Boston University Medical Center, Boston, MA 02118
| | - Douglas T. Golenbock
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Gerald B. Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA 02115
| |
Collapse
|
19
|
Song JY, Nahm MH, Moseley MA. Clinical implications of pneumococcal serotypes: invasive disease potential, clinical presentations, and antibiotic resistance. J Korean Med Sci 2013; 28:4-15. [PMID: 23341706 PMCID: PMC3546102 DOI: 10.3346/jkms.2013.28.1.4] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/08/2012] [Indexed: 12/27/2022] Open
Abstract
Streptococcus pneumoniae can asymptomatically colonize the nasopharynx and cause a diverse range of illnesses. This clinical spectrum from colonization to invasive pneumococcal disease (IPD) appears to depend on the pneumococcal capsular serotype rather than the genetic background. According to a literature review, serotypes 1, 4, 5, 7F, 8, 12F, 14, 18C, and 19A are more likely to cause IPD. Although serotypes 1 and 19A are the predominant causes of invasive pneumococcal pneumonia, serotype 14 remains one of the most common etiologic agents of non-bacteremic pneumonia in adults, even after 7-valent pneumococcal conjugate vaccine (PCV7) introduction. Serotypes 1, 3, and 19A pneumococci are likely to cause empyema and hemolytic uremic syndrome. Serotype 1 pneumococcal meningitis is prevalent in the African meningitis belt, with a high fatality rate. In contrast to the capsule type, genotype is more closely associated with antibiotic resistance. CC320/271 strains expressing serotype 19A are multidrug-resistant (MDR) and prevalent worldwide in the era of PCV7. Several clones of MDR serotype 6C pneumococci emerged, and a MDR 6D clone (ST282) has been identified in Korea. Since the pneumococcal epidemiology of capsule types varies geographically and temporally, a nationwide serosurveillance system is vital to establishing appropriate vaccination strategies for each country.
Collapse
Affiliation(s)
- Joon Young Song
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea.
| | | | | |
Collapse
|
20
|
Varon E. Epidemiology of Streptococcus pneumoniae. Med Mal Infect 2012; 42:361-5. [PMID: 22819510 DOI: 10.1016/j.medmal.2012.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/02/2012] [Indexed: 11/26/2022]
Abstract
The epidemiology of S. pneumoniae invasive infections in France, over the last few years, was modified by two public health measures. A nationwide campaign for the rationalization of antibiotic prescription was implemented in 2001 and vaccination of young children with the pneumococcal 7-valent conjugate vaccine in 2003. These measures led to a decrease in antibiotic resistance in S. pneumoniae strains, a lower incidence of invasive infections due to vaccine serotypes, but a higher incidence of infections due to non-vaccine serotypes, especially 7F and 19A. Despite the replacement, the incidence of invasive pneumococcal infections in children less than 2 years of age remains lower than it was before introducing the 7-valent conjugate vaccine.
Collapse
Affiliation(s)
- E Varon
- Laboratoire de microbiologie, hôpital Européen Georges-Pompidou, 20, rue Leblanc, 75908 Paris cedex 15, France.
| |
Collapse
|
21
|
Croucher NJ, Harris SR, Barquist L, Parkhill J, Bentley SD. A high-resolution view of genome-wide pneumococcal transformation. PLoS Pathog 2012; 8:e1002745. [PMID: 22719250 PMCID: PMC3375284 DOI: 10.1371/journal.ppat.1002745] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/27/2012] [Indexed: 01/03/2023] Open
Abstract
Transformation is an important mechanism of microbial evolution through which bacteria have been observed to rapidly adapt in response to clinical interventions; examples include facilitating vaccine evasion and the development of penicillin resistance in the major respiratory pathogen Streptococcus pneumoniae. To characterise the process in detail, the genomes of 124 S. pneumoniae isolates produced through in vitro transformation were sequenced and recombination events detected. Those recombinations importing the selected marker were independent of unselected events elsewhere in the genome, the positions of which were not significantly affected by local sequence similarity between donor and recipient or mismatch repair processes. However, both types of recombinations were sometimes mosaic, with multiple non-contiguous segments originating from the same molecule of donor DNA. The lengths of the unselected events were exponentially distributed with a mean of 2.3 kb, implying that recombinations are stochastically resolved with a fixed per base probability of 4.4×10(-4) bp(-1). This distribution of recombination sizes, coupled with an observed under representation of large insertions within transferred sequence, suggests transformation has the potential to reduce the size of bacterial genomes, and is unlikely to act as an efficient mechanism for the uptake of accessory genomic loci.
Collapse
Affiliation(s)
- Nicholas J Croucher
- Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
22
|
Golubchik T, Brueggemann AB, Street T, Gertz RE, Spencer CCA, Ho T, Giannoulatou E, Link-Gelles R, Harding RM, Beall B, Peto TEA, Moore MR, Donnelly P, Crook DW, Bowden R. Pneumococcal genome sequencing tracks a vaccine escape variant formed through a multi-fragment recombination event. Nat Genet 2012; 44:352-5. [PMID: 22286217 PMCID: PMC3303117 DOI: 10.1038/ng.1072] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 12/12/2011] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae ('pneumococcus') causes an estimated 14.5 million cases of serious disease and 826,000 deaths annually in children under 5 years of age(1). The highly effective introduction of the PCV7 pneumococcal vaccine in 2000 in the United States(2,3) provided an unprecedented opportunity to investigate the response of an important pathogen to widespread, vaccine-induced selective pressure. Here, we use array-based sequencing of 62 isolates from a US national monitoring program to study five independent instances of vaccine escape recombination(4), showing the simultaneous transfer of multiple and often large (up to at least 44 kb) DNA fragments. We show that one such new strain quickly became established, spreading from east to west across the United States. These observations clarify the roles of recombination and selection in the population genomics of pneumococcus and provide proof of principle of the considerable value of combining genomic and epidemiological information in the surveillance and enhanced understanding of infectious diseases.
Collapse
Affiliation(s)
| | | | - Teresa Street
- Department of Statistics, University of Oxford, Oxford, UK
| | - Robert E. Gertz
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Thien Ho
- Department of Statistics, University of Oxford, Oxford, UK
| | - Eleni Giannoulatou
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ruth Link-Gelles
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Bernard Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Tim E. A. Peto
- Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Matthew R. Moore
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Peter Donnelly
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Derrick W. Crook
- Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rory Bowden
- Department of Statistics, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Yao KH, Liu ZJ, Yu JG, Yu SJ, Yuan L, Nahm MH, Yang YH. Type distribution of serogroup 6 Streptococcus pneumoniae and molecular epidemiology of newly identified serotypes 6C and 6D in China. Diagn Microbiol Infect Dis 2011; 70:291-8. [PMID: 21546198 DOI: 10.1016/j.diagmicrobio.2011.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 03/15/2011] [Accepted: 03/20/2011] [Indexed: 11/17/2022]
Abstract
The recently determined serotypes 6C and 6D Streptococcus pneumoniae, as well as subtypes 6B-I and 6B-II, were not reported in China. Among the 171 invasive isolates, 19 were identified as serogroup 6. There were equal distribution (42.1%) of 6B-I and 6B-II, 15.8% of 6A and lack of 6C and 6D. Among 1662 noninvasive isolates, 210 were identified as serogroup 6. The rates of types 6A, 6B-I, 6B-II, 6C, and 6D were 42.4%, 21.0%, 29.1%, 4.8%, and 2.9%, respectively. Subtype 6B-II was more resistant to antibiotics than others. The main sequence types (STs) of serotype 6C and 6D isolates were ST2912 and ST982, respectively. These results suggested that all recognized types of serogroup 6 can be found in China and that subtype 6B-II was more drug resistant. The epidemic STs of serotype 6C and 6D did not show genetic association with the STs spreading in other countries.
Collapse
Affiliation(s)
- Kai-Hu Yao
- Beijing Pediatric Research Institute, Beijing Children's Hospital affiliated to Capital Medical University, Beijing 100045, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Evolution of clonal and susceptibility profiles of serotype 19A Streptococcus pneumoniae among invasive isolates from children in Spain, 1990 to 2008. Antimicrob Agents Chemother 2011; 55:2297-302. [PMID: 21343456 DOI: 10.1128/aac.01494-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic structure and antibiotic nonsusceptibility of all serotype 19A Streptococcus pneumoniae pediatric pneumococcal isolates received at the Spanish Pneumococcal Reference Laboratory (1990 to 2008) were analyzed. Of them, 410 (79.8%) isolates belonged to 14 sequence types (STs) with >10 isolates each, and 104 to 73 STs (with 21 new STs, ST5141 to ST5161, with one isolate each). Time trends in 2000 to 2008 (n=471) were explored by lineal regression. Serotype 19A increased from 5.7% in 2000 to 16.8% in 2008 (R2=0.872; P=0.001). Decreasing trends (P<0.03) were found for ST202 (R2=0.774) and ST81 (R2=0.559), and increasing trends (P<0.03) for ST878 (R2=0.544) and ST320 (R2=0.530), both belonging to the clonal complex (CC) Denmark(14)-32 and first detected in 2003 and 2007, respectively, and ST2013 (R2=0.704) and ST4461 (R2=0.707), both appearing in 2004. Penicillin nonsusceptibility was clustered in ST81, ST276, ST320, ST878, ST2013, and ST4461 (>90% nonsusceptibility), and amoxicillin and cefotaxime nonsusceptibility in ST320: 87% amoxicillin (MIC50/MIC90=8/8 μg/ml) and 43.5% cefotaxime (MIC50/MIC90=1/2 μg/ml) nonsusceptibility. No trends were found for erythromycin nonsusceptibility (ranging from 38.5% to 66.7%) and cefotaxime nonsusceptibility (ranging from 0.0% to 7.8%), but increasing trends (P<0.02) were found for oral penicillin (from 16.7% in 2000 to 56.3% in 2008; R2=0.628) and amoxicillin (from 0.0% before 2007 to 13.8% in 2008; R2=0.628) nonsusceptibility. This study warns about the emergence of serotype 19A STs associated with high-level antibiotic nonsusceptibility, with a role for ST320 and ST878 occupying the niche left by some pneumococcal 7-valent conjugate vaccine (PCV7)-related resistant STs. The rapid expansion of serotype 19A and STs related to antibiotic resistance indicates that vaccines covering serotype 19A present advantages in countering invasive disease.
Collapse
|
25
|
Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, McGee L, von Gottberg A, Song JH, Ko KS, Pichon B, Baker S, Parry CM, Lambertsen LM, Shahinas D, Pillai DR, Mitchell TJ, Dougan G, Tomasz A, Klugman KP, Parkhill J, Hanage WP, Bentley SD. Rapid pneumococcal evolution in response to clinical interventions. Science 2011; 331:430-4. [PMID: 21273480 PMCID: PMC3648787 DOI: 10.1126/science.1198545] [Citation(s) in RCA: 684] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Epidemiological studies of the naturally transformable bacterial pathogen Streptococcus pneumoniae have previously been confounded by high rates of recombination. Sequencing 240 isolates of the PMEN1 (Spain(23F)-1) multidrug-resistant lineage enabled base substitutions to be distinguished from polymorphisms arising through horizontal sequence transfer. More than 700 recombinations were detected, with genes encoding major antigens frequently affected. Among these were 10 capsule-switching events, one of which accompanied a population shift as vaccine-escape serotype 19A isolates emerged in the USA after the introduction of the conjugate polysaccharide vaccine. The evolution of resistance to fluoroquinolones, rifampicin, and macrolides was observed to occur on multiple occasions. This study details how genomic plasticity within lineages of recombinogenic bacteria can permit adaptation to clinical interventions over remarkably short time scales.
Collapse
Affiliation(s)
- Nicholas J. Croucher
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Simon R. Harris
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place, London, W2 1PG, UK
| | - Michael A. Quail
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - John Burton
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Mark van der Linden
- Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Lesley McGee
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anne von Gottberg
- Respiratory and Meningeal Pathogens Research Unit, National Institute for Communicable Diseases of the National Health Laboratory Service and University of Witwatersrand, Johannesburg, South Africa
| | - Jae Hoon Song
- Samsung Medical Centre, Sungkyunkwan University School of Medicine and Asia Pacific Foundation for Infectious Disease, Seoul, South Korea
| | - Kwan Soo Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Bruno Pichon
- Respiratory and Systemic Infection Laboratory, Health Protection Agency Centre for Infections, London, NW9 5HT, UK
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Christopher M. Parry
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Lotte M. Lambertsen
- Department of Microbiological Surveillance and Research, Statens Serum Institut, 2300 Copenhagen S, Denmark
| | - Dea Shahinas
- Department of Laboratory Medicine and Pathobiology, University of Toronto and Ontario Agency for Health Protection and Promotion, Ontario, Canada
| | - Dylan R. Pillai
- Department of Laboratory Medicine and Pathobiology, University of Toronto and Ontario Agency for Health Protection and Promotion, Ontario, Canada
| | - Timothy J. Mitchell
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Alexander Tomasz
- Laboratory of Microbiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | - Keith P. Klugman
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Respiratory and Meningeal Pathogens Research Unit, National Institute for Communicable Diseases of the National Health Laboratory Service and University of Witwatersrand, Johannesburg, South Africa
- Hubert Department of Global Health, Rollins School of Public Health and Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, GA, USA
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - William P. Hanage
- Department of Infectious Disease Epidemiology, Imperial College, St Mary’s Campus, Norfolk Place, London, W2 1PG, UK
- Department of Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Stephen D. Bentley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
26
|
Bratcher PE, Park IH, Oliver MB, Hortal M, Camilli R, Hollingshead SK, Camou T, Nahm MH. Evolution of the capsular gene locus of Streptococcus pneumoniae serogroup 6. MICROBIOLOGY-SGM 2010; 157:189-198. [PMID: 20929956 PMCID: PMC3068628 DOI: 10.1099/mic.0.043901-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Streptococcus pneumoniae expressing serogroup 6 capsules frequently causes pneumococcal infections and the evolutionary origins of the serogroup 6 strains have been extensively studied. However, these studies were performed when serogroup 6 had only two known members (serotypes 6A and 6B) and before the two new members (serotypes 6C and 6D) expressing wciNβ were found. We have therefore reinvestigated the evolutionary origins of serogroup 6 by examining the profiles of the capsule gene loci and the multilocus sequence types (MLSTs) of many serogroup 6 isolates from several continents. We confirmed that there are two classes of cps locus sequences for serogroup 6 isolates. In our study, class 2 cps sequences were limited to a few serotype 6B isolates. Neighbour-joining analysis of cps sequence profiles showed a distinct clade for 6C and moderately distinct clades for class 1 6A and 6B sequences. The serotype 6D cps profile was found within the class 1 6B clade, suggesting that it was created by recombination between 6C and 6B cps loci. Interestingly, all 6C isolates also had a unique wzy allele with a 6 bp deletion. This suggests that serotype switching to 6C involves the transfer of a large (>4 kb) gene segment that includes both the wciNβ allele and the ‘short’ wzy allele. The MLST studies of serotype 6C isolates suggest that the 6C cps locus is incorporated into many different pneumococcal genomic backgrounds but that, interestingly, 6C cps may have preferentially entered strains of the same genomic backgrounds as those of serotype 6A.
Collapse
Affiliation(s)
- P E Bratcher
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - I H Park
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M B Oliver
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - M Hortal
- Maternal and Child Health Department, Ministry of Public Health Montevideo, Uruguay
| | - R Camilli
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - S K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - T Camou
- Maternal and Child Health Department, Ministry of Public Health Montevideo, Uruguay
| | - M H Nahm
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Wintenberger C. Le pneumocoque en 2010 : de la génomique à la clinique. Med Mal Infect 2010; 40:605-9. [DOI: 10.1016/j.medmal.2010.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
|
28
|
Comparison of transformation frequencies among selected Streptococcus pneumoniae serotypes. Int J Antimicrob Agents 2010; 36:124-8. [PMID: 20472405 DOI: 10.1016/j.ijantimicag.2010.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/22/2022]
Abstract
Although there are over 90 serotypes of Streptococcus pneumoniae, antimicrobial resistance is predominantly found in a limited number of serotypes/serogroups, namely 6, 9, 14, 19 and 23. There is no compelling mechanism to account for this restriction. We aimed to determine whether serotypes commonly associated with drug resistance have higher transformation frequencies than those that are susceptible to antimicrobial agents. An in vitro investigation of the genetic transformation frequency of drug-resistant serotypes compared with that of susceptible serotypes under the influence of synthetic competence-stimulating peptides was performed. The transforming DNA was genomic DNA carrying a Tn916-like transposon containing the mefE gene that confers resistance to erythromycin. It was observed that serotypes 6, 9, 14, 19 and 23, which are highly associated with drug resistance, do not exhibit a higher degree of transformation efficiency than other serotypes. These findings suggest that the association of serotype with drug resistance is likely due to prolonged exposure to transforming DNA resulting from longer nasopharyngeal carriage and to a greater selective pressure from antimicrobials, particularly in children. This is the first study to compare the transformation frequencies of pneumococcal clinical isolates using genomic DNA that carries the composite Tn916-like element.
Collapse
|
29
|
Moore MR, Gertz RE, Woodbury RL, Barkocy-Gallagher GA, Schaffner W, Lexau C, Gershman K, Reingold A, Farley M, Harrison LH, Hadler JL, Bennett NM, Thomas AR, McGee L, Pilishvili T, Brueggemann AB, Whitney CG, Jorgensen JH, Beall B. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. J Infect Dis 2008; 197:1016-27. [PMID: 18419539 DOI: 10.1086/528996] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Serotype 19A invasive pneumococcal disease (IPD) increased annually in the United States after the introduction of the 7-valent conjugate vaccine (PCV7). To understand this increase, we characterized serotype 19A isolates recovered during 2005. METHODS IPD cases during 1998-2005 were identified through population-based surveillance. We performed susceptibility testing and multilocus sequence typing on 528 (95%) of 554 serotype 19A isolates reported in 2005. RESULTS The incidence of IPD due to serotype 19A increased from 0.8 to 2.5 cases per 100,000 population between 1998 and 2005 (P < .05), whereas the overall incidence of IPD decreased from 24.4 to 13.8 cases per 100,000 population (P < .05). Simultaneously, the incidence of IPD due to penicillin-resistant 19A isolates increased from 6.7% to 35% (P < .0001). Of 151 penicillin-resistant 19A isolates, 111 (73.5%) belonged to the rapidly emerging clonal complex 320, which is related to multidrug-resistant Taiwan(19F)-14. The remaining penicillin-resistant strains were highly related to other clones of PCV7 serotypes or to isolates within major 19A clonal complex 199 (CC199). In 1999, only CC199 and 3 minor clones were apparent among serotype 19A isolates. During 2005, 11 multiple-isolate clonal sets were detected, including capsular switch variants of a serotype 4 clone. CONCLUSIONS PCV7 ineffectiveness against serotype 19A, antibiotic resistance, clonal expansion and emergence, and capsular switching have contributed to the genetic diversity of 19A and to its emergence as the predominant invasive pneumococcal serotype in the United States.
Collapse
Affiliation(s)
- Matthew R Moore
- Respiratory Diseases Branch, Centers for Disease Control and Prevention, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hanage WP. Serotype-specific problems associated with pneumococcal conjugate vaccination. Future Microbiol 2008; 3:23-30. [PMID: 18230031 DOI: 10.2217/17460913.3.1.23] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A conjugate vaccine against seven of the 91 known pneumococcal serotypes was licensed in the USA in 2000 and has had profound effects on pneumococcal disease and ecology. Among these is the virtual disappearance of vaccine serotypes from carriage, and their replacement with nonvaccine serotypes, some of which are making an impact upon pneumococcal disease. Here, the impact of this serotype replacement on pneumococcal disease is discussed, and those serotypes that are important players in the post-vaccine era are identified. Furthermore, the impact of replacement in vulnerable patient populations, such as Alaska Natives and persons living with HIV is discussed, as well as its consequences for other disease manifestations such as otitis media. Finally, lessons from the US experience for conjugate vaccination in other settings including sub-Saharan Africa are drawn.
Collapse
Affiliation(s)
- William P Hanage
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
31
|
Brueggemann AB, Pai R, Crook DW, Beall B. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States. PLoS Pathog 2008; 3:e168. [PMID: 18020702 PMCID: PMC2077903 DOI: 10.1371/journal.ppat.0030168] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 09/24/2007] [Indexed: 11/19/2022] Open
Abstract
The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel “vaccine escape recombinant” pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term. The 7-valent pneumococcal conjugate vaccine is a remarkable public health success story. It has significantly reduced invasive pneumococcal disease in the United States not only by protecting vaccinated children, but also by protecting unvaccinated older children and adults by herd immunity. However, there was always a concern that use of a limited-valency vaccine would result in an increase in disease due to nonvaccine serotypes, and this has now occurred in the US. The predominant nonvaccine serotype causing invasive disease is 19A, and this increase is partially explained by “vaccine escape” pneumococci, strains that have exchanged the genes that encode a vaccine serotype 4 capsule for genes that encode a nonvaccine serotype 19A capsule. These strains are then able to escape vaccine-induced immunity. Characterisation of the genetic event that resulted in these vaccine escape strains was the focus of our study and the results were surprising. The results of this study have important relevance to the long-term effectiveness of the current vaccine and to the development of future pneumococcal vaccines.
Collapse
|
32
|
Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J Bacteriol 2007; 190:1605-14. [PMID: 18083799 DOI: 10.1128/jb.01592-07] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high frequency of between-strain genetic recombinants of Chlamydia trachomatis among isolates obtained from human sexually transmitted infections suggests that lateral gene transfer (LGT) is an important means by which C. trachomatis generates variants that have enhanced relative fitness. A mechanism for LGT in C. trachomatis has not been described, and investigation of this phenomenon by experimentation has been hampered by the obligate intracellular development of this pathogen. We describe here experiments that readily detected LGT between strains of C. trachomatis in vitro. Host cells were simultaneously infected with an ofloxacin-resistant (Ofx(r)) mutant of a serovar L1 strain (L1:Ofx(r)-1) and a rifampin-resistant (Rif(r)) mutant of a serovar D strain (D:Rif(r)-1). Development occurred in the absence of antibiotics, and the progeny were subjected to selection for Ofx(r) Rif(r) recombinants. The parental strains differed at many polymorphic nucleotide sites, and DNA sequencing was used to map genetic crossovers and to determine the parental sources of DNA segments in 14 recombinants. Depending on the assumed DNA donor, the estimated minimal length of the transferred DNA was > or = 123 kb in one recombinant but was > or = 336 to > or = 790 kb in all other recombinants. Such trans-DNA lengths have been associated only with conjugation in known microbial LGT systems, but natural DNA transformation remains a conceivable mechanism. LGT studies can now be performed with diverse combinations of C. trachomatis strains, and they could have evolutionary interest and yield useful recombinants for functional analysis of allelic differences between strains.
Collapse
|
33
|
Beall B. Vaccination with the pneumococcal 7-valent conjugate: a successful experiment but the species is adapting. Expert Rev Vaccines 2007; 6:297-300. [PMID: 17542743 DOI: 10.1586/14760584.6.3.297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Stanhope MJ, Walsh SL, Becker JA, Miller LA, Lefébure T, Lang P, Bitar PDP, Amrine-Madsen H. The relative frequency of intraspecific lateral gene transfer of penicillin binding proteins 1a, 2b, and 2x, in amoxicillin resistant Streptococcus pneumoniae. INFECTION GENETICS AND EVOLUTION 2007; 7:520-34. [PMID: 17475572 DOI: 10.1016/j.meegid.2007.03.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 03/21/2007] [Accepted: 03/23/2007] [Indexed: 11/18/2022]
Abstract
Evidence exists for both interspecific and intraspecific recombination (lateral gene transfer; LGT) involving Streptococcus pneumoniae pbp (penicillin binding protein) loci. LGT of capsular genes, or serotype switching, is also know to occur between S. pneumoniae of different serotype. It is not clear whether intraspecific pbp LGT is relatively common, whether there is a difference in the relative frequency of intraspecific LGT of different pbps, and whether serotype switching is more or less frequent than pbp LGT. The purpose of this study was to use comparative evolutionary biology analysis of 216 international clinical S. pneumoniae isolates, from the Alexander Project collection, to gain insight on these issues, as well as the possible role they might be playing in spreading amoxicillin resistance. All 216 isolates were genotyped using MLST and complete or nearly complete sequences for pbp1a, pbp2b, and pbp2x were determined. Amoxicillin MICs were available for each isolate. pbps were genotyped using phylogenetics and two or more pbp types within a MLST sequence type (ST) or clonal complex were taken as putative cases of pbp LGT; these hypotheses were statistically evaluated using the approximately unbiased (AU) test. Serotypes were determined for 171 of these isolates and the minimum number of switching events necessary to explain the serotype phenotypes for each of the STs and clonal complexes were evaluated. The majority (78%) of the amoxicillin resistant isolates were comprised in 5 clonal complexes. The relative frequency of pbp LGT was greatest for pbp2b and 2x (minimum of 10.2 and 7.8%, respectively, of the isolates consistent with the LGT hypothesis), followed by 1a (3.9%). Serotype switching was more frequent than intraspecific pbp LGT (33% of isolates consistent with serotype switching hypothesis). Although intraspecific LGT of pbps is occurring and has played a role in the spread of amoxicillin resistance in S. pneumoniae, clonal dissemination appears to be more significant.
Collapse
Affiliation(s)
- Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
McEllistrem MC, Adams JM, Visweswaran S, Khan SA. Detection of Very High–Level Penicillin-Resistant Variants of the Tennessee23F-4 Clone Via Single and Serial Transformations with Four Serotype 19A International Pneumococcal Clones. Microb Drug Resist 2005; 11:271-8. [PMID: 16201931 DOI: 10.1089/mdr.2005.11.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the United States, penicillin-resistant variants of the Tennessee (Tenn) (23 F)-4 clone account for a substantial proportion of the very-high-level penicillin-resistant (MIC 8 microg/ml) infections in the 7-valent pneumococcal protein conjugate vaccine (PCV 7) era. Serotype 19 A strains account for an increasing proportion of penicillin-nonsusceptible Streptococcus pneumoniae infections. Sequential transformations of the Tenn (23 F)-4 clone (penicillin MIC 0.1 microg/ml) were performed with four penicillin-nonsusceptible serotype 19 A international clones (penicillin MIC): S. Africa (19 A)-7 (0.5 microg/ml), Hungary (19 A)-6 (2 microg/ml), Slovakia (19 A)-11 (8 microg/ml), and South Africa (19 A)-13 (8 microg/ml). Fifty-two transformants were characterized by MICs, serogroup-specific PCR, pbp PCR restriction profile and sequence, psp A PCR restriction profile, and erm/mef PCR. A subset was analyzed with multilocus sequence typing (MLST) and pulsed-field gel electrophoresis. Serotype 23 F transformants with penicillin MIC >or= 8 microg/ml were detected through a single transformation with the Hungary (19 A)-6 clone or serial transformations using two to three different clones. Forty-four percent (14/32) of the transformants incorporated >or=1 new MLST allele. Using encapsulated donors, very-high-level penicillin resistant variants of the Tenn (23 F)-4 clone were detected. In addition to detecting stepwise increases in penicillin MIC, a 12-fold increase in penicillin MIC was achieved through a single transformation. This large increase in MIC may explain why this clone is commonly associated with very-high-level resistance in natural populations. Recombination within the MLST housekeeping genes was commonly detected in the transformants that had acquired penicillin resistance.
Collapse
|
36
|
Trzciński K, MacNeil A, Klugman KP, Lipsitch M. Capsule homology does not increase the frequency of transformation of linked penicillin binding proteins PBP 1a and PBP 2x in Streptococcus pneumoniae. Antimicrob Agents Chemother 2005; 49:1591-2. [PMID: 15793147 PMCID: PMC1068637 DOI: 10.1128/aac.49.4.1591-1592.2005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin resistance is mainly confined to a limited number of Streptococcus pneumoniae serotypes. Given linkage between the capsular biosynthesis locus and two penicillin binding proteins, we tested whether capsule homology increases transformation rates of penicillin resistance. Transformation rates in homologous donor-recipient pairs were no higher than expected, falsifying this hypothesis.
Collapse
Affiliation(s)
- Krzysztof Trzciński
- Department of Epidemiology, Harvard School of Public Health, Room 903, Building 1, 665 Huntington Ave., Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|