1
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
2
|
González V, Santamaría RI, Bustos P, Pérez-Carrascal OM, Vinuesa P, Juárez S, Martínez-Flores I, Cevallos MÁ, Brom S, Martínez-Romero E, Romero D. Phylogenomic Rhizobium Species Are Structured by a Continuum of Diversity and Genomic Clusters. Front Microbiol 2019; 10:910. [PMID: 31114559 PMCID: PMC6503217 DOI: 10.3389/fmicb.2019.00910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/10/2019] [Indexed: 01/07/2023] Open
Abstract
The bacterial genus Rhizobium comprises diverse symbiotic nitrogen-fixing species associated with the roots of plants in the Leguminosae family. Multiple genomic clusters defined by whole genome comparisons occur within Rhizobium, but their equivalence to species is controversial. In this study we investigated such genomic clusters to ascertain their significance in a species phylogeny context. Phylogenomic inferences based on complete sets of ribosomal proteins and stringent core genome markers revealed the main lineages of Rhizobium. The clades corresponding to R. etli and R. leguminosarum species show several genomic clusters with average genomic nucleotide identities (ANI > 95%), and a continuum of divergent strains, respectively. They were found to be inversely correlated with the genetic distance estimated from concatenated ribosomal proteins. We uncovered evidence of a Rhizobium pangenome that was greatly expanded, both in its chromosomes and plasmids. Despite the variability of extra-chromosomal elements, our genomic comparisons revealed only a few chromid and plasmid families. The presence/absence profile of genes in the complete Rhizobium genomes agreed with the phylogenomic pattern of species divergence. Symbiotic genes were distributed according to the principal phylogenomic Rhizobium clades but did not resolve genome clusters within the clades. We distinguished some types of symbiotic plasmids within Rhizobium that displayed different rates of synonymous nucleotide substitutions in comparison to chromosomal genes. Symbiotic plasmids may have been repeatedly transferred horizontally between strains and species, in the process displacing and substituting pre-existing symbiotic plasmids. In summary, the results indicate that Rhizobium genomic clusters, as defined by whole genomic identities, might be part of a continuous process of evolutionary divergence that includes the core and the extrachromosomal elements leading to species formation.
Collapse
Affiliation(s)
- Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Rosa Isela Santamaría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Patricia Bustos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Irma Martínez-Flores
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Susana Brom
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - David Romero
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Draft Genome Sequence of Rhizobium sophoriradicis H4, a Nitrogen-Fixing Bacterium Associated with the Leguminous Plant Phaseolus vulgaris on the Coast of Peru. GENOME ANNOUNCEMENTS 2018; 6:6/21/e00241-18. [PMID: 29798911 PMCID: PMC5968715 DOI: 10.1128/genomea.00241-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The genome sequence of Rhizobium sophoriradicis H4, a nitrogen-fixing bacterium isolated from the common bean (Phaseolus vulgaris) in Peru, is reported here. The genome assembly revealed a 6.44-Mbp genome which was distributed into 95 contigs, with N50 and L50 values of 293 kbp and 9, respectively. The genome contained 6,312 coding sequence (CDS) genes and 52 RNA genes (49 tRNAs and 3 rRNAs).
Collapse
|
4
|
Wang X, Liu D, Luo Y, Zhao L, Liu Z, Chou M, Wang E, Wei G. Comparative analysis of rhizobial chromosomes and plasmids to estimate their evolutionary relationships. Plasmid 2018; 96-97:13-24. [PMID: 29608935 DOI: 10.1016/j.plasmid.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/26/2022]
Abstract
In the present study, complete genomic sequences retrieved from 57 rhizobial strains that covered four genera including 11 species were analyzed comprehensively. The four types of replicons: chromosomes, chromids, nonsymbiotic plasmids, and symbiotic plasmids were investigated and compared among these strains. Results showed that co-evolution occurred among these four replicons based on the similarities in average nucleotide identity. High correlation coefficient r values were observed between chromosomes and chromids, as well as between chromosomes and nonsymbiotic plasmids. Chromosomes and symbiotic plasmids showed different phylogenetic topology based on their core genes. Population structure analyses were performed to extrapolate the evolutionary histories of the test strains based on their chromosomal and symbiotic plasmid background. This resulted in seven ancestral types for chromosomal genes and three ancestral types for symbiotic plasmid genes. Rhizobial strains containing chromosome genes with ancestral type E tend to contain symbiotic plasmid genes with ancestral type II, while rhizobial strains containing chromosome genes with ancestral type G tend to contain symbiotic plasmid genes with ancestral type III. Seventeen strains associated with different host plant species which harbored the symbiotic genes with ancestral type I, exhibited high genetic diversity. In addition, Fu's test of the symbiotic plasmid genes with ancestral type III had undergone an expansion event, implying the influence of negative selection on these symbiotic plasmid genes.
Collapse
Affiliation(s)
- Xinye Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Dongying Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Yantao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Zhenshan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Science, Northwest A&F University, 712100 Yangling, People's Republic of China.
| |
Collapse
|
5
|
diCenzo GC, Zamani M, Ludwig HN, Finan TM. Heterologous Complementation Reveals a Specialized Activity for BacA in the Medicago-Sinorhizobium meliloti Symbiosis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:312-324. [PMID: 28398123 DOI: 10.1094/mpmi-02-17-0030-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The bacterium Sinorhizobium meliloti Rm2011 forms N2-fixing root nodules on alfalfa and other leguminous plants. The pSymB chromid contains a 110-kb region (the ETR region) showing high synteny to a chromosomally located region in Sinorhizobium fredii NGR234 and related rhizobia. We recently introduced the ETR region from S. fredii NGR234 into the S. meliloti chromosome. Here, we report that, unexpectedly, the S. fredii NGR234 ETR region did not complement deletion of the S. meliloti ETR region in symbiosis with Medicago sativa. This phenotype was due to the bacA gene of NGR234 not being functionally interchangeable with the S. meliloti bacA gene during M. sativa symbiosis. Further analysis revealed that, whereas bacA genes from S. fredii or Rhizobium leguminosarum bv. viciae 3841 failed to complement the Fix- phenotype of a S. meliloti bacA mutant with M. sativa, they allowed for further developmental progression prior to a loss of viability. In contrast, with Melilotus alba, bacA from S. fredii and R. leguminosarum supported N2 fixation by a S. meliloti bacA mutant. Additionally, the S. meliloti bacA gene can support N2 fixation of a R. leguminosarum bacA mutant during symbiosis with Pisum sativum. A phylogeny of BacA proteins illustrated that S. meliloti BacA has rapidly diverged from most rhizobia and has converged toward the sequence of pathogenic genera Brucella and Escherichia. These data suggest that the S. meliloti BacA has evolved toward a specific interaction with Medicago and highlights the limitations of using a single model system for the study of complex biological topics.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Hannah N Ludwig
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
6
|
|
7
|
Pérez Carrascal OM, VanInsberghe D, Juárez S, Polz MF, Vinuesa P, González V. Population genomics of the symbiotic plasmids of sympatric nitrogen-fixing Rhizobium species associated with Phaseolus vulgaris. Environ Microbiol 2016; 18:2660-76. [PMID: 27312778 DOI: 10.1111/1462-2920.13415] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/13/2016] [Indexed: 11/28/2022]
Abstract
Cultivated common beans are the primary protein source for millions of people around the world who subsist on low-input agriculture, enabled by the symbiotic N2 -fixation these legumes perform in association with rhizobia. Within a single agricultural plot, multiple Rhizobium species can nodulate bean roots, but it is unclear how genetically isolated these species remain in sympatry. To better understand this issue, we sequenced and compared the genomes of 33 strains isolated from the rhizosphere and root nodules of a particular bean variety grown in the same agricultural plot. We found that the Rhizobium species we observed coexist with low genetic recombination across their core genomes. Accessory plasmids thought to be necessary for the saprophytic lifestyle in soil show similar levels of genetic isolation, but with higher rates of recombination than the chromosomes. However, the symbiotic plasmids are extremely similar, with high rates of recombination and do not appear to have co-evolved with the chromosome or accessory plasmids. Therefore, while Rhizobium species are genetically isolated units within the microbial community, a common symbiotic plasmid allows all Rhizobium species to engage in symbiosis with the same host in a single agricultural plot.
Collapse
Affiliation(s)
- Olga M Pérez Carrascal
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Soledad Juárez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pablo Vinuesa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| | - Víctor González
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México
| |
Collapse
|
8
|
diCenzo GC, Zamani M, Milunovic B, Finan TM. Genomic resources for identification of the minimal N2 -fixing symbiotic genome. Environ Microbiol 2016; 18:2534-47. [PMID: 26768651 DOI: 10.1111/1462-2920.13221] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/17/2015] [Accepted: 01/09/2016] [Indexed: 12/11/2022]
Abstract
The lack of an appropriate genomic platform has precluded the use of gain-of-function approaches to study the rhizobium-legume symbiosis, preventing the establishment of the genes necessary and sufficient for symbiotic nitrogen fixation (SNF) and potentially hindering synthetic biology approaches aimed at engineering this process. Here, we describe the development of an appropriate system by reverse engineering Sinorhizobium meliloti. Using a novel in vivo cloning procedure, the engA-tRNA-rmlC (ETR) region, essential for cell viability and symbiosis, was transferred from Sinorhizobium fredii to the ancestral location on the S. meliloti chromosome, rendering the ETR region on pSymB redundant. A derivative of this strain lacking both the large symbiotic replicons (pSymA and pSymB) was constructed. Transfer of pSymA and pSymB back into this strain restored symbiotic capabilities with alfalfa. To delineate the location of the single-copy genes essential for SNF on these replicons, we screened a S. meliloti deletion library, representing > 95% of the 2900 genes of the symbiotic replicons, for their phenotypes with alfalfa. Only four loci, accounting for < 12% of pSymA and pSymB, were essential for SNF. These regions will serve as our preliminary target of the minimal set of horizontally acquired genes necessary and sufficient for SNF.
Collapse
Affiliation(s)
- George C diCenzo
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Branislava Milunovic
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
9
|
Near-full length sequencing of 16S rDNA and RFLP indicates that Rhizobium etli is the dominant species nodulating Egyptian winter Berseem clover (Trifolium alexandrinum L.). Syst Appl Microbiol 2014; 37:121-8. [DOI: 10.1016/j.syapm.2013.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/10/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022]
|
10
|
Characterization of IntA, a bidirectional site-specific recombinase required for conjugative transfer of the symbiotic plasmid of Rhizobium etli CFN42. J Bacteriol 2013; 195:4668-77. [PMID: 23935046 DOI: 10.1128/jb.00714-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-specific recombination occurs at short specific sequences, mediated by the cognate recombinases. IntA is a recombinase from Rhizobium etli CFN42 and belongs to the tyrosine recombinase family. It allows cointegration of plasmid p42a and the symbiotic plasmid via site-specific recombination between attachment regions (attA and attD) located in each replicon. Cointegration is needed for conjugative transfer of the symbiotic plasmid. To characterize this system, two plasmids harboring the corresponding attachment sites and intA were constructed. Introduction of these plasmids into R. etli revealed IntA-dependent recombination events occurring at high frequency. Interestingly, IntA promotes not only integration, but also excision events, albeit at a lower frequency. Thus, R. etli IntA appears to be a bidirectional recombinase. IntA was purified and used to set up electrophoretic mobility shift assays with linear fragments containing attA and attD. IntA-dependent retarded complexes were observed only with fragments containing either attA or attD. Specific retarded complexes, as well as normal in vivo recombination abilities, were seen even in derivatives harboring only a minimal attachment region (comprising the 5-bp central region flanked by 9- to 11-bp inverted repeats). DNase I-footprinting assays with IntA revealed specific protection of these zones. Mutations that disrupt the integrity of the 9- to 11-bp inverted repeats abolish both specific binding and recombination ability, while mutations in the 5-bp central region severely reduce both binding and recombination. These results show that IntA is a bidirectional recombinase that binds to att regions without requiring neighboring sequences as enhancers of recombination.
Collapse
|
11
|
South african papilionoid legumes are nodulated by diverse burkholderia with unique nodulation and nitrogen-fixation Loci. PLoS One 2013; 8:e68406. [PMID: 23874611 PMCID: PMC3708930 DOI: 10.1371/journal.pone.0068406] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/29/2013] [Indexed: 11/20/2022] Open
Abstract
The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region.
Collapse
|
12
|
Pistorio M, Torres Tejerizo GA, Del Papa MF, Giusti MDLA, Lozano M, Lagares A. rptA, a novel gene from Ensifer (Sinorhizobium) meliloti involved in conjugal transfer. FEMS Microbiol Lett 2013; 345:22-30. [PMID: 23672494 DOI: 10.1111/1574-6968.12177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/08/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022] Open
Abstract
We approached the identification of Ensifer (Sinorhizobium) meliloti conjugal functions by random Tn5-B13 mutagenesis of the pSmeLPU88a plasmid of E. meliloti strain LPU88 and the subsequent selection of those mutants that had lost the ability to mobilize the small plasmid pSmeLPU88b. The Tn5-B13-insertion site of one of the mutants was cloned as an EcoRI-restricted DNA fragment that after subsequent isolation and sequencing demonstrated that a small open reading frame of 522 bp (designated rptA, for rhizobium plasmid transfer A) had been disrupted. The predicted gene product encoded by the rptA sequence shows a significant similarity to two hypothetical proteins of the plasmid pSmed03 of Ensifer medicae WSM419 and other rhizobia plasmids. No significant similarity was found to any protein sequence of known function registered in the databases. Although the rptA gene was required for pSmeLPU88b-plasmid mobilization in the strain 2011 background, it was not required in the original strain LPU88 background.
Collapse
Affiliation(s)
- Mariano Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CCT-CONICET-La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
13
|
Marek-Kozaczuk M, Leszcz A, Wielbo J, Wdowiak-Wróbel S, Skorupska A. Rhizobium pisi sv. trifolii K3.22 harboring nod genes of the Rhizobium leguminosarum sv. trifolii cluster. Syst Appl Microbiol 2013; 36:252-8. [DOI: 10.1016/j.syapm.2013.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
|
14
|
Nogales J, Blanca-Ordóñez H, Olivares J, Sanjuán J. Conjugal transfer of the Sinorhizobium meliloti 1021 symbiotic plasmid is governed through the concerted action of one- and two-component signal transduction regulators. Environ Microbiol 2013; 15:811-21. [PMID: 23336126 DOI: 10.1111/1462-2920.12073] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 11/08/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022]
Abstract
Conjugal transfer of Sinorhizobium meliloti and Rhizobium etli symbiotic plasmids are repressed by the transcriptional regulator RctA. Here we report on new key players in the signal transduction cascade towards S. meliloti pSym conjugation. We have identified S. meliloti pSymA gene SMa0974 as an orthologue of the R. etli rctB gene which is required to antagonize repression by RctA. In S. meliloti two additional genes, rctR and rctC participate in control of rctB expression. rctR (SMa0955) encodes a protein of the GntR family of transcriptional regulators involved in repression of rctB. A rctR mutant promotes pSymA conjugal transfer and displays increased transcription of tra, virB and rctB genes even in presence of wild-type rctA gene. Among genes repressed by RctR, rctC (SMa0961) encodes a response regulator required to activate rctB transcription and therefore for derepression of plasmid conjugative functions. We conclude that in both R. etli and S. meliloti pSym conjugal transfer is derepressed via rctB, however the regulatory cascades to achieve activation of rctB are probably different. Upstream of rctB, the S. meliloti pSym conjugal transfer is regulated through the concerted action of genes representing one- (rctR) and two-component (rctC) signal transduction systems in response to yet unidentified signals.
Collapse
Affiliation(s)
- Joaquina Nogales
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | | | | | | |
Collapse
|
15
|
Baymiev AK, Ivanova ES, Ptitsyn KG, Chubukova OV, Baymiev AK. Phylogenetic analysis of symbiotic genes of nodule bacteria in plants of the genus Lathyrus (L.) (Fabaceae). MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2012. [DOI: 10.3103/s0891416811040021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Giusti MDLÁ, Pistorio M, Lozano MJ, Tejerizo GAT, Salas ME, Martini MC, López JL, Draghi WO, Del Papa MF, Pérez-Mendoza D, Sanjuán J, Lagares A. Genetic and functional characterization of a yet-unclassified rhizobial Dtr (DNA-transfer-and-replication) region from a ubiquitous plasmid conjugal system present in Sinorhizobium meliloti, in Sinorhizobium medicae, and in other nonrhizobial Gram-negative bacteria. Plasmid 2012; 67:199-210. [PMID: 22233546 DOI: 10.1016/j.plasmid.2011.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/24/2011] [Accepted: 12/01/2011] [Indexed: 11/15/2022]
Abstract
Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.
Collapse
Affiliation(s)
- María de los Ángeles Giusti
- Instituto de Biotecnología y Biología Molecular (IBBM)-CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Acosta JL, Eguiarte LE, Santamaría RI, Bustos P, Vinuesa P, Martínez-Romero E, Dávila G, González V. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination. BMC Evol Biol 2011; 11:305. [PMID: 22004448 PMCID: PMC3215678 DOI: 10.1186/1471-2148-11-305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Background Most of the DNA variations found in bacterial species are in the form of single nucleotide polymorphisms (SNPs), but there is some debate regarding how much of this variation comes from mutation versus recombination. The nitrogen-fixing symbiotic bacteria Rhizobium etli is highly variable in both genomic structure and gene content. However, no previous report has provided a detailed genomic analysis of this variation at nucleotide level or the role of recombination in generating diversity in this bacterium. Here, we compared draft genomic sequences versus complete genomic sequences to obtain reliable measures of genetic diversity and then estimated the role of recombination in the generation of genomic diversity among Rhizobium etli. Results We identified high levels of DNA polymorphism in R. etli, and found that there was an average divergence of 4% to 6% among the tested strain pairs. DNA recombination events were estimated to affect 3% to 10% of the genomic sample analyzed. In most instances, the nucleotide diversity (π) was greater in DNA segments with recombinant events than in non-recombinant segments. However, this degree of recombination was not sufficiently large to disrupt the congruence of the phylogenetic trees, and further evaluation of recombination in strains quartets indicated that the recombination levels in this species are proportionally low. Conclusion Our data suggest that R. etli is a species composed of separated lineages with low homologous recombination among the strains. Horizontal gene transfer, particularly via the symbiotic plasmid characteristic of this species, seems to play an important role in diversity but the lineages maintain their evolutionary cohesiveness.
Collapse
Affiliation(s)
- José L Acosta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad N/C Col. Chamilpa, Apdo. Postal 565-A, Cuernavaca 62210, México.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Torres Tejerizo G, Florencia Del Papa M, de los Ángeles Giusti M, Draghi W, Lozano M, Lagares A, Pistorio M. Characterization of extrachromosomal replicons present in the extended host range Rhizobium sp. LPU83. Plasmid 2010; 64:177-85. [DOI: 10.1016/j.plasmid.2010.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 06/05/2010] [Accepted: 07/06/2010] [Indexed: 11/30/2022]
|
19
|
Experimental evidences of pSym transfer in a native peanut-associated rhizobia. Microbiol Res 2010; 165:505-15. [DOI: 10.1016/j.micres.2009.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/11/2009] [Accepted: 08/16/2009] [Indexed: 11/19/2022]
|
20
|
Evolutionary dynamics of insertion sequences in relation to the evolutionary histories of the chromosome and symbiotic plasmid genes of Rhizobium etli populations. Appl Environ Microbiol 2010; 76:6504-13. [PMID: 20675442 DOI: 10.1128/aem.01001-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion sequences (IS) are mobile genetic elements that are distributed in many prokaryotes. In particular, in the genomes of the symbiotic nitrogen-fixing bacteria collectively known as rhizobia, IS are fairly abundant in plasmids or chromosomal islands that carry the genes needed for symbiosis. Here, we report an analysis of the distribution and genetic conservation of the IS found in the genome of Rhizobium etli CFN42 in a collection of 87 Rhizobium strains belonging to populations with different geographical origins. We used PCR to generate presence/absence profiles of the 39 IS found in R. etli CFN42 and evaluated whether the IS were located in consistent genomic contexts. We found that the IS from the symbiotic plasmid were frequently present in the analyzed strains, whereas the chromosomal IS were observed less frequently. We then examined the evolutionary dynamics of these strains based on a population genetic analysis of two chromosomal housekeeping genes (glyA and dnaB) and three symbiotic sequences (nodC and the two IS elements). Our results indicate that the IS contained within the symbiotic plasmid have a higher degree of genomic context conservation, lower nucleotide diversity and genetic differentiation, and fewer recombination events than the chromosomal housekeeping genes. These results suggest that the R. etli populations diverged recently in Mexico, that the symbiotic plasmid also had a recent origin, and that the IS elements have undergone a process of cyclic infection and expansion.
Collapse
|
21
|
Abstract
Rhizobia are agriculturally important bacteria that can form nitrogen-fixing nodules on the roots of leguminous plants. Agricultural application of rhizobial inoculants can play an important role in increasing leguminous crop yields. In temperate rhizobia, genes involved in nodulation and nitrogen fixation are usually located on one or more large plasmids (pSyms) or on symbiotic islands. In addition, other large plasmids of rhizobia carry genes that are beneficial for survival and competition of rhizobia in the rhizosphere. Conjugative transfer of these large plasmids thus plays an important role in the evolution of rhizobia. Therefore, understanding the mechanism of conjugative transfer of large rhizobial plasmids provides foundations for maintaining, monitoring, and predicting the behaviour of these plasmids during field release events. In this minireview, we summarize two types of known rhizobial conjugative plasmids, including quorum sensing regulated plasmids and RctA-repressed plasmids. We provide evidence for the existence of a third type of conjugative plasmid, including pRleVF39c in Rhizobium leguminosarum bv. viciae strain VF39SM, and we provide a comparison of the different types of conjugation genes found in members of the rhizobia that have had their genomes sequenced so far.
Collapse
Affiliation(s)
- Hao Ding
- Department of Biological Sciences, University of Calgary, AB, Canada
| | | |
Collapse
|
22
|
Crossman LC, Castillo-Ramírez S, McAnnula C, Lozano L, Vernikos GS, Acosta JL, Ghazoui ZF, Hernández-González I, Meakin G, Walker AW, Hynes MF, Young JPW, Downie JA, Romero D, Johnston AWB, Dávila G, Parkhill J, González V. A common genomic framework for a diverse assembly of plasmids in the symbiotic nitrogen fixing bacteria. PLoS One 2008; 3:e2567. [PMID: 18596979 PMCID: PMC2434198 DOI: 10.1371/journal.pone.0002567] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/06/2008] [Indexed: 12/30/2022] Open
Abstract
This work centres on the genomic comparisons of two closely-related nitrogen-fixing symbiotic bacteria, Rhizobium leguminosarum biovar viciae 3841 and Rhizobium etli CFN42. These strains maintain a stable genomic core that is also common to other rhizobia species plus a very variable and significant accessory component. The chromosomes are highly syntenic, whereas plasmids are related by fewer syntenic blocks and have mosaic structures. The pairs of plasmids p42f-pRL12, p42e-pRL11 and p42b-pRL9 as well large parts of p42c with pRL10 are shown to be similar, whereas the symbiotic plasmids (p42d and pRL10) are structurally unrelated and seem to follow distinct evolutionary paths. Even though purifying selection is acting on the whole genome, the accessory component is evolving more rapidly. This component is constituted largely for proteins for transport of diverse metabolites and elements of external origin. The present analysis allows us to conclude that a heterogeneous and quickly diversifying group of plasmids co-exists in a common genomic framework.
Collapse
Affiliation(s)
- Lisa C. Crossman
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (LCC); (VC)
| | | | | | - Luis Lozano
- Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - José L. Acosta
- Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Zara F. Ghazoui
- Department of Biology, University of York, York, United Kingdom
| | | | - Georgina Meakin
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alan W. Walker
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | | | | | - David Romero
- Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | | | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Víctor González
- Universidad Nacional Autónoma de México, Cuernavaca, México
- * E-mail: (LCC); (VC)
| |
Collapse
|
23
|
Transcriptional interference and repression modulate the conjugative ability of the symbiotic plasmid of Rhizobium etli. J Bacteriol 2008; 190:4189-97. [PMID: 18424522 DOI: 10.1128/jb.00041-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the order Rhizobiales are able to establish nitrogen-fixing symbioses with legumes. Commonly, genes for symbiosis are harbored on large symbiotic plasmids. Although the transfer of symbiotic plasmids is commonly detected in nature, there are few experimentally characterized examples. In Rhizobium etli, the product of rctA inhibits the conjugation of the symbiotic plasmid by reducing the transcription of the virB operon. rctA is transcribed divergently from this operon, and its product is predicted to have a DNA binding domain. In the present study, using DNase I footprinting and binding assays, we demonstrated the specific binding of RctA to the virB operon promoter. A 9-bp motif in the spacer region of this promoter (the rctA binding motif box) and the presence of a functional -10 region were critical elements for RctA binding. Transcriptional fusion analyses revealed that the elimination of either element provoked a relief of RctA-mediated repression. These data support a model in which RctA inhibits the access of the RNA polymerase to the virB promoter. Interestingly, rctA expression levels were modulated by transcriptional interference from transcripts emanating from the virB promoter. This phenomenon adds another level of regulation for this system, thus revealing a novel mechanism of plasmid transfer regulation in the Rhizobiales.
Collapse
|
24
|
MacLean AM, Finan TM, Sadowsky MJ. Genomes of the symbiotic nitrogen-fixing bacteria of legumes. PLANT PHYSIOLOGY 2007; 144:615-22. [PMID: 17556525 PMCID: PMC1914180 DOI: 10.1104/pp.107.101634] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Affiliation(s)
- Allyson M MacLean
- Department of Biology, Center for Environmental Genomics, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | |
Collapse
|
25
|
Yuan B, Yokochi N, Yoshikane Y, Ohnishi K, Yagi T. Molecular cloning, identification and characterization of 2-methyl-3-hydroxypyridine-5-carboxylic-acid-dioxygenase-coding gene from the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. J Biosci Bioeng 2006; 102:504-10. [PMID: 17270714 DOI: 10.1263/jbb.102.504] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 08/24/2006] [Indexed: 11/17/2022]
Abstract
The gene (mlr6788) of a nitrogen-fixing symbiotic bacterium Mesorhizobium loti MAFF303099 has been identified as a gene coding for 2-methyl-3-hydroxypyridine-5-carboxylic acid dioxygenase (MHPCO), the seventh enzyme in degradation pathway I for pyridoxine, a free form of vitamin B(6). The gene was cloned and overexpressed in Escherichia coli cells co-transformed with chaperonin genes. The homogeneous recombinant enzyme showed similar enzymatic properties to the enzyme from Pseudomonas sp. MA-1. MHPCO was essential for the assimilation of pyridoxine in M. loti, but not for its growth in a nutrient-rich medium. From the infection experiment of a symbiotic plant Lotus japonicus with an M. loti mlr6788 gene disruptant, MHPCO was demonstrated to be dispensable for at least nodule formation on roots of seedlings in symbiosis.
Collapse
Affiliation(s)
- Baiqiang Yuan
- Department of Bioresources Science, Faculty of Agriculture, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Pérez-Mendoza D, Lucas M, Muñoz S, Herrera-Cervera JA, Olivares J, de la Cruz F, Sanjuán J. The relaxase of the Rhizobium etli symbiotic plasmid shows nic site cis-acting preference. J Bacteriol 2006; 188:7488-99. [PMID: 16916896 PMCID: PMC1636270 DOI: 10.1128/jb.00701-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic and biochemical characterization of TraA, the relaxase of symbiotic plasmid pRetCFN42d from Rhizobium etli, is described. After purifying the relaxase domain (N265TraA), we demonstrated nic binding and cleavage activity in vitro and thus characterized for the first time the nick site (nic) of a plasmid in the family Rhizobiaceae. We studied the range of N265TraA relaxase specificity in vitro by testing different oligonucleotides in binding and nicking assays. In addition, the ability of pRetCFN42d to mobilize different Rhizobiaceae plasmid origins of transfer (oriT) was examined. Data obtained with these approaches allowed us to establish functional and phylogenetic relationships between different plasmids of this family. Our results suggest novel characteristics of the R. etli pSym relaxase for previously described conjugative systems, with emphasis on the oriT cis-acting preference of this enzyme and its possible biological relevance.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas, CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Yokochi N, Nishimura S, Yoshikane Y, Ohnishi K, Yagi T. Identification of a new tetrameric pyridoxal 4-dehydrogenase as the second enzyme in the degradation pathway for pyridoxine in a nitrogen-fixing symbiotic bacterium, Mesorhizobium loti. Arch Biochem Biophys 2006; 452:1-8. [PMID: 16824480 DOI: 10.1016/j.abb.2006.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 05/31/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
We have found for the first time that a chromosomal gene, mlr6807, in Mesorhizobium loti encodes a new tetrameric pyridoxal 4-dehydrogenase (PLDH). The recombinant enzyme expressed in Escherichia coli cells was homogenously purified and characterized. The enzyme consisted of four subunits each with a molecular weight of 26,000+/-1000, and exhibited Km and kcat values of 91+/-2 microM and 149+/-1s(-1), respectively. PLDH used NAD+ as a cosubstrate, showed no activity toward sugars, and belonged to a short-chain dehydrogenase/reductase family. The mlr6807 gene-disrupted M. loti cells could grow in a nutrient-rich TY medium but not in a synthetic one containing pyridoxine or pyridoxamine as the sole carbon and nitrogen source. Thus, it was found that PLDH is essential for the assimilation of vitamin B6 compounds and the second step enzyme in their degradation pathway in M. loti.
Collapse
Affiliation(s)
- Nana Yokochi
- Department of Bioresources Science, Faculty of Agriculture, Kochi University, Monobe-Otsu 200, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | |
Collapse
|
28
|
Pérez-Mendoza D, Sepúlveda E, Pando V, Muñoz S, Nogales J, Olivares J, Soto MJ, Herrera-Cervera JA, Romero D, Brom S, Sanjuán J. Identification of the rctA gene, which is required for repression of conjugative transfer of rhizobial symbiotic megaplasmids. J Bacteriol 2005; 187:7341-50. [PMID: 16237017 PMCID: PMC1272987 DOI: 10.1128/jb.187.21.7341-7350.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An analysis of the conjugative transfer of pRetCFN42d, the symbiotic plasmid (pSym) of Rhizobium etli, has revealed a novel gene, rctA, as an essential element of a regulatory system for silencing the conjugative transfer of R. etli pSym by repressing the transcription of conjugal transfer genes in standard laboratory media. The rctA gene product lacks sequence conservation with other proteins of known function but may belong to the winged-helix DNA-binding subfamily of transcriptional regulators. Similar to that of many transcriptional repressors, rctA transcription seems to be positively autoregulated. rctA expression is greatly reduced upon overexpression of another gene, rctB, previously identified as a putative activator of R. etli pSym conjugal transfer. Thus, rctB seems to counteract the repressive action of rctA. rctA homologs are present in at least three other bacterial genomes within the order Rhizobiales, where they are invariably located adjacent to and divergently transcribed from putative virB-like operons. We show that similar to that of R. etli pSym, conjugative transfer of the 1.35-Mb symbiotic megaplasmid A of Sinorhizobium meliloti is also subjected to the inhibitory action of rctA. Our data provide strong evidence that the R. etli and S. meliloti pSym plasmids are indeed self-conjugative plasmids and that this property would only be expressed under optimal, as yet unknown conditions that entail inactivation of the rctA function. The rctA gene seems to represent novel but probably widespread regulatory systems controlling the transfer of conjugative elements within the order Rhizobiales.
Collapse
Affiliation(s)
- Daniel Pérez-Mendoza
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Edgardo Sepúlveda
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Victoria Pando
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Socorro Muñoz
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Joaquina Nogales
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José Olivares
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Maria J. Soto
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - José A. Herrera-Cervera
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - David Romero
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Susana Brom
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
| | - Juan Sanjuán
- Departamento Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain, Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, UNAM, Cuernavaca, Morelos, México
- Corresponding author. Mailing address: Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Profesor Albareda 1, 18008 Granada, Spain. Phone: 34-958181600, ext. 219. Fax: 34-958129600. E-mail:
| |
Collapse
|
29
|
Abstract
Rhizobium spp. are found in soil. They are both free-living and found symbiotically associated with the nodules of leguminous plants. Traditionally, studies have focused on the association of these organisms with plants in nitrogen-fixing nodules, since this is regarded as the most important role of these bacteria in the environment. Rhizobium sp. are known to possess several replicons. Some, like the Rhizobium etli symbiotic plasmid p42d and the plasmid pNGR234b of Rhizobium NGR234, have been sequenced and characterized. The plasmids from these organisms are the focus of this short review.
Collapse
Affiliation(s)
- L C Crossman
- Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
30
|
Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P, González V, Romero D. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 2004; 186:7538-48. [PMID: 15516565 PMCID: PMC524903 DOI: 10.1128/jb.186.22.7538-7548.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid p42a from Rhizobium etli CFN42 is self-transmissible and indispensable for conjugative transfer of the symbiotic plasmid (pSym). Most pSym transconjugants also inherit p42a. pSym transconjugants that lack p42a always contain recombinant pSyms, which we designated RpSyms*. RpSyms* do not contain some pSym segments and instead have p42a sequences, including the replication and transfer regions. These novel recombinant plasmids are compatible with wild-type pSym, incompatible with p42a, and self-transmissible. The symbiotic features of derivatives simultaneously containing a wild-type pSym and an RpSym* were analyzed. Structural analysis of 10 RpSyms* showed that 7 shared one of the two pSym-p42a junctions. Sequencing of this common junction revealed a 53-bp region that was 90% identical in pSym and p42a, including a 5-bp central region flanked by 9- to 11-bp inverted repeats reminiscent of bacterial and phage attachment sites. A gene encoding an integrase-like protein (intA) was localized downstream of the attachment site on p42a. Mutation or the absence of intA abolished pSym transfer from a recA mutant donor. Complementation with the wild-type intA gene restored transfer of pSym. We propose that pSym-p42a cointegration is required for pSym transfer; cointegration may be achieved either through homologous recombination among large reiterated sequences or through IntA-mediated site-specific recombination between the attachment sites. Cointegrates formed through the site-specific system but resolved through RecA-dependent recombination or vice versa generate RpSyms*. A site-specific recombination system for plasmid cointegration is a novel feature of these large plasmids and implies that there is unique regulation which affects the distribution of pSym in nature due to the role of the cointegrate in conjugative transfer.
Collapse
Affiliation(s)
- Susana Brom
- Programa de Genética Molecular de Plásmidos Bacterianos, Centro de Investigación sobre Fijación de Nitrógeno, UNAM, Cuernavaca, Morelos, Mexico.
| | | | | | | | | | | | | |
Collapse
|