1
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
2
|
Silber N, Matos de Opitz CL, Mayer C, Sass P. Cell division protein FtsZ: from structure and mechanism to antibiotic target. Future Microbiol 2020; 15:801-831. [DOI: 10.2217/fmb-2019-0348] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance to virtually all clinically applied antibiotic classes severely limits the available options to treat bacterial infections. Hence, there is an urgent need to develop and evaluate new antibiotics and targets with resistance-breaking properties. Bacterial cell division has emerged as a new antibiotic target pathway to counteract multidrug-resistant pathogens. New approaches in antibiotic discovery and bacterial cell biology helped to identify compounds that either directly interact with the major cell division protein FtsZ, thereby perturbing the function and dynamics of the cell division machinery, or affect the structural integrity of FtsZ by inducing its degradation. The impressive antimicrobial activities and resistance-breaking properties of certain compounds validate the inhibition of bacterial cell division as a promising strategy for antibiotic intervention.
Collapse
Affiliation(s)
- Nadine Silber
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Cruz L Matos de Opitz
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Christian Mayer
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
| | - Peter Sass
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology & Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, Tübingen 72076, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Headd B, Bradford SA. Physicochemical Factors That Favor Conjugation of an Antibiotic Resistant Plasmid in Non-growing Bacterial Cultures in the Absence and Presence of Antibiotics. Front Microbiol 2018; 9:2122. [PMID: 30254617 PMCID: PMC6141735 DOI: 10.3389/fmicb.2018.02122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Horizontal gene transfer (HGT) of antibiotic resistance genes has received increased scrutiny from the scientific community in recent years owing to the public health threat associated with antibiotic resistant bacteria. Most studies have examined HGT in growing cultures. We examined conjugation in growing and non-growing cultures of E. coli using a conjugative multi antibiotic and metal resistant plasmid to determine physiochemical parameters that favor horizontal gene transfer. The conjugation frequency in growing and non-growing cultures was generally greater under shaken than non-shaken conditions, presumably due to increased frequency of cell collisions. Non-growing cultures in 9.1 mM NaCl had a similar conjugation frequency to that of growing cultures in Luria-Bertaini broth, whereas those in 1 mM or 90.1 mM NaCl were much lower. This salinity effect on conjugation was attributed to differences in cell-cell interactions and conformational changes in cell surface macromolecules. In the presence of antibiotics, the conjugation frequencies of growing cultures did not increase, but in non-growing cultures of 9.1 mM NaCl supplemented with Cefotaxime the conjugation frequency was as much as nine times greater than that of growing cultures. The mechanism responsible for the increased conjugation in non-growing bacteria was attributed to the likely lack of penicillin-binding protein 3 (the target of Cefotaxime), in non-growing cells that enabled Cefotaxime to interact with the plasmid and induce conjugation. Our results suggests that more attention may be owed to HGT in non-growing bacteria as most bacteria in the environment are likely not growing and the proposed mechanism for increased conjugation may not be unique to the bacteria/plasmid system we studied.
Collapse
Affiliation(s)
- Brendan Headd
- U.S. Salinity Lab, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Riverside, CA, United States
| | | |
Collapse
|
4
|
Sidarta M, Li D, Hederstedt L, Bukowska-Faniband E. Forespore Targeting of SpoVD in Bacillus subtilis Is Mediated by the N-Terminal Part of the Protein. J Bacteriol 2018; 200:e00163-18. [PMID: 29661861 PMCID: PMC5996694 DOI: 10.1128/jb.00163-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
SpoVD and PBP4b are structurally very similar high-molecular-weight, class B penicillin-binding proteins produced early during sporulation in Bacillus subtilis SpoVD is known to be essential for endospore cortex synthesis and thereby the production of heat-resistant spores. The role of PBP4b is still enigmatic. Both proteins are synthesized in the cytoplasm of the mother cell. PBP4b remains in the cytoplasmic membrane of the mother cell, whereas SpoVD accumulates in the forespore outer membrane. By the use of SpoVD/PBP4b chimeras with swapped protein domains, we show that the N-terminal part of SpoVD, containing the single transmembrane region, determines the forespore targeting of the protein.IMPORTANCE Beta-lactam-type antibiotics target penicillin-binding proteins (PBPs), which function in cell wall peptidoglycan synthesis. Bacteria of a subset of genera, including Bacillus and Clostridium species, can form endospores. The extreme resistance of endospores against harsh physicochemical conditions is of concern in clinical microbiology and the food industry. Endospore cortex layer biogenesis constitutes an experimental model system for research on peptidoglycan synthesis. The differentiation of a vegetative bacterial cell into an endospore involves the formation of a forespore within the cytoplasm of the sporulating cell. A number of proteins, including some PBPs, accumulate in the forespore. An understanding of the molecular mechanisms behind such subcellular targeting of proteins in bacterial cells can, for example, lead to a means of blocking the process of sporulation.
Collapse
Affiliation(s)
- Margareth Sidarta
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Dongdong Li
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | - Lars Hederstedt
- The Microbiology Group, Department of Biology, Lund University, Lund, Sweden
| | | |
Collapse
|
5
|
Interplay between Penicillin-binding proteins and SEDS proteins promotes bacterial cell wall synthesis. Sci Rep 2017; 7:43306. [PMID: 28233869 PMCID: PMC5324115 DOI: 10.1038/srep43306] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/06/2017] [Indexed: 11/14/2022] Open
Abstract
Bacteria utilize specialized multi-protein machineries to synthesize the essential peptidoglycan (PG) cell wall during growth and division. The divisome controls septal PG synthesis and separation of daughter cells. In E. coli, the lipid II transporter candidate FtsW is thought to work in concert with the PG synthases penicillin-binding proteins PBP3 and PBP1b. Yet, the exact molecular mechanisms of their function in complexes are largely unknown. We show that FtsW interacts with PBP1b and lipid II and that PBP1b, FtsW and PBP3 co-purify suggesting that they form a trimeric complex. We also show that the large loop between transmembrane helices 7 and 8 of FtsW is important for the interaction with PBP3. Moreover, we found that FtsW, but not the other flippase candidate MurJ, impairs lipid II polymerization and peptide cross-linking activities of PBP1b, and that PBP3 relieves these inhibitory effects. All together the results suggest that FtsW interacts with lipid II preventing its polymerization by PBP1b unless PBP3 is also present, indicating that PBP3 facilitates lipid II release and/or its transfer to PBP1b after transport across the cytoplasmic membrane. This tight regulatory mechanism is consistent with the cell’s need to ensure appropriate use of the limited pool of lipid II.
Collapse
|
6
|
Vischer NOE, Verheul J, Postma M, van den Berg van Saparoea B, Galli E, Natale P, Gerdes K, Luirink J, Vollmer W, Vicente M, den Blaauwen T. Cell age dependent concentration of Escherichia coli divisome proteins analyzed with ImageJ and ObjectJ. Front Microbiol 2015; 6:586. [PMID: 26124755 PMCID: PMC4462998 DOI: 10.3389/fmicb.2015.00586] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/28/2015] [Indexed: 11/28/2022] Open
Abstract
The rod-shaped Gram-negative bacterium Escherichia coli multiplies by elongation followed by binary fission. Longitudinal growth of the cell envelope and synthesis of the new poles are organized by two protein complexes called elongasome and divisome, respectively. We have analyzed the spatio-temporal localization patterns of many of these morphogenetic proteins by immunolabeling the wild type strain MC4100 grown to steady state in minimal glucose medium at 28°C. This allowed the direct comparison of morphogenetic protein localization patterns as a function of cell age as imaged by phase contrast and fluorescence wide field microscopy. Under steady state conditions the age distribution of the cells is constant and is directly correlated to cell length. To quantify cell size and protein localization parameters in 1000s of labeled cells, we developed ‘Coli-Inspector,’ which is a project running under ImageJ with the plugin ‘ObjectJ.’ ObjectJ organizes image-analysis tasks using an integrated approach with the flexibility to produce different output formats from existing markers such as intensity data and geometrical parameters. ObjectJ supports the combination of automatic and interactive methods giving the user complete control over the method of image analysis and data collection, with visual inspection tools for quick elimination of artifacts. Coli-inspector was used to sort the cells according to division cycle cell age and to analyze the spatio-temporal localization pattern of each protein. A unique dataset has been created on the concentration and position of the proteins during the cell cycle. We show for the first time that a subset of morphogenetic proteins have a constant cellular concentration during the cell division cycle whereas another set exhibits a cell division cycle dependent concentration variation. Using the number of proteins present at midcell, the stoichiometry of the divisome is discussed.
Collapse
Affiliation(s)
- Norbert O E Vischer
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam Amsterdam, Netherlands
| | - Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam Amsterdam, Netherlands
| | - Marten Postma
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam Amsterdam, Netherlands ; Molecular Cytology, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Bart van den Berg van Saparoea
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam Amsterdam, Netherlands ; Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University Amsterdam, Netherlands
| | - Elisa Galli
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Paolo Natale
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Kenn Gerdes
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK ; Department of Biology, University of Copenhagen Copenhagen, Denmark
| | - Joen Luirink
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, VU University Amsterdam, Netherlands
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University Newcastle upon Tyne, UK
| | - Miguel Vicente
- Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
7
|
Tavío MM, Aquili VD, Vila J, Poveda JB. Resistance to ceftazidime in Escherichia coli associated with AcrR, MarR and PBP3 mutations and overexpression of sdiA. J Med Microbiol 2014; 63:56-65. [DOI: 10.1099/jmm.0.063727-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanisms responsible for the increase in ceftazidime MIC in two Escherichia coli in vitro selected mutants, Caz/20-1 and Caz/20-2, were studied. OmpF loss and overexpression of acrB, acrD and acrF that were associated with acrR and marR mutations and sdiA overexpression, together with mutations A233T and I332V in FtSI (PBP3) resulted in ceftazidime resistance in Caz/20-2, multiplying by 128-fold the ceftazidime MIC in the parental clinical isolate PS/20. Absence of detectable β-lactamase hydrolytic activity in the crude extract of Caz/20-2 was observed, and coincided with Q191K and P209S mutations in AmpC and a nucleotide substitution at −28 in the ampC promoter, whereas β-lactamase hydrolytic activity in crude extracts of PS/20 and Caz/20-1 strains was detected. Nevertheless, a fourfold increase in ceftazidime MIC in Caz/20-1 compared with that in PS/20 was due to the increased transcript level of acrB derived from acrR mutation. The two Caz mutants and PS/20 showed the same mutations in AmpG and ParE.
Collapse
Affiliation(s)
- María M. Tavío
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Virginia D. Aquili
- Microbiología, Departamento de Ciencias Clínicas, Facultad de Ciencias de la Salud, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Vila
- Departamento de Microbiología, IDIBAPS, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | - José B. Poveda
- Unidad de Epidemiología y Medicina Preventiva, Instituto Universitario de Sanidad Animal (IUSA), Universidad de Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
8
|
Reconstitution of membrane protein complexes involved in pneumococcal septal cell wall assembly. PLoS One 2013; 8:e75522. [PMID: 24147156 PMCID: PMC3798694 DOI: 10.1371/journal.pone.0075522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022] Open
Abstract
The synthesis of peptidoglycan, the major component of the bacterial cell wall, is essential to cell survival, yet its mechanism remains poorly understood. In the present work, we have isolated several membrane protein complexes consisting of the late division proteins of Streptococcus pneumoniae: DivIB, DivIC, FtsL, PBP2x and FtsW, or subsets thereof. We have co-expressed membrane proteins from S. pneumoniae in Escherichia coli. By combining two successive affinity chromatography steps, we obtained membrane protein complexes with a very good purity. These complexes are functional, as indicated by the retained activity of PBP2x to bind a fluorescent derivative of penicillin and to hydrolyze the substrate analogue S2d. Moreover, we have evidenced the stabilizing role of protein-protein interactions within each complex. This work paves the way for a complete reconstitution of peptidoglycan synthesis in vitro, which will be critical to the elucidation of its intricate regulation mechanisms.
Collapse
|
9
|
van der Ploeg R, Verheul J, Vischer NOE, Alexeeva S, Hoogendoorn E, Postma M, Banzhaf M, Vollmer W, den Blaauwen T. Colocalization and interaction between elongasome and divisome during a preparative cell division phase inEscherichia coli. Mol Microbiol 2013; 87:1074-87. [DOI: 10.1111/mmi.12150] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2013] [Indexed: 11/30/2022]
Affiliation(s)
- René van der Ploeg
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Jolanda Verheul
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Norbert O. E. Vischer
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Svetlana Alexeeva
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| | - Eelco Hoogendoorn
- Molecular Cytology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94215; 1090 GE; Amsterdam; the Netherlands
| | - Marten Postma
- Molecular Cytology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94215; 1090 GE; Amsterdam; the Netherlands
| | - Manuel Banzhaf
- Institute for Cell and Molecular Biosciences; The Centre for Bacterial Cell Biology; Newcastle University; Richardson Road; Newcastle upon Tyne; NE2 4AX; UK
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences; The Centre for Bacterial Cell Biology; Newcastle University; Richardson Road; Newcastle upon Tyne; NE2 4AX; UK
| | - Tanneke den Blaauwen
- Bacterial Cell Biology; Swammerdam Institute for Life Sciences; University of Amsterdam; Science Park 904, 1098 XH Amsterdam, P.O. Box 94232; 1090 GE; Amsterdam; the Netherlands
| |
Collapse
|
10
|
Yoshida H, Kawai F, Obayashi E, Akashi S, Roper DI, Tame JRH, Park SY. Crystal structures of penicillin-binding protein 3 (PBP3) from methicillin-resistant Staphylococcus aureus in the apo and cefotaxime-bound forms. J Mol Biol 2012; 423:351-64. [PMID: 22846910 DOI: 10.1016/j.jmb.2012.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/04/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is a widespread Gram-positive opportunistic pathogen, and a methicillin-resistant form (MRSA) is particularly difficult to treat clinically. We have solved two crystal structures of penicillin-binding protein (PBP) 3 (PBP3) from MRSA, the apo form and a complex with the β-lactam antibiotic cefotaxime, and used electrospray mass spectrometry to measure its sensitivity to a variety of penicillin derivatives. PBP3 is a class B PBP, possessing an N-terminal non-penicillin-binding domain, sometimes called a dimerization domain, and a C-terminal transpeptidase domain. The model shows a different orientation of its two domains compared to earlier models of other class B PBPs and a novel, larger N-domain. Consistent with the nomenclature of "dimerization domain", the N-terminal region forms an apparently tight interaction with a neighboring molecule related by a 2-fold symmetry axis in the crystal structure. This dimer form is predicted to be highly stable in solution by the PISA server, but mass spectrometry and analytical ultracentrifugation provide unequivocal evidence that the protein is a monomer in solution.
Collapse
Affiliation(s)
- Hisashi Yoshida
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Swidsinski A, Loening-Baucke V, Mendling W, Swidsinski S. Positive effects of local therapy with a vaginal lactic acid gel on dysuria and E.coli bacteriuria question our current views on recurrent cystitis. Arch Gynecol Obstet 2012; 285:1619-25. [PMID: 22218825 DOI: 10.1007/s00404-011-2196-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/19/2011] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We tested the effect of vaginally applied lactic acid gel on symptoms and bacteriuria in acutely exacerbated recurrent Eschericia coli cystitis. METHODS Carnoy fixed samples of the morning urine from 20 women with a history of recurrent E.coli cystitis were prospectively investigated for bacteriuria using fluorescence in situ hybridization (FISH). RESULTS In 11/20 women with acute cystitis, the symptoms and bacteriuria were regressive with lactic acid gel treatment, without the need for antibiotic treatment. The complete regression of symptoms took between 1 week (7 women) and 4 weeks (4 women). In parallel with this regression, the microscopic shape of E.coli bacteria in these women changed from short rods to long curly filaments starting within the first days of therapy. The filamentous transformation affected 100% of the E.coli population in six women and at least 50% of E.coli population in five women and was not observed in urine samples from untreated women or in women without clinical response to lactic acid gel. This could not happen if the bladder was the origin of the infection. CONCLUSIONS A number of recurrent and probably acute cystitis is a local vagino-urethritis caused by an adhesive invasive E.coli biofilm of the vaginal surface.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Polymicrobial Infections and Bacterial Biofilms, Laboratory for Molecular Genetics, CCM, Charité Hospital, Charité Universitätsmedizin Berlin, Campus Mitte, 10098 Berlin, Germany.
| | | | | | | |
Collapse
|
12
|
Analysis of genes encoding penicillin-binding proteins in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother 2011; 55:5907-13. [PMID: 21947403 DOI: 10.1128/aac.00459-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is limited information on the role of penicillin-binding proteins (PBPs) in the resistance of Acinetobacter baumannii to β-lactams. This study presents an analysis of the allelic variations of PBP genes in A. baumannii isolates. Twenty-six A. baumannii clinical isolates (susceptible or resistant to carbapenems) from three teaching hospitals in Spain were included. The antimicrobial susceptibility profile, clonal pattern, and genomic species identification were also evaluated. Based on the six complete genomes of A. baumannii, the PBP genes were identified, and primers were designed for each gene. The nucleotide sequences of the genes identified that encode PBPs and the corresponding amino acid sequences were compared with those of ATCC 17978. Seven PBP genes and one monofunctional transglycosylase (MGT) gene were identified in the six genomes, encoding (i) four high-molecular-mass proteins (two of class A, PBP1a [ponA] and PBP1b [mrcB], and two of class B, PBP2 [pbpA or mrdA] and PBP3 [ftsI]), (ii) three low-molecular-mass proteins (two of type 5, PBP5/6 [dacC] and PBP6b [dacD], and one of type 7 (PBP7/8 [pbpG]), and (iii) a monofunctional enzyme (MtgA [mtgA]). Hot spot mutation regions were observed, although most of the allelic changes found translated into silent mutations. The amino acid consensus sequences corresponding to the PBP genes in the genomes and the clinical isolates were highly conserved. The changes found in amino acid sequences were associated with concrete clonal patterns but were not directly related to susceptibility or resistance to β-lactams. An insertion sequence disrupting the gene encoding PBP6b was identified in an endemic carbapenem-resistant clone in one of the participant hospitals.
Collapse
|
13
|
The integral membrane FtsW protein and peptidoglycan synthase PBP3 form a subcomplex in Escherichia coli. Microbiology (Reading) 2011; 157:251-259. [DOI: 10.1099/mic.0.040071-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the cell cycle of rod-shaped bacteria, two morphogenetic processes can be discriminated: length growth of the cylindrical part of the cell and cell division by formation of two new cell poles. The morphogenetic protein complex responsible for the septation during cell division (the divisome) includes class A and class B penicillin-binding proteins (PBPs). In Escherichia coli, the class B PBP3 is specific for septal peptidoglycan synthesis. It requires the putative lipid II flippase FtsW for its localization at the division site and is necessary for the midcell localization of the class A PBP1B. In this work we show direct interactions between FtsW and PBP3 in vivo and in vitro by FRET (Förster resonance energy transfer) and co-immunoprecipitation experiments. These proteins are able to form a discrete complex independently of the other cell-division proteins. The K2–V42 peptide of PBP3 containing the membrane-spanning sequence is a structural determinant sufficient for interaction with FtsW and for PBP3 dimerization. By using a two-hybrid assay, the class A PBP1B was shown to interact with FtsW. However, it could not be detected in the immunoprecipitated FtsW–PBP3 complex. The periplasmic loop 9/10 of FtsW appeared to be involved in the interaction with both PBP1B and PBP3. It might play an important role in the positioning of these proteins within the divisome.
Collapse
|
14
|
Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic β domain of DivIB mediate its interaction with the divisomal transpeptidase PBP 2B. J Bacteriol 2010; 192:6116-25. [PMID: 20870765 DOI: 10.1128/jb.00783-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cytokinesis is achieved through the coordinated action of a multiprotein complex known as the divisome. The Escherichia coli divisome is comprised of at least 10 essential proteins whose individual functions are mostly unknown. Most divisomal proteins have multiple binding partners, making it difficult to pinpoint epitopes that mediate pairwise interactions between these proteins. We recently introduced an artificial septal targeting approach that allows the interaction between pairs of proteins to be studied in vivo without the complications introduced by other interacting proteins (C. Robichon, G. F. King, N. W. Goehring, and J. Beckwith, J. Bacteriol. 190:6048-6059, 2008). We have used this approach to perform a molecular dissection of the interaction between Bacillus subtilis DivIB and the divisomal transpeptidase PBP 2B, and we demonstrate that this interaction is mediated exclusively through the extracytoplasmic domains of these proteins. Artificial septal targeting in combination with mutagenesis experiments revealed that the C-terminal region of the β domain of DivIB is critical for its interaction with PBP 2B. These findings are consistent with previously defined loss-of-function point mutations in DivIB as well as the recent demonstration that the β domain of DivIB mediates its interaction with the FtsL-DivIC heterodimer. These new results have allowed us to construct a model of the DivIB/PBP 2B/FtsL/DivIC quaternary complex that strongly implicates DivIB, FtsL, and DivIC in modulating the transpeptidase activity of PBP 2B.
Collapse
|
15
|
Fay A, Meyer P, Dworkin J. Interactions between late-acting proteins required for peptidoglycan synthesis during sporulation. J Mol Biol 2010; 399:547-61. [PMID: 20417640 DOI: 10.1016/j.jmb.2010.04.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/12/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the latter steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here, we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a nonessential, sporulation-specific homolog of the well-conserved and essential SEDS (shape elongation, division, and sporulation) proteins, and SpoVD, a nonessential class B penicillin binding protein. We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and fluorescence resonance energy transfer experiments indicated that SpoVE and SpoVD interact, and co-affinity purification in Escherichia coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of an SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in loss of function of the entire fusion that was not complemented by a wild-type protein. Thus, SpoVE has a direct and functional interaction with SpoVD, and this conclusion will facilitate understanding the essential function that SpoVE and related SEDS proteins, such as FtsW and RodA, play in bacterial growth and division.
Collapse
Affiliation(s)
- Allison Fay
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
16
|
Barbati S, Grenga L, Luzi G, Paolozzi L, Ghelardini P. Prokaryotic division interactome: setup of an assay for protein–protein interaction mutant selection. Res Microbiol 2010; 161:118-26. [DOI: 10.1016/j.resmic.2010.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/16/2009] [Accepted: 01/04/2010] [Indexed: 10/19/2022]
|
17
|
Hower S, Wolf K, Fields KA. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Mol Microbiol 2009; 72:1423-37. [PMID: 19460098 DOI: 10.1111/j.1365-2958.2009.06732.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chlamydia trachomatis is an obligate intracellular parasite, occupies a membrane-bound vacuole throughout development and is capable of manipulating the eukaryotic host by translocating effector molecules via a type III secretion system (T3SS). The infectious chlamydial elementary body (EB) is metabolically inactive yet possesses a functional T3S apparatus capable of translocating effector proteins into the host cell to facilitate invasion and other early cycle events. We present evidence here that the C. trachomatis protein CT694 represents an early cycle-associated effector protein. CT694 is secreted by the Yersinia T3SS and immunodetection studies of infected HeLa cultures indicate that CT694-specific signal accumulates directly adjacent to, but not completely overlapping with EBs during invasion. Yeast two-hybrid analyses revealed an interaction of CT694 with the repeat region and C-terminus of human AHNAK. Immunolocalization studies of CT694 ectopically expressed in HeLa cells were consistent with an interaction with endogenous AHNAK. Additionally, expression of CT694 in HeLa cells resulted in alterations in the detection of stress fibres that correlated with the ability of CT694 to interact with AHNAK. These data indicate that CT694 is a novel T3S-dependent substrate unique to C. trachomatis, and that its interaction with host proteins such as AHNAK may be important for aspects of invasion or development particular to this species.
Collapse
Affiliation(s)
- S Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | |
Collapse
|
18
|
Pereira SFF, Henriques AO, Pinho MG, de Lencastre H, Tomasz A. Evidence for a dual role of PBP1 in the cell division and cell separation of Staphylococcus aureus. Mol Microbiol 2009; 72:895-904. [PMID: 19400776 DOI: 10.1111/j.1365-2958.2009.06687.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Penicillin-binding proteins (PBPs) catalyse the synthesis of cell wall peptidoglycan. PBP1 of Staphylococcus aureus is a high-molecular-weight monofunctional transpeptidase (TPase) and previous studies with a conditional mutant showed that this protein was essential for bacterial growth and survival: cells in which PBP1 was depleted stopped dividing but continued to enlarge in size, accompanied by rapid loss of viability. Also, cell walls produced under PBP1 depletion appeared to have normal composition. We describe here construction of a second PBP1 mutant in which the active site of the TPase domain was inactivated. Cells in which the wild-type PBP1 was replaced by the mutant protein were able to initiate and complete septa and undergo at least one or two cell divisions after which growth stopped accompanied by inhibition of cell separation, downregulation in the transcription of the autolytic system and production of cell walls with increased proportion of monomeric and dimeric muropeptides and decrease in oligomeric muropeptides. PBP1 seems to perform a dual role in the cell cycle of S. aureus: as a protein required for septation and also as a transpeptidase that generates a critical signal for cell separation at the end of cell division.
Collapse
Affiliation(s)
- Sandro F F Pereira
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica (ITQB) da Universidade Nova de Lisboa (UNL), 2780 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
19
|
Costa T, Priyadarshini R, Jacobs-Wagner C. Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain. Mol Microbiol 2008; 70:634-51. [PMID: 18786147 DOI: 10.1111/j.1365-2958.2008.06432.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In rod-shaped bacteria, septal peptidoglycan synthesis involves the late recruitment of the ftsI gene product (PBP3 in Escherichia coli) to the FtsZ ring. We show that in Caulobacter crescentus, PBP3 accumulates at the new pole at the beginning of the cell cycle. Fluorescence recovery after photobleaching experiments reveal that polar PBP3 molecules are, constantly and independently of FtsZ, replaced by those present in the cellular pool, implying that polar PBP3 is not a remnant of the previous division. By the time cell constriction is initiated, all PBP3 polar accumulation has disappeared in favour of an FtsZ-dependent localization near midcell, consistent with PBP3 function in cell division. Kymograph analysis of time-lapse experiments shows that the recruitment of PBP3 to the FtsZ ring is progressive and initiated very early on, shortly after FtsZ ring formation and well before cell constriction starts. Accumulation of PBP3 near midcell is also highly dynamic with a rapid exchange of PBP3 molecules between midcell and cellular pools. Localization of PBP3 at both midcell and pole appears multifactorial, primarily requiring the catalytic site of PBP3. Collectively, our results suggest a role for PBP3 in pole morphogenesis and provide new insights into the process of peptidoglycan assembly during division.
Collapse
Affiliation(s)
- Teresa Costa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
20
|
A comparative proteomic analysis of Gluconacetobacter diazotrophicus PAL5 at exponential and stationary phases of cultures in the presence of high and low levels of inorganic nitrogen compound. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:1578-89. [PMID: 18662807 DOI: 10.1016/j.bbapap.2008.06.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/07/2008] [Accepted: 06/23/2008] [Indexed: 11/23/2022]
Abstract
A proteomic view of G. diazotrophicus PAL5 at the exponential (E) and stationary phases (S) of cultures in the presence of low (L) and high levels (H) of combined nitrogen is presented. The proteomes analyzed on 2D-gels showed 131 proteins (42E+32S+29H+28L) differentially expressed by G. diazotrophicus, from which 46 were identified by combining mass spectrometry and bioinformatics tools. Proteins related to cofactor, energy and DNA metabolisms and cytoplasmic pH homeostasis were differentially expressed in E growth phase, under L and H conditions, in line with the high metabolic rate of the cells and the low pH of the media. Proteins most abundant in S-phase cells were stress associated and transporters plus transferases in agreement with the general phenomenon that binding protein-dependent systems are induced under nutrient limitation as part of hunger response. Cells grown in L condition produced nitrogen-fixation accessory proteins with roles in biosynthesis and stabilization of the nitrogenase complex plus proteins for protection of the nitrogenases from O(2)-induced inactivation. Proteins of the cell wall biogenesis apparatus were also expressed under nitrogen limitation and might function in the reshaping of the nitrogen-fixing G. diazotrophicus cells previously described. Genes whose protein products were detected in our analysis were mapped onto the chromosome and, based on the tendency of functionally related bacterial genes to cluster, we identified genes of particular pathways that could be organized in operons and are co-regulated. These results showed the great potential of proteomics to describe events in G. diazotrophicus cells by looking at proteins expressed under distinct growth conditions.
Collapse
|
21
|
Abstract
DivIB, also known as FtsQ in gram-negative organisms, is a division protein that is conserved in most eubacteria. DivIB is localized at the division site and forms a complex with two other division proteins, FtsL and DivIC/FtsB. The precise function of these three bitopic membrane proteins, which are central to the division process, remains unknown. We report here the characterization of a divIB deletion mutant of Streptococcus pneumoniae, which is a coccus that divides with parallel planes. Unlike its homologue FtsQ in Escherichia coli, pneumococcal DivIB is not required for growth in rich medium, but the Delta divIB mutant forms chains of diplococci and a small fraction of enlarged cells with defective septa. However, the deletion mutant does not grow in a chemically defined medium. In the absence of DivIB and protein synthesis, the partner FtsL is rapidly degraded, whereas other division proteins are not affected, pointing to a role of DivIB in stabilizing FtsL. This is further supported by the finding that an additional copy of ftsL restores growth of the Delta divIB mutant in defined medium. Functional mapping of the three distinct alpha, beta, and gamma domains of the extracellular region of DivIB revealed that a complete beta domain is required to fully rescue the deletion mutant. DivIB with a truncated beta domain reverts only the chaining phenotype, indicating that DivIB has distinct roles early and late in the division process. Most importantly, the deletion of divIB increases the susceptibility to beta-lactams, more evidently in a resistant strain, suggesting a function in cell wall synthesis.
Collapse
|
22
|
Den Blaauwen T, de Pedro MA, Nguyen-Distèche M, Ayala JA. Morphogenesis of rod-shaped sacculi. FEMS Microbiol Rev 2008; 32:321-44. [DOI: 10.1111/j.1574-6976.2007.00090.x] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 2008; 32:234-58. [PMID: 18266856 DOI: 10.1111/j.1574-6976.2008.00105.x] [Citation(s) in RCA: 901] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Eric Sauvage
- Centre d'Ingénierie des Protéines, Institut de Physique B5a et Institut de Chimie B6a, University of Liège, Sart Tilman, Belgium.
| | | | | | | | | |
Collapse
|
24
|
van den Ent F, Vinkenvleugel TMF, Ind A, West P, Veprintsev D, Nanninga N, den Blaauwen T, Löwe J. Structural and mutational analysis of the cell division protein FtsQ. Mol Microbiol 2008; 68:110-23. [PMID: 18312270 DOI: 10.1111/j.1365-2958.2008.06141.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial cytokinesis requires the divisome, a complex of proteins that co-ordinates the invagination of the cytoplasmic membrane, inward growth of the peptidoglycan layer and the outer membrane. Assembly of the cell division proteins is tightly regulated and the order of appearance at the future division site is well organized. FtsQ is a highly conserved component of the divisome among bacteria that have a cell wall, where it plays a central role in the assembly of early and late cell division proteins. Here, we describe the crystal structure of the major, periplasmic domain of FtsQ from Escherichia coli and Yersinia enterocolitica. The crystal structure reveals two domains; the alpha-domain has a striking similarity to polypeptide transport-associated (POTRA) domains and the C-terminal beta-domain forms an extended beta-sheet overlaid by two, slightly curved alpha-helices. Mutagenesis experiments demonstrate that two functions of FtsQ, localization and recruitment, occur in two separate domains. Proteins that localize FtsQ need the second beta-strand of the POTRA domain and those that are recruited by FtsQ, like FtsL/FtsB, require the surface formed by the tip of the last alpha-helix and the two C-terminal beta-strands. Both domains act together to accomplish the role of FtsQ in linking upstream and downstream cell division proteins within the divisome.
Collapse
|
25
|
Wadsworth KD, Rowland SL, Harry EJ, King GF. The divisomal protein DivIB contains multiple epitopes that mediate its recruitment to incipient division sites. Mol Microbiol 2008; 67:1143-55. [PMID: 18208530 DOI: 10.1111/j.1365-2958.2008.06114.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial cytokinesis is orchestrated by an assembly of essential cell division proteins that form a supramolecular structure known as the divisome. DivIB and its orthologue FtsQ are essential members of the divisome in Gram-positive and Gram-negative bacteria respectively. DivIB is a bitopic membrane protein composed of an N-terminal cytoplasmic domain, a single-pass transmembrane domain, and a C-terminal extracytoplasmic region comprised of three separate protein domains. A molecular dissection approach was used to determine which of these domains are essential for recruitment of DivIB to incipient division sites and for its cell division functions. We show that DivIB has three molecular epitopes that mediate its localization to division septa; two epitopes are encoded within the extracytoplasmic region while the third is located in the transmembrane domain. It is proposed that these epitopes represent sites of interaction with other divisomal proteins, and we have used this information to develop a model of the way in which DivIB and FtsQ are integrated into the divisome. Remarkably, two of the three DivIB localization epitopes are dispensable for vegetative cell division; this suggests that the divisome is assembled using a complex network of protein-protein interactions, many of which are redundant and likely to be individually non-essential.
Collapse
Affiliation(s)
- Kimberly D Wadsworth
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
26
|
Müller P, Ewers C, Bertsche U, Anstett M, Kallis T, Breukink E, Fraipont C, Terrak M, Nguyen-Distèche M, Vollmer W. The Essential Cell Division Protein FtsN Interacts with the Murein (Peptidoglycan) Synthase PBP1B in Escherichia coli. J Biol Chem 2007; 282:36394-402. [DOI: 10.1074/jbc.m706390200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
27
|
Cabeen MT, Jacobs-Wagner C. Skin and bones: the bacterial cytoskeleton, cell wall, and cell morphogenesis. ACTA ACUST UNITED AC 2007; 179:381-7. [PMID: 17967949 PMCID: PMC2064785 DOI: 10.1083/jcb.200708001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacterial world is full of varying cell shapes and sizes, and individual species perpetuate a defined morphology generation after generation. We review recent findings and ideas about how bacteria use the cytoskeleton and other strategies to regulate cell growth in time and space to produce different shapes and sizes.
Collapse
Affiliation(s)
- Matthew T Cabeen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
28
|
Datta P, Dasgupta A, Singh AK, Mukherjee P, Kundu M, Basu J. Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 2007; 62:1655-73. [PMID: 17427288 DOI: 10.1111/j.1365-2958.2006.05491.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In bacteria, biogenesis of cell wall at the division site requires penicillin-binding protein 3 (PBP3) (or Ftsl). Using pull-down, bacterial two-hybrid, and peptide-based interaction assays, we provide evidence that FtsW of Mycobacterium tuberculosis (FtsWMTB) interacts with PBP3 through two extracytoplasmic loops. Pro306 in the larger loop and Pro386 in the smaller loop of FtsW are crucial for these interactions. Fluorescence microscopy shows that conditional silencing of ftsW in Mycobacterium smegmatis prevents cell septation and positioning of PBP3 at mid-cell. Pull-down assays and conditional depletion of FtsW in M. smegmatis provide evidence that FtsZ, FtsW and PBP3 of mycobacteria are capable of forming a ternary complex, with FtsW acting as a bridging molecule. Bacterial three-hybrid analysis suggests that in M. tuberculosis, the interaction (unique to mycobacteria) of FtsZ with the cytosolic C-tail of FtsW strengthens the interaction of FtsW with PBP3. ftsW of M. smegmatis could be replaced by ftsW of M. tuberculosis. FtsWMTB could support formation of the FtsZ-FtsW-PBP3 ternary complex in M. smegmatis. Our findings raise the possibility that in the genus Mycobacterium binding of FtsZ to the C-tail of FtsW may modulate its interactions with PBP3, thereby potentially regulating septal peptidoglycan biogenesis.
Collapse
Affiliation(s)
- Pratik Datta
- Department of Chemistry, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009, India
| | | | | | | | | | | |
Collapse
|
29
|
Vollmer W, Bertsche U. Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:1714-34. [PMID: 17658458 DOI: 10.1016/j.bbamem.2007.06.007] [Citation(s) in RCA: 311] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/11/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
The periplasmic murein (peptidoglycan) sacculus is a giant macromolecule made of glycan strands cross-linked by short peptides completely surrounding the cytoplasmic membrane to protect the cell from lysis due to its internal osmotic pressure. More than 50 different muropeptides are released from the sacculus by treatment with a muramidase. Escherichia coli has six murein synthases which enlarge the sacculus by transglycosylation and transpeptidation of lipid II precursor. A set of twelve periplasmic murein hydrolases (autolysins) release murein fragments during cell growth and division. Recent data on the in vitro murein synthesis activities of the murein synthases and on the interactions between murein synthases, hydrolases and cell cycle related proteins are being summarized. There are different models for the architecture of murein and for the incorporation of new precursor into the sacculus. We present a model in which morphogenesis of the rod-shaped E. coli is driven by cytoskeleton elements competing for the control over the murein synthesis multi-enzyme complexes.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, Medical School, University of Newcastle upon Tyne, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
30
|
Legaree BA, Adams CB, Clarke AJ. Overproduction of penicillin-binding protein 2 and its inactive variants causes morphological changes and lysis in Escherichia coli. J Bacteriol 2007; 189:4975-83. [PMID: 17513478 PMCID: PMC1951868 DOI: 10.1128/jb.00207-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Penicillin-binding protein 2 (PBP 2) has long been known to be essential for rod-shaped morphology in gram-negative bacteria, including Escherichia coli and Pseudomonas aeruginosa. In the course of earlier studies with P. aeruginosa PBP 2, we observed that E. coli was sensitive to the overexpression of its gene, pbpA. In this study, we examined E. coli overproducing both P. aeruginosa and E. coli PBP 2. Growth of cells entered a stationary phase soon after induction of gene expression, and cells began to lyse upon prolonged incubation. Concomitant with the growth retardation, cells were observed to have changed morphologically from typical rods into enlarged spheres. Inactive derivatives of the PBP 2s were engineered, involving site-specific replacement of their catalytic Ser residues with Ala in their transpeptidase module. Overproduction of these inactive PBPs resulted in identical effects. Likewise, overproduction of PBP 2 derivatives possessing only their N-terminal non-penicillin-binding module (i.e., lacking their C-terminal transpeptidase module) produced similar effects. However, E. coli overproducing engineered derivatives of PBP 2 lacking their noncleavable, N-terminal signal sequence and membrane anchor were found to grow and divide at the same rate as control cells. The morphological effects and lysis were also eliminated entirely when overproduction of PBP 2 and variants was conducted with E. coli MHD79, a strain lacking six lytic transglycosylases. A possible interaction between the N-terminal domain of PBP 2 and lytic transglycosylases in vivo through the formation of multienzyme complexes is discussed.
Collapse
Affiliation(s)
- Blaine A Legaree
- Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
31
|
D'Ulisse V, Fagioli M, Ghelardini P, Paolozzi L. Three functional subdomains of the Escherichia coli FtsQ protein are involved in its interaction with the other division proteins. MICROBIOLOGY-SGM 2007; 153:124-38. [PMID: 17185541 DOI: 10.1099/mic.0.2006/000265-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FtsQ, an essential protein for the Escherichia coli divisome assembly, is able to interact with various division proteins, namely FtsI, FtsL, FtsN, FtsB and FtsW. In this paper, the FtsQ domains involved in these interactions were identified by two-hybrid assays and co-immunoprecipitations. Progressive deletions of the ftsQ gene suggested that the FtsQ self-interaction and its interactions with the other proteins are localized in three periplasmic subdomains: (i) residues 50-135 constitute one of the sites involved in FtsQ, FtsI and FtsN interaction, and this site is also responsible for FtsW interaction; (ii) the FtsB interaction is localized between residues 136 and 202; and (iii) the FtsL interaction is localized at the very C-terminal extremity. In this third region, the interaction site for FtsK and also the second site for FtsQ, FtsI, FtsN interactions are located. As far as FtsW is concerned, this protein interacts with the fragment of the FtsQ periplasmic domain that spans residues 67-75. In addition, two protein subdomains, one constituted by residues 1-135 and the other from 136 to the end, are both able to complement an ftsQ null mutant. Finally, the unexpected finding that an E. coli ftsQ null mutant can be complemented, at least transiently, by the Streptococcus pneumoniae divIB/ftsQ gene product suggests a new strategy for investigating the biological significance of protein-protein interactions.
Collapse
Affiliation(s)
- V D'Ulisse
- Dipartimento di Biologia Università Tor Vergata, via della Ricerca Scientifica, Roma 00133, Italy
| | | | | | | |
Collapse
|
32
|
Goehring NW, Robichon C, Beckwith J. Role for the nonessential N terminus of FtsN in divisome assembly. J Bacteriol 2006; 189:646-9. [PMID: 17071748 PMCID: PMC1797402 DOI: 10.1128/jb.00992-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsN, the last essential protein in the cell division localization hierarchy in Escherichia coli, has several peculiar characteristics, suggesting that it has a unique role in the division process despite the fact that it is conserved in only a subset of bacteria. In addition to suppressing temperature-sensitive mutations in ftsA, ftsK, ftsQ, and ftsI, overexpression of FtsN can compensate for a complete lack of FtsK in the cell. We examined the requirements for this phenomenon. We found that the N-terminal terminal region (cytoplasmic and transmembrane domains) is critical for suppression, while the C-terminal murein-binding domain is dispensable. Our results further suggest that FtsN and FtsK act cooperatively to stabilize the divisome.
Collapse
Affiliation(s)
- Nathan W Goehring
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
33
|
Leimanis S, Hoyez N, Hubert S, Laschet M, Sauvage E, Brasseur R, Coyette J. PBP5 complementation of a PBP3 deficiency in Enterococcus hirae. J Bacteriol 2006; 188:6298-307. [PMID: 16923897 PMCID: PMC1595359 DOI: 10.1128/jb.00334-06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low susceptibility of enterococci to beta-lactams is due to the activity of the low-affinity penicillin-binding protein 5 (PBP5). One important feature of PBP5 is its ability to substitute for most, if not all, penicillin-binding proteins when they are inhibited. That substitution activity was analyzed in Enterococcus hirae SL2, a mutant whose pbp5 gene was interrupted by the nisRK genes and whose PBP3 synthesis was submitted to nisin induction. Noninduced SL2 cells were unable to divide except when plasmid-borne pbp5 genes were present, provided that the PBP5 active site was functional. Potential protein-protein interaction sites of the PBP5 N-terminal module were mutagenized by site-directed mutagenesis. The T167-L184 region (designated site D) appeared to be an essential intramolecular site needed for the stability of the protein. Mutations made in the two globular domains present in the N-terminal module indicated that they were needed for the suppletive activity. The P197-N209 segment (site E) in one of these domains seemed to be particularly important, as single and double mutations reduced or almost completely abolished, respectively, the action of PBP5.
Collapse
Affiliation(s)
- S Leimanis
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie, B6, B-4000 Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
34
|
Daniel RA, Noirot-Gros MF, Noirot P, Errington J. Multiple interactions between the transmembrane division proteins of Bacillus subtilis and the role of FtsL instability in divisome assembly. J Bacteriol 2006; 188:7396-404. [PMID: 16936019 PMCID: PMC1636283 DOI: 10.1128/jb.01031-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 11 essential proteins assemble into a ring structure at the surface of the cell to bring about cytokinesis in bacteria. Several of these proteins have their major domains located outside the membrane, forming an assembly that we call the outer ring (OR). Previous work on division in Bacillus subtilis has shown that four of the OR proteins-FtsL, DivIC, DivIB, and PBP 2B-are interdependent for assembly. This contrasts with the mainly linear pathway for the equivalent proteins in Escherichia coli. Here we show that the interdependent nature of the B. subtilis pathway could be due to effects on FtsL and DivIC stability and that DivIB is an important player in regulating this turnover. Two-hybrid approaches suggest that a multiplicity of protein-protein interactions contribute to the assembly of the OR. DivIC is unusual in interacting strongly only with FtsL. We propose a model for the formation of the OR through the mutual association of the membrane proteins directed by the cytosolic inner-ring proteins.
Collapse
Affiliation(s)
- Richard A Daniel
- Sir William Dunn School of Pathology, University of Oxford, Sout Parks Road, Oxford OX1 3RE, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Bertsche U, Kast T, Wolf B, Fraipont C, Aarsman MEG, Kannenberg K, von Rechenberg M, Nguyen-Distèche M, den Blaauwen T, Höltje JV, Vollmer W. Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli. Mol Microbiol 2006; 61:675-90. [PMID: 16803586 DOI: 10.1111/j.1365-2958.2006.05280.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The murein (peptidoglycan) sacculus is an essential polymer embedded in the bacterial envelope. The Escherichia coli class B penicillin-binding protein (PBP) 3 is a murein transpeptidase and essential for cell division. In an affinity chromatography experiment, the bifunctional transglycosylase-transpeptidase murein synthase PBP1B was retained by PBP3-sepharose when a membrane fraction of E. coli was applied. The direct protein-protein interaction between purified PBP3 and PBP1B was characterized in vitro by surface plasmon resonance. The interaction was confirmed in vivo employing two different methods: by a bacterial two-hybrid system, and by cross-linking/co-immunoprecipitation. In the bacterial two-hybrid system, a truncated PBP3 comprising the N-terminal 56 amino acids interacted with PBP1B. Both synthases could be cross-linked in vivo in wild-type cells and in cells lacking FtsW or FtsN. PBP1B localized diffusely and in foci at the septation site and also at the side wall. Statistical analysis of the immunofluorescence signals revealed that the localization of PBP1B at the septation site depended on the physical presence of PBP3, but not on the activity of PBP3. These studies have demonstrated, for the first time, a direct interaction between a class B PBP (PBP3) and a class A PBP (PBP1B) in vitro and in vivo, indicating that different murein synthases might act in concert to enlarge the murein sacculus during cell division.
Collapse
Affiliation(s)
- Ute Bertsche
- Mikrobielle Genetik, Universität Tübingen, D-72076 Tübingen, Auf der Morgenstelle 28, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Goehring NW, Gonzalez MD, Beckwith J. Premature targeting of cell division proteins to midcell reveals hierarchies of protein interactions involved in divisome assembly. Mol Microbiol 2006; 61:33-45. [PMID: 16824093 DOI: 10.1111/j.1365-2958.2006.05206.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to divide, the bacterium Escherichia coli must assemble a set of at least 10 essential proteins at the nascent division site. These proteins localize to midcell according to a linear hierarchy, suggesting that cell division proteins are added to the nascent divisome in strict sequence. We previously described a method, 'premature targeting', which allows us to target a protein directly to the division site independently of other cell division proteins normally required for its localization at midcell. By systematically applying this method to probe the recruitment of and associations among late cell division proteins, we show that this linear assembly model is likely incorrect. Rather, we find that the assembly of most of the late proteins can occur independently of 'upstream' proteins. Further, most late proteins, when prematurely targeted to midcell, can back-recruit upstream proteins in the reverse of the predicted pathway. Together these observations indicate that the late proteins, with the notable exception of the last protein in the pathway, FtsN, are associated in a hierarchical set of protein complexes. Based on these observations we present a revised model for assembly of the E. coli division apparatus.
Collapse
Affiliation(s)
- Nathan W Goehring
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
37
|
Scheffers DJ, Pinho MG. Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 2006; 69:585-607. [PMID: 16339737 PMCID: PMC1306805 DOI: 10.1128/mmbr.69.4.585-607.2005] [Citation(s) in RCA: 414] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to maintain shape and withstand intracellular pressure, most bacteria are surrounded by a cell wall that consists mainly of the cross-linked polymer peptidoglycan (PG). The importance of PG for the maintenance of bacterial cell shape is underscored by the fact that, for various bacteria, several mutations affecting PG synthesis are associated with cell shape defects. In recent years, the application of fluorescence microscopy to the field of PG synthesis has led to an enormous increase in data on the relationship between cell wall synthesis and bacterial cell shape. First, a novel staining method enabled the visualization of PG precursor incorporation in live cells. Second, penicillin-binding proteins (PBPs), which mediate the final stages of PG synthesis, have been localized in various model organisms by means of immunofluorescence microscopy or green fluorescent protein fusions. In this review, we integrate the knowledge on the last stages of PG synthesis obtained in previous studies with the new data available on localization of PG synthesis and PBPs, in both rod-shaped and coccoid cells. We discuss a model in which, at least for a subset of PBPs, the presence of substrate is a major factor in determining PBP localization.
Collapse
Affiliation(s)
- Dirk-Jan Scheffers
- Department of Molecular Microbiology, Institute of Molecular Cell Biology, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
38
|
Harry E, Monahan L, Thompson L. Bacterial cell division: the mechanism and its precison. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 253:27-94. [PMID: 17098054 DOI: 10.1016/s0074-7696(06)53002-5] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The recent development of cell biology techniques for bacteria to allow visualization of fundamental processes in time and space, and their use in synchronous populations of cells, has resulted in a dramatic increase in our understanding of cell division and its regulation in these tiny cells. The first stage of cell division is the formation of a Z ring, composed of a polymerized tubulin-like protein, FtsZ, at the division site precisely at midcell. Several membrane-associated division proteins are then recruited to this ring to form a complex, the divisome, which causes invagination of the cell envelope layers to form a division septum. The Z ring marks the future division site, and the timing of assembly and positioning of this structure are important in determining where and when division will take place in the cell. Z ring assembly is controlled by many factors including negative regulatory mechanisms such as Min and nucleoid occlusion that influence Z ring positioning and FtsZ accessory proteins that bind to FtsZ directly and modulate its polymerization behavior. The replication status of the cell also influences the positioning of the Z ring, which may allow the tight coordination between DNA replication and cell division required to produce two identical newborn cells.
Collapse
Affiliation(s)
- Elizabeth Harry
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | |
Collapse
|
39
|
Abstract
At the heart of bacterial cell division is a dynamic ring-like structure of polymers of the tubulin homologue FtsZ. This ring forms a scaffold for assembly of at least ten additional proteins at midcell, the majority of which are likely to be involved in remodeling the peptidoglycan cell wall at the division site. Together with FtsZ, these proteins are thought to form a cell division complex, or divisome. In Escherichia coli, the components of the divisome are recruited to midcell according to a strikingly linear hierarchy that predicts a step-wise assembly pathway. However, recent studies have revealed unexpected complexity in the assembly steps, indicating that the apparent linearity does not necessarily reflect a temporal order. The signals used to recruit cell division proteins to midcell are diverse and include regulated self-assembly, protein-protein interactions, and the recognition of specific septal peptidoglycan substrates. There is also evidence for a complex web of interactions among these proteins and at least one distinct subcomplex of cell division proteins has been defined, which is conserved among E. coli, Bacillus subtilis and Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Nathan W Goehring
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
40
|
Pastoret S, Fraipont C, den Blaauwen T, Wolf B, Aarsman MEG, Piette A, Thomas A, Brasseur R, Nguyen-Distèche M. Functional analysis of the cell division protein FtsW of Escherichia coli. J Bacteriol 2005; 186:8370-9. [PMID: 15576787 PMCID: PMC532424 DOI: 10.1128/jb.186.24.8370-8379.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-directed mutagenesis experiments combined with fluorescence microscopy shed light on the role of Escherichia coli FtsW, a membrane protein belonging to the SEDS family that is involved in peptidoglycan assembly during cell elongation, division, and sporulation. This essential cell division protein has 10 transmembrane segments (TMSs). It is a late recruit to the division site and is required for subsequent recruitment of penicillin-binding protein 3 (PBP3) catalyzing peptide cross-linking. The results allow identification of several domains of the protein with distinct functions. The localization of PBP3 to the septum was found to be dependent on the periplasmic loop located between TMSs 9 and 10. The E240-A249 amphiphilic peptide in the periplasmic loop between TMSs 7 and 8 appears to be a key element in the functioning of FtsW in the septal peptidoglycan assembly machineries. The intracellular loop (containing the R166-F178 amphiphilic peptide) between TMSs 4 and 5 and Gly 311 in TMS 8 are important components of the amino acid sequence-folding information.
Collapse
Affiliation(s)
- Soumya Pastoret
- Centre d'Ingénierie des Protéines, Institut de Chimie, Bât. allée de la Chimie, 3, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wissel MC, Wendt JL, Mitchell CJ, Weiss DS. The transmembrane helix of the Escherichia coli division protein FtsI localizes to the septal ring. J Bacteriol 2005; 187:320-8. [PMID: 15601716 PMCID: PMC538840 DOI: 10.1128/jb.187.1.320-328.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsI (also called PBP3) of Escherichia coli is a transpeptidase required for synthesis of peptidoglycan in the division septum and is one of about a dozen division proteins that localize to the septal ring. FtsI comprises a short amino-terminal cytoplasmic domain, a single transmembrane helix (TMH), and a large periplasmic domain that encodes the catalytic (transpeptidase) activity. We show here that a 26-amino-acid fragment of FtsI is sufficient to direct green fluorescent protein to the septal ring in cells depleted of wild-type FtsI. This fragment extends from W22 to V47 and corresponds to the TMH. This is a remarkable finding because it is unusual [corrected] for a TMH to target a protein to a site more specific than the membrane. Alanine-scanning mutagenesis of the TMH identified several residues important for septal localization. These residues cluster on one side of an alpha-helix, which we propose interacts directly with another division protein to recruit FtsI to the septal ring.
Collapse
Affiliation(s)
- Mark C Wissel
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|