1
|
Jia X, Liu Y, Han Y. A thermophilic cell-free cascade enzymatic reaction for acetoin synthesis from pyruvate. Sci Rep 2017; 7:4333. [PMID: 28659601 PMCID: PMC5489476 DOI: 10.1038/s41598-017-04684-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
Acetoin (3-hydroxy-2-butanone) is an important bio-based platform chemical with wide applications. In vitro enzyme catalysed synthesis exhibits great feasibility in the production of chemicals with high purity. In the present work, a synthetic pathway involving a two-step continuous reaction was constructed in vitro for acetoin production from pyruvate at improved temperature. Thermostable candidates, acetolactate synthase (coAHASL1 and coAHASL2 from Caldicellulosiruptor owensensis OL) and α-acetolactate decarboxylase (bsALDC from Bacillus subtilis IPE5-4) were cloned, heterologously expressed, and characterized. All the enzymes showed maximum activities at 65–70 °C and pH of 6.5. Enzyme kinetics analysis showed that coAHASL1 had a higher activity but lower affinity against pyruvate than that of coAHASL2. In addition, the activities of coAHASL1 and bsALDC were promoted by Mn2+ and NADPH. The cascade enzymatic reaction was optimized by using coAHASL1 and bsALDC based on their kinetic properties. Under optimal conditions, a maximum concentration of 3.36 ± 0.26 mM acetoin was produced from 10 mM pyruvate after reaction for 24 h at 65 °C. The productivity of acetoin was 0.14 mM h−1, and the yield was 67.80% compared with the theoretical value. The results confirmed the feasibility of synthesis of acetoin from pyruvate with a cell-free enzyme catalysed system at improved temperature.
Collapse
Affiliation(s)
- Xiaojing Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ying Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China.
| |
Collapse
|
2
|
Liu Y, Li Y, Wang X. Acetohydroxyacid synthases: evolution, structure, and function. Appl Microbiol Biotechnol 2016; 100:8633-49. [DOI: 10.1007/s00253-016-7809-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/28/2016] [Accepted: 08/12/2016] [Indexed: 10/21/2022]
|
3
|
Eram MS, Ma K. Pyruvate decarboxylase activity of the acetohydroxyacid synthase of Thermotoga maritima. Biochem Biophys Rep 2016; 7:394-399. [PMID: 28955930 PMCID: PMC5613635 DOI: 10.1016/j.bbrep.2016.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) catalyzes the production of acetolactate from pyruvate. The enzyme from the hyperthermophilic bacterium Thermotoga maritima has been purified and characterized (kcat ~100 s−1). It was found that the same enzyme also had the ability to catalyze the production of acetaldehyde and CO2 from pyruvate, an activity of pyruvate decarboxylase (PDC) at a rate approximately 10% of its AHAS activity. Compared to the catalytic subunit, reconstitution of the individually expressed and purified catalytic and regulatory subunits of the AHAS stimulated both activities of PDC and AHAS. Both activities had similar pH and temperature profiles with an optimal pH of 7.0 and temperature of 85 °C. The enzyme kinetic parameters were determined, however, it showed a non-Michaelis-Menten kinetics for pyruvate only. This is the first report on the PDC activity of an AHAS and the second bifunctional enzyme that might be involved in the production of ethanol from pyruvate in hyperthermophilic microorganisms. The acetohydroxyacid synthase of T. maritima has pyruvate decarboxylase activity The AHAS and PDC activities share the same temperature and pH optima Reconstitution of the catalytic and regulatory subunits increases both PDC and AHAS activities
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Eram MS, Sarafuddin B, Gong F, Ma K. Characterization of acetohydroxyacid synthase from the hyperthermophilic bacterium Thermotoga maritima. Biochem Biophys Rep 2015; 4:89-97. [PMID: 29124191 PMCID: PMC5668897 DOI: 10.1016/j.bbrep.2015.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/30/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the key enzyme in branched chain amino acid biosynthesis pathway. The enzyme activity and properties of a highly thermostable AHAS from the hyperthermophilic bacterium Thermotoga maritima is being reported. The catalytic and regulatory subunits of AHAS from T. maritima were over-expressed in Escherichia coli. The recombinant subunits were purified using a simplified procedure including a heat-treatment step followed by chromatography. A discontinuous colorimetric assay method was optimized and used to determine the kinetic parameters. AHAS activity was determined to be present in several Thermotogales including T. maritima. The catalytic subunit of T. maritima AHAS was purified approximately 30-fold, with an AHAS activity of approximately 160±27 U/mg and native molecular mass of 156±6 kDa. The regulatory subunit was purified to homogeneity and showed no catalytic activity as expected. The optimum pH and temperature for AHAS activity were 7.0 and 85 °C, respectively. The apparent Km and Vmax for pyruvate were 16.4±2 mM and 246±7 U/mg, respectively. Reconstitution of the catalytic and regulatory subunits led to increased AHAS activity. This is the first report on characterization of an isoleucine, leucine, and valine operon (ilv operon) enzyme from a hyperthermophilic microorganism and may contribute to our understanding of the physiological pathways in Thermotogales. The enzyme represents the most active and thermostable AHAS reported so far. First report of AHAS from a hyperthermophilic bacterium. Catalytic and regulatory subunits of AHAS of T. maritima was expressed in E. coli. Recombinant proteins were purified using a simplified procedure. Enzyme represents the most active and thermostable AHAS reported so far. Kinetic parameters were determined for the purified recombinant enzyme
Collapse
Key Words
- AHAS, acetohydroxyacid synthase
- Acetohydroxyacid synthase
- BCAA, branched chain amino acid
- Branched-chain amino acids
- CCE, crude cell extract
- CFE, cell-free extract
- HTCCE, heat-treated crude cell extract
- Hyperthermophiles
- IB, inclusion body
- IMAC, immobilized metal affinity chromatography
- TPP, thiamine pyrophosphate
- Thermotogales
- TmAHAS, Thermotoga maritima acetohydroxyacid synthase
- ilv, isoleucine, leucine, valine
Collapse
Affiliation(s)
- Mohammad S Eram
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Benozir Sarafuddin
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Frank Gong
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Kesen Ma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Balakrishnan A, Jordan F, Nathan CF. Influence of allosteric regulators on individual steps in the reaction catalyzed by Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase. J Biol Chem 2013; 288:21688-702. [PMID: 23760263 DOI: 10.1074/jbc.m113.465419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Allosteric regulation often controls key branch points in metabolic processes. Mycobacterium tuberculosis 2-hydroxy-3-oxoadipate synthase (HOAS), a thiamin diphosphate (ThDP)-dependent enzyme, produces 2-hydroxy-3-oxoadipate using 2-ketoglutarate and glyoxylate. The proposed chemical mechanism in analogy with other ThDP-dependent carboligases involves multiple ThDP-bound covalent intermediates. Acetyl coenzyme A is an activator, and GarA, a forkhead association domain-containing protein known to regulate glutamate metabolism, is an allosteric inhibitor of HOAS. Steady state kinetics using assays to study the first half and the full catalytic cycle suggested that the regulators act at different steps in the overall mechanism. To explore the modes of regulation and to test the effects on individual catalytic steps, we performed circular dichroism (CD) studies using a non-decarboxylatable 2-ketoglutarate analog and determined the distribution of ThDP-bound covalent intermediates during the steady state of the HOAS reaction using one-dimensional (1)H gradient carbon heteronuclear single quantum coherence NMR. The results suggest that acetyl coenzyme A acts as a mixed V and K type activator and predominantly affects the predecarboxylation steps. GarA does not inhibit the formation of the predecarboxylation analog and does not affect the accumulation of the postdecarboxylation covalent intermediate derived from 2-ketoglutarate; however, it decreases the abundance of the product ThDP adduct in the HOAS pathway. Thus, the two regulators act on different halves of the catalytic cycle in an unusual regulatory regime.
Collapse
Affiliation(s)
- Anand Balakrishnan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | | | | |
Collapse
|
6
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
7
|
Zhao Y, Wen X, Niu C, Xi Z. Arginine 26 and Aspartic Acid 69 of the Regulatory Subunit are Key Residues of Subunits Interaction of Acetohydroxyacid Synthase Isozyme III fromE. coli. Chembiochem 2012; 13:2445-54. [DOI: 10.1002/cbic.201200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|
8
|
Belenky I, Steinmetz A, Vyazmensky M, Barak Z, Tittmann K, Chipman DM. Many of the functional differences between acetohydroxyacid synthase (AHAS) isozyme I and other AHASs are a result of the rapid formation and breakdown of the covalent acetolactate-thiamin diphosphate adduct in AHAS I. FEBS J 2012; 279:1967-79. [DOI: 10.1111/j.1742-4658.2012.08577.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Gedi V, Yoon MY. Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status. FEBS J 2012; 279:946-63. [DOI: 10.1111/j.1742-4658.2012.08505.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Abstract
A bacterial strain S9-1capable of degrading sulfonylurea herbicide pyrazosulfuron-ethyl (PSE) was isolated from contaminated soil through the enrichment incubation method. Based on morphology, colony and cultural properties, physiological and biochemical characteristics, living-cell absorption spectra, internal photosynthetic membrane, and phylogenetics of its 16S rRNA gene sequence, S9-1was preliminarily identified as belonging to the genus Rhodopseudomonas, a group of photosynthetic bacteria (PSB). The effects of PSE concentration, pH, and temperature on biodegradation were examined. The degradation rate was found to decrease with increasing PSE concentration. Optimal growth pH and temperature were found to be 7.0 and 30°C, respectively. The strain was able to degrade 47.51% of PSE at a concentration of 100 mg ml-1after 7 days of incubation at 30°C and could tolerate 800 mg ml-1PSE. S9-1was also able to completely co-metabolically transform 100 mg ml-1PSE at 30°C, pH 7.0, and 7500 lux in 15 days. As the concentration of PSE increased, the degradation process took longer to complete. The fragment encoding acetolactate synthase (ALS) gene from S9-1was cloned and sequenced. Comparison of deduced amino acid sequences was implemented, and the conserved sites were analyzed. To our knowledge, this is the first report of PSB in PSE biodegradation. These results highlight the potential of this bacterium as a detoxifying agent for use with PSE-contaminated soil and wastewater.
Collapse
|
11
|
Gedi V, Jayaraman K, Kalme S, Park HY, Park HC, La IJ, Hahn HG, Yoon MY. Evaluation of substituted triazol-1-yl-pyrimidines as inhibitors of Bacillus anthracis acetohydroxyacid synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1369-75. [PMID: 20170757 DOI: 10.1016/j.bbapap.2010.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 11/27/2022]
Abstract
Acetohydroxyacid synthase (AHAS), a potential target for antimicrobial agents, catalyzes the first common step in the biosynthesis of the branched-chain amino acids. The genes of both catalytic and regulatory subunits of AHAS from Bacillus anthracis (Bantx), a causative agent of anthrax, were cloned, overexpressed in Escherichia coli, and purified to homogeneity. To develop novel anti-anthracis drugs that inhibit AHAS, a chemical library was screened, and four chemicals, AVS2087, AVS2093, AVS2387, and AVS2236, were identified as potent inhibitors of catalytic subunit with IC(50) values of 1.0 +/- 0.02, 1.0 +/- 0.04, 2.1 +/- 0.12, and 2.0 +/- 0.08 microM, respectively. Further, these four chemicals also showed strong inhibition against reconstituted AHAS with IC(50) values of 0.05 +/- 0.002, 0.153 +/- 0.004, 1.30 +/- 0.10, and 1.29 +/- 0.40 microM, respectively. The basic scaffold of the AVS group consists of 1-pyrimidine-2-yl-1H-[1,2,4]triazole-3-sulfonamide. The potent inhibitor, AVS2093 showed the lowest binding energy, -8.52 kcal/mol and formed a single hydrogen bond with a distance of 1.973 A. As the need for novel antibiotic classes to combat bacterial drug resistance increases, the screening of new compounds that act against Bantx-AHAS shows that AHAS is a good target for new anti-anthracis drugs.
Collapse
Affiliation(s)
- Vinayakumar Gedi
- Department of Chemistry and Institute of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Homologous and heterologous interactions between catalytic and regulatory subunits of Escherichia coli acetohydroxyacid synthase I and III. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11426-009-0213-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Awasthy D, Gaonkar S, Shandil RK, Yadav R, Bharath S, Marcel N, Subbulakshmi V, Sharma U. Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice. MICROBIOLOGY-SGM 2009; 155:2978-2987. [PMID: 19542000 DOI: 10.1099/mic.0.029884-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthesis pathway in bacteria. Bioinformatics analysis revealed that the Mycobacterium tuberculosis genome contains four genes (ilvB1, ilvB2, ilvG and ilvX) coding for the large catalytic subunit of AHAS, whereas only one gene (ilvN or ilvH) coding for the smaller regulatory subunit of this enzyme was found. In order to understand the physiological role of AHAS in survival of the organism in vitro and in vivo, we inactivated the ilvB1 gene of M. tuberculosis. The mutant strain was found to be auxotrophic for all of the three branched-chain amino acids (isoleucine, leucine and valine), when grown with either C(6) or C(2) carbon sources, suggesting that the ilvB1 gene product is the major AHAS in M. tuberculosis. Depletion of these branched chain amino acids in the medium led to loss of viability of the DeltailvB1 strain in vitro, resulting in a 4-log reduction in colony-forming units after 10 days. Survival kinetics of the mutant strain cultured in macrophages maintained with sub-optimal concentrations of the branched-chain amino acids did not show any loss of viability, indicating either that the intracellular environment was rich in these amino acids or that the other AHAS catalytic subunits were functional under these conditions. Furthermore, the growth kinetics of the DeltailvB1 strain in mice indicated that although this mutant strain showed defective growth in vivo, it could persist in the infected mice for a long time, and therefore could be a potential vaccine candidate.
Collapse
Affiliation(s)
- Disha Awasthy
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - R K Shandil
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Reena Yadav
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Sowmya Bharath
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | - Nimi Marcel
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| | | | - Umender Sharma
- AstraZeneca R&D, Bellary Road, Hebbal, Bangalore-560024, India
| |
Collapse
|
14
|
Shulman A, Zalyapin E, Vyazmensky M, Yifrach O, Barak Z, Chipman DM. Allosteric regulation of Bacillus subtilis threonine deaminase, a biosynthetic threonine deaminase with a single regulatory domain. Biochemistry 2008; 47:11783-92. [PMID: 18855421 DOI: 10.1021/bi800901n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme threonine deaminase (TD) is a key regulatory enzyme in the pathway for the biosynthesis of isoleucine. TD is inhibited by its end product, isoleucine, and this effect is countered by valine, the product of a competing biosynthetic pathway. Sequence and structure analyses have revealed that the protomers of many TDs have C-terminal regulatory domains, composed of two ACT-like subdomains, which bind isoleucine and valine, while others have regulatory domains of approximately half the length, composed of only a single ACT-like domain. The regulatory responses of TDs from both long and short sequence varieties appear to have many similarities, but there are significant differences. We describe here the allosteric properties of Bacillus subtilis TD ( bsTD), which belongs to the short variety of TD sequences. We also examine the effects of several mutations in the regulatory domain on the kinetics of the enzyme and its response to effectors. The behavior of bsTD can be analyzed and rationalized using a modified Monod-Wyman-Changeux model. This analysis suggests that isoleucine is a negative effector, and valine is a very weak positive effector, but that at high concentrations valine inhibits activity by competing with threonine for binding to the active site. The behavior of bsTD is contrasted with the allosteric behavior reported for TDs from Escherichia coli and Arabidopsis thaliana, TDs with two subdomains. We suggest a possible evolutionary pathway to the more complex regulatory effects of valine on the activity of TDs of the long sequence variety, e.g., E. coli TD.
Collapse
Affiliation(s)
- Anat Shulman
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
White RH. Biochemical Origins of Lactaldehyde and Hydroxyacetone in Methanocaldococcus jannaschii. Biochemistry 2008; 47:5037-46. [DOI: 10.1021/bi800069x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Robert H. White
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| |
Collapse
|
17
|
Choi KJ, Noh KM, Kim DE, Ha BH, Kim EE, Yoon MY. Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenzae and its potent inhibitors. Arch Biochem Biophys 2007; 466:24-30. [PMID: 17718999 DOI: 10.1016/j.abb.2007.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 07/07/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) is a thiamin diphosphate- (ThDP)- and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids (BCAAs) leucine, isoleucine, and valine. The gene from Haemophilus influenzae that encodes the AHAS catalytic subunit was cloned, overexpressed in Escherichia coli BL21(DE3), and purified to homogeneity. The purified H. influenzae AHAS catalytic subunit (Hin-AHAS) appeared as a single band on SDS-PAGE gel, with a molecular mass of approximately 63 kDa. The enzyme catalyzes the condensation of two molecules of pyruvate to form acetolactate, with a K(m) of 9.2mM and the specific activity of 1.5 micromol/min/mg. The cofactor activation constant (K(c)=13.5 microM) and the dissociation constant (K(d)=3.3 microM) of ThDP were also determined by enzymatic assay and tryptophan fluorescence quenching studies, respectively. We screened a chemical library to discover new inhibitors of the Hin AHAS catalytic subunit. Through which, AVS-2087 (IC(50)=0.53 microM), KSW30191 (IC(50)=1.42 microM), and KHG20612 (IC(50)=4.91 microM) displayed potent inhibition as compare to sulfometuron methyl (IC(50)=276.31 microM).
Collapse
Affiliation(s)
- Kyoung-Jae Choi
- Department of Chemistry, Hanyang University, 17 Haedang-dong, Sungdong-gu, Seoul 133-791, Republic of Korea
| | | | | | | | | | | |
Collapse
|
18
|
Nelson DR, Duxbury T. The distribution of acetohydroxyacid synthase in soil bacteria. Antonie Van Leeuwenhoek 2007; 93:123-32. [PMID: 17624809 DOI: 10.1007/s10482-007-9186-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Accepted: 06/18/2007] [Indexed: 11/26/2022]
Abstract
Most bacteria possess the enzyme acetohydroxyacid synthase, which is used to produce branched-chain amino acids. Enteric bacteria contain several isozymes suited to different conditions, but the distribution of acetohydroxyacid synthase in soil bacteria is largely unknown. Growth experiments confirmed that Escherichia coli, Salmonella enterica serotype Typhimurium, and Enterobacter aerogenes contain isozymes of acetohydroxyacid synthase, allowing the bacteria to grow in the presence of valine (which causes feedback inhibition of AHAS I) or the sulfonylurea herbicide triasulfuron (which inhibits AHAS II) although a slight lag phase was observed in growth in the latter case. Several common soil isolates were inhibited by triasulfuron, but Pseudomonas fluorescens and Rhodococcus erythropolis were not inhibited by any combination of triasulfuron and valine. The extent of sulfonylurea-sensitive acetohydroxyacid synthase in soil was revealed when 21 out of 27 isolated bacteria in pure culture were inhibited by triasulfuron, the addition of isoleucine and/or valine reversing the effect in 19 cases. Primers were designed to target the genes encoding the large subunits (ilvB, ilvG and ilvI) of acetohydroxyacid synthase from available sequence data and a approximately 355 bp fragment in Bacillus subtilis, Arthrobacter globiformis, E. coli and S. enterica was subsequently amplified. The primers were used to create a small clone library of sequences from an agricultural soil. Phylogenetic analysis revealed significant sequence variation, but all 19 amino acid sequences were most closely related to published large subunit acetohydroxyacid synthase amino acid sequences within several phyla including the Proteobacteria and Actinobacteria. The results suggested the majority of soil microorganisms contain only one functional acetohydroxyacid synthase enzyme sensitive to sulfonylurea herbicides.
Collapse
Affiliation(s)
- Darryl R Nelson
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | | |
Collapse
|
19
|
Petkowski JJ, Chruszcz M, Zimmerman MD, Zheng H, Skarina T, Onopriyenko O, Cymborowski MT, Koclega KD, Savchenko A, Edwards A, Minor W. Crystal structures of TM0549 and NE1324--two orthologs of E. coli AHAS isozyme III small regulatory subunit. Protein Sci 2007; 16:1360-7. [PMID: 17586771 PMCID: PMC2206681 DOI: 10.1110/ps.072793807] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/09/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Crystal structures of two orthologs of the regulatory subunit of acetohydroxyacid synthase III (AHAS, EC 2.2.1.6) from Thermotoga maritima (TM0549) and Nitrosomonas europea (NE1324) were determined by single-wavelength anomalous diffraction methods with the use of selenomethionine derivatives at 2.3 A and 2.5 A, respectively. TM0549 and NE1324 share the same fold, and in both proteins the polypeptide chain contains two separate domains of a similar size. Each protein contains a C-terminal domain with ferredoxin-type fold and an N-terminal ACT domain, of which the latter is characteristic for several proteins involved in amino acid metabolism. The ferredoxin domain is stabilized by a calcium ion in the crystal structure of NE1324 and by a Mg(H2O)(6)2+ ion in TM0549. Both TM0549 and NE1324 form dimeric assemblies in the crystal lattice.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
McCourt JA, Duggleby RG. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 2006; 31:173-210. [PMID: 16699828 DOI: 10.1007/s00726-005-0297-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 12/09/2005] [Indexed: 11/25/2022]
Abstract
The branched-chain amino acids are synthesized by plants, fungi and microorganisms, but not by animals. Therefore, the enzymes of this pathway are potential target sites for the development of antifungal agents, antimicrobials and herbicides. Most research has focused upon the first enzyme in this biosynthetic pathway, acetohydroxyacid synthase (AHAS) largely because it is the target site for many commercial herbicides. In this review we provide a brief overview of the important properties of each enzyme within the pathway and a detailed summary of the most recent AHAS research, against the perspective of work that has been carried out over the past 50 years.
Collapse
Affiliation(s)
- J A McCourt
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
21
|
Vinogradov V, Vyazmensky M, Engel S, Belenky I, Kaplun A, Kryukov O, Barak Z, Chipman DM. Acetohydroxyacid synthase isozyme I from Escherichia coli has unique catalytic and regulatory properties. Biochim Biophys Acta Gen Subj 2006; 1760:356-63. [PMID: 16326011 DOI: 10.1016/j.bbagen.2005.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/27/2005] [Accepted: 10/20/2005] [Indexed: 11/30/2022]
Abstract
AHAS I is an isozyme of acetohydroxyacid synthase which is apparently unique to enterobacteria. It has been known for over 20 years that it has many properties which are quite different from those of the other two enterobacterial AHASs isozymes, as well as from those of "typical" AHASs which are single enzymes in a given organism. These include a unique mechanism for regulation of expression and the absence of a preference for forming acetohydroxybutyrate. We have cloned the two subunits, ilvB and ilvN, of this Escherichia coli isoenzyme and examined the enzymatic properties of the purified holoenzyme and the enzyme reconstituted from purified subunits. Unlike other AHASs, AHAS I demonstrates cooperative feedback inhibition by valine, and the kinetics fit closely to an exclusive binding model. The formation of acetolactate by AHAS I is readily reversible and acetolactate can act as substrate for alternative AHAS I-catalyzed reactions.
Collapse
Affiliation(s)
- Valerie Vinogradov
- Department of Life Sciences, Ben-Gurion University of the Negev, POB 657, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Le DT, Yoon MY, Tae Kim Y, Choi JD. Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2005; 1749:103-12. [PMID: 15848141 DOI: 10.1016/j.bbapap.2005.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/22/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Acetohydroxy acid synthase (AHAS) catalyzes the first common step in the biosynthesis pathway of the branch chain amino acids in plants and microorganisms. A great deal of interest has been focused on AHAS since it was identified as the target of several classes of potent herbicides. In an effort to produce a mutant usable in the development of an herbicide-resistant transgenic plant, two consecutive aspartic acid residues, which are very likely positioned next to the enzyme-bound herbicide sulfonylurea as the homologous residues in AHAS from yeast, were selected for this study. Four single-point mutants and two double mutants were constructed, and designated D374A, D374E, D375A, D375E, D374A/D375A, and D374E/D375E. All mutants were active, but the D374A mutant exhibited substrate inhibition at high concentrations. The D374E mutant also evidenced a profound reduction with regard to catalytic efficiency. The mutation of D375A increased the K(m) value for pyruvate nearly 10-fold. In contrast, the D375E mutant reduced this value by more than 3-fold. The double mutants exhibited synergistic reduction in catalytic efficiencies. All mutants constructed in this study proved to be strongly resistant to the herbicide sulfonylurea Londax. The double mutants and the mutants with the D375 residue were also strongly cross-resistant to the herbicide triazolopyrimidine TP. However, only the D374A mutant proved to be strongly resistant to imidazolinone Cadre. The data presented here indicate that the two residues, D374 and D375, are located at a common binding site for the herbicides sulfonylurea and triazolopyrimidine. D375E may be a valuable mutant for the development of herbicide-resistant transgenic plants.
Collapse
Affiliation(s)
- Dung Tien Le
- School of Life Sciences, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | |
Collapse
|