1
|
Luo X, Zhang L, Xie X, Yuan L, Shi Y, Jiang Y, Ke W, Yang B. Phosphorylated vimentin-triggered fibronectin matrix disaggregation enhances the dissemination of Treponema pallidum subsp. pallidum across the microvascular endothelial barrier. PLoS Pathog 2024; 20:e1012483. [PMID: 39226326 PMCID: PMC11398692 DOI: 10.1371/journal.ppat.1012483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/13/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Fibronectin (FN) is an essential component of the extracellular matrix (ECM) that protects the integrity of the microvascular endothelial barrier (MEB). However, Treponema pallidum subsp. pallidum (Tp) breaches this barrier through elusive mechanisms and rapidly disseminates throughout the host. We aimed to understand the impact of Tp on the surrounding FN matrix of MEB and the underlying mechanisms of this effect. In this study, immunofluorescence assays (IF) were conducted to assess the integrity of the FN matrix surrounding human microvascular endothelial cell-1 (HMEC-1) with/without Tp co-culture, revealing that only live Tp exhibited the capability to mediate FN matrix disaggregation in HMEC-1. Western blotting and IF were employed to determine the protein levels associated with the FN matrix during Tp infection, which showed the unaltered protein levels of total FN and its receptor integrin α5β1, along with reduced insoluble FN and increased soluble FN. Simultaneously, the integrin α5β1-binding protein-intracellular vimentin maintained a stable total protein level while exhibiting an increase in the soluble form, specifically mediated by the phosphorylation of its 39th residue (pSer39-vimentin). Besides, this process of vimentin phosphorylation, which could be hindered by a serine-to-alanine mutation or inhibition of phosphorylated-AKT1 (pAKT1), promoted intracellular vimentin rearrangement and FN matrix disaggregation. Moreover, within the introduction of additional cellular FN rather than other Tp-adhered ECM protein, in vitro endothelial barrier traversal experiment and in vivo syphilitic infectivity test demonstrated that viable Tp was effectively prevented from penetrating the in vitro MEB or disseminating in Tp-challenged rabbits. This investigation revealed the active pAKT1/pSer39-vimentin signal triggered by live Tp to expedite the disaggregation of the FN matrix and highlighted the importance of FN matrix stability in syphilis, thereby providing a novel perspective on ECM disruption mechanisms that facilitate Tp dissemination across the MEB.
Collapse
Affiliation(s)
- Xi Luo
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Litian Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaoyuan Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Liyan Yuan
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yanqiang Shi
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yinbo Jiang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, People's Republic of China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Liu Z, Zhang X, Xiong S, Huang S, Ding X, Xu M, Yao J, Liu S, Zhao F. Endothelial dysfunction of syphilis: Pathogenesis. J Eur Acad Dermatol Venereol 2024; 38:1478-1490. [PMID: 38376088 DOI: 10.1111/jdv.19899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024]
Abstract
Treponema pallidum is the causative factor of syphilis, a sexually transmitted disease (STD) characterized by perivascular infiltration of inflammatory cells, vascular leakage, swelling and proliferation of endothelial cells (ECs). The endothelium lining blood and lymphatic vessels is a key barrier separating body fluids from host tissues and is a major target of T. pallidum. In this review, we focus on how T. pallidum establish intimate interactions with ECs, triggering endothelial dysfunction such as endothelial inflammation, abnormal repairment and damage of ECs. In addition, we summarize that migration and invasion of T. pallidum across vascular ECs may occur through two pathways. These two mechanisms of transendothelial migration are paracellular and cholesterol-dependent, respectively. Herein, clarifying the relationship between T. pallidum and endothelial dysfunction is of great significance to provide novel strategies for diagnosis and prevention of syphilis, and has a great potential prospect of clinical application.
Collapse
Affiliation(s)
- Zhaoping Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaohong Zhang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shun Xiong
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shaobin Huang
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Ding
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Man Xu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Jiangchen Yao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangquan Liu
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan Province, Hengyang Medical College, University of South China, Hengyang, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
3
|
Houston S, Gomez A, Geppert A, Goodyear MC, Cameron CE. In-Depth Proteome Coverage of In Vitro-Cultured Treponema pallidum and Quantitative Comparison Analyses with In Vivo-Grown Treponemes. J Proteome Res 2024; 23:1725-1743. [PMID: 38636938 PMCID: PMC11077495 DOI: 10.1021/acs.jproteome.3c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Previous mass spectrometry (MS)-based global proteomics studies have detected a combined total of 86% of all Treponema pallidum proteins under infection conditions (in vivo-grown T. pallidum). Recently, a method was developed for the long-term culture of T. pallidum under in vitro conditions (in vitro-cultured T. pallidum). Herein, we used our previously reported optimized MS-based proteomics approach to characterize the T. pallidum global protein expression profile under in vitro culture conditions. These analyses provided a proteome coverage of 94%, which extends the combined T. pallidum proteome coverage from the previously reported 86% to a new combined total of 95%. This study provides a more complete understanding of the protein repertoire of T. pallidum. Further, comparison of the in vitro-expressed proteome with the previously determined in vivo-expressed proteome identifies only a few proteomic changes between the two growth conditions, reinforcing the suitability of in vitro-cultured T. pallidum as an alternative to rabbit-based treponemal growth. The MS proteomics data have been deposited in the MassIVE repository with the data set identifier MSV000093603 (ProteomeXchange identifier PXD047625).
Collapse
Affiliation(s)
- Simon Houston
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Alloysius Gomez
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Andrew Geppert
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mara C. Goodyear
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Caroline E. Cameron
- Department
of Biochemistry and Microbiology, University
of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Department
of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
4
|
Eallonardo SJ, Freitag NE. Crossing the Barrier: A Comparative Study of Listeria monocytogenes and Treponema pallidum in Placental Invasion. Cells 2023; 13:88. [PMID: 38201292 PMCID: PMC10778170 DOI: 10.3390/cells13010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Vertically transmitted infections are a significant cause of fetal morbidity and mortality during pregnancy and pose substantial risks to fetal development. These infections are primarily transmitted to the fetus through two routes: (1) direct invasion and crossing the placenta which separates maternal and fetal circulation, or (2) ascending the maternal genitourinary tact and entering the uterus. Only two bacterial species are commonly found to cross the placenta and infect the fetus: Listeria monocytogenes and Treponema pallidum subsp. pallidum. L. monocytogenes is a Gram-positive, foodborne pathogen found in soil that acutely infects a wide variety of mammalian species. T. pallidum is a sexually transmitted spirochete that causes a chronic infection exclusively in humans. We briefly review the pathogenesis of these two very distinct bacteria that have managed to overcome the placental barrier and the role placental immunity plays in resisting infection. Both organisms share characteristics which contribute to their transplacental transmission. These include the ability to disseminate broadly within the host, evade immune phagocytosis, and the need for a strong T cell response for their elimination.
Collapse
Affiliation(s)
- Samuel J. Eallonardo
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Nancy E. Freitag
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60612, USA;
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
6
|
Houston S, Gomez A, Geppert A, Eshghi A, Smith DS, Waugh S, Hardie DB, Goodlett DR, Cameron CE. Deep proteome coverage advances knowledge of Treponema pallidum protein expression profiles during infection. Sci Rep 2023; 13:18259. [PMID: 37880309 PMCID: PMC10600179 DOI: 10.1038/s41598-023-45219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Comprehensive proteome-wide analysis of the syphilis spirochete, Treponema pallidum ssp. pallidum, is technically challenging due to high sample complexity, difficulties with obtaining sufficient quantities of bacteria for analysis, and the inherent fragility of the T. pallidum cell envelope which further complicates proteomic identification of rare T. pallidum outer membrane proteins (OMPs). The main aim of the present study was to gain a deeper understanding of the T. pallidum global proteome expression profile under infection conditions. This will corroborate and extend genome annotations, identify protein modifications that are unable to be predicted at the genomic or transcriptomic levels, and provide a foundational knowledge of the T. pallidum protein expression repertoire. Here we describe the optimization of a T. pallidum-specific sample preparation workflow and mass spectrometry-based proteomics pipeline which allowed for the detection of 77% of the T. pallidum protein repertoire under infection conditions. When combined with prior studies, this brings the overall coverage of the T. pallidum proteome to almost 90%. These investigations identified 27 known/predicted OMPs, including potential vaccine candidates, and detected expression of 11 potential OMPs under infection conditions for the first time. The optimized pipeline provides a robust and reproducible workflow for investigating T. pallidum protein expression during infection. Importantly, the combined results provide the deepest coverage of the T. pallidum proteome to date.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Andrew Geppert
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Derek S Smith
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Darryl B Hardie
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - David R Goodlett
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- University of Victoria-Genome BC Proteomics Centre, University of Victoria, Victoria, BC, Canada
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Waugh S, Ranasinghe A, Gomez A, Houston S, Lithgow KV, Eshghi A, Fleetwood J, Conway KME, Reynolds LA, Cameron CE. Syphilis and the host: multi-omic analysis of host cellular responses to Treponema pallidum provides novel insight into syphilis pathogenesis. Front Microbiol 2023; 14:1254342. [PMID: 37795301 PMCID: PMC10546344 DOI: 10.3389/fmicb.2023.1254342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Syphilis is a chronic, multi-stage infection caused by the extracellular bacterium Treponema pallidum ssp. pallidum. Treponema pallidum widely disseminates through the vasculature, crosses endothelial, blood-brain and placental barriers, and establishes systemic infection. Although the capacity of T. pallidum to traverse the endothelium is well-described, the response of endothelial cells to T. pallidum exposure, and the contribution of this response to treponemal traversal, is poorly understood. Methods To address this knowledge gap, we used quantitative proteomics and cytokine profiling to characterize endothelial responses to T. pallidum. Results Proteomic analyses detected altered host pathways controlling extracellular matrix organization, necroptosis and cell death, and innate immune signaling. Cytokine analyses of endothelial cells exposed to T. pallidum revealed increased secretion of interleukin (IL)-6, IL-8, and vascular endothelial growth factor (VEGF), and decreased secretion of monocyte chemoattractant protein-1 (MCP-1). Discussion This study provides insight into the molecular basis of syphilis disease symptoms and the enhanced susceptibility of individuals infected with syphilis to HIV co-infection. These investigations also enhance understanding of the host response to T. pallidum exposure and the pathogenic strategies used by T. pallidum to disseminate and persist within the host. Furthermore, our findings highlight the critical need for inclusion of appropriate controls when conducting T. pallidum-host cell interactions using in vitro- and in vivo-grown T. pallidum.
Collapse
Affiliation(s)
- Sean Waugh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Akash Ranasinghe
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Alloysius Gomez
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Karen V. Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Azad Eshghi
- University of Victoria-Genome BC Proteomics Centre, Victoria, BC, Canada
| | - Jenna Fleetwood
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Kate M. E. Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Li S, Li W, Jin Y, Wu B, Wu Y. Advancements in the development of nucleic acid vaccines for syphilis prevention and control. Hum Vaccin Immunother 2023; 19:2234790. [PMID: 37538024 PMCID: PMC10405752 DOI: 10.1080/21645515.2023.2234790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Syphilis, a chronic systemic sexually transmitted disease, is caused by the bacterium Treponema pallidum (T. pallidum). Currently, syphilis remains a widespread infectious disease with significant disease burden in many countries. Despite the absence of identified penicillin-resistant strains, challenges in syphilis treatment persist due to penicillin allergies, supply issues, and the emergence of macrolide-resistant strains. Vaccines represent the most cost-effective strategy to prevent and control the syphilis epidemic. In light of the ongoing global coronavirus disease 2019 (COVID-19) pandemic, nucleic acid vaccines have gained prominence in the field of vaccine research and development, owing to their superior efficiency compared to traditional vaccines. This review summarizes the current state of the syphilis epidemic and the preliminary findings in T. pallidum nucleic acid vaccine research, discusses the challenges associated with the development of T. pallidum nucleic acid vaccines, and proposes strategies and measures for future T. pallidum vaccine development.
Collapse
Affiliation(s)
- Sijia Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Weiwei Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
- Department of Clinical Laboratory, The Second People’s Hospital of Foshan, Foshan, China
| | - Yinqi Jin
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Bin Wu
- First Affiliated Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yimou Wu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| |
Collapse
|
9
|
Chen J, Huang J, Liu Z, Xie Y. Treponema pallidum outer membrane proteins: current status and prospects. Pathog Dis 2022; 80:6649208. [PMID: 35869970 DOI: 10.1093/femspd/ftac023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The outer membrane proteins (OMPs) of Treponema pallidum subsp. Pallidum (T. pallidum), the etiological agent of the sexually transmitted disease syphilis, has long been a hot research topic. Despite many hurdles to studying the pathogen, especially the inability to manipulate T. pallidum in vitro genetically1, considerable progress has been made in elucidating the structure, pathogenesis, and functions of T. pallidum OMPs. In this review, we integrate this information to garner fresh insights into the role of OMPs in the diagnosis, pathogenicity, and vaccine development of T. pallidum. Collectively, the essential scientific discussions herein should provide a framework for understanding the current status and prospects of T. pallidum OMPs.
Decades ago, researchers postulated that the poor surface antigenicity of T. pallidum is the basis for its ability to cause persistent infection. Still, they believed that the mysterious properties of T. pallidum should not be attributed to the presence of the outer membrane proteins (OMPs). Subsequent studies revealed that the OM, which lacks integral membrane proteins, prevents antibody binding2. Since the advent of recombinant DNA technology, the fragility of the OM, low protein content, and the lack of sequence relatedness between T. pallidum and Gram-negative OMPs have complicated efforts to characterize molecules residing at the host-pathogen interface. These hurdles have been overcome by using the genomic sequence with computational tools to identify proteins predicted to form beta barrels, the hallmark conformation of OMPs in many organisms. Diverse methodologies have also confirmed that some candidate OMPs from amphiphilic β-barrels are surface-exposed in T. pallidum. These studies have led to a structural homology model for BamA and established the bipartite topology of the T. pallidum repeat (Tpr) family of proteins. Recent bioinformatics has identified several structural orthologs for well-characterized Gram-negative OMPs, suggesting that the T. pallidum OMPs are more Gram-negative-like than previously supposed. Lipoprotein adhesins and proteases on the spirochete surface also may contribute to disease pathogenesis and protective immunity.
Collapse
Affiliation(s)
- Jinlin Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Jielite Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Zhuoran Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of University of South China , Hengyang 421001 , China
| |
Collapse
|
10
|
Xie B, Zhao T, Zhao S, Zhou J, Zhao F. Possible effects of Treponema pallidum infection on human vascular endothelial cells. J Clin Lab Anal 2022; 36:e24318. [PMID: 35274369 PMCID: PMC8993650 DOI: 10.1002/jcla.24318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 11/06/2022] Open
Abstract
Pathogens can affect host cells in various ways, and the same effect can be found in the Treponema pallidum acting on the endothelium of host vessels, and the mechanism is often complex and multiple. Based on the existing T. pallidum of a cognitive framework, the first concerns involving T. pallidum or the bacteria protein directly acted on vascular endothelial cells of the host, the second concerns mainly involved in the process of T. pallidum infection in vivo blood lipid change, secretion of cytokines and the interactions between immune cells indirectly. Through both direct and indirect influence, this study explores the role of host by T. pallidum infect in the process of the vascular endothelium.
Collapse
Affiliation(s)
- Bibo Xie
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Tie Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Sisi Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Jie Zhou
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| | - Feijun Zhao
- Institute of Pathogenic Biology and Key Laboratory of Special Pathogen Prevention and Control of Hunan ProvinceHengyang Medical CollegeUniversity of South ChinaHengyangP.R. China
| |
Collapse
|
11
|
Osias E, Hung P, Giacani L, Stafylis C, Konda KA, Vargas SK, Reyes-Díaz EM, Comulada WS, Haake DA, Haynes AM, Caceres CF, Klausner JD. Investigation of syphilis immunology and Treponema pallidum subsp. pallidum biology to improve clinical management and design a broadly protective vaccine: study protocol. BMC Infect Dis 2020; 20:444. [PMID: 32576149 PMCID: PMC7309211 DOI: 10.1186/s12879-020-05141-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/08/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The syphilis epidemic continues to cause substantial morbidity and mortality worldwide, particularly in low- and middle-income countries, despite several recent disease control initiatives. Though our understanding of the pathogenesis of this disease and the biology of the syphilis agent, Treponema pallidum subsp. pallidum has improved over the last two decades, further research is necessary to improve clinical diagnosis and disease management protocols. Additionally, such research efforts could contribute to the identification of possible targets for the development of an effective vaccine to stem syphilis spread. METHODS This study will recruit two cohorts of participants with active syphilis infection, one with de novo infection, one with repeat infection. Whole blood specimens will be collected from each study participant at baseline, 4, 12, 24, 36, and 48 weeks, to track specific markers of their immunological response, as well as to compare humoral reactivity to Treponema pallidum antigens between the two groups. Additionally, we will use serum specimens to look for unique cytokine patterns in participants with early syphilis. Oral and blood samples, as well as samples from any syphilitic lesions present, will also be collected to sequence any Treponema pallidum DNA found. DISCUSSION By furthering our understanding of syphilis pathogenesis and human host immune response to Treponema pallidum, we will provide important data that will help in development of new point-of-care tests that could better identify active infection, leading to improved syphilis diagnosis and management. Findings could also contribute to vaccine development efforts.
Collapse
Affiliation(s)
- Ethan Osias
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| | - Phoebe Hung
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Chrysovalantis Stafylis
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - Kelika A Konda
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Silver K Vargas
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Michael Reyes-Díaz
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - W Scott Comulada
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| | - David A Haake
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Austin M Haynes
- Department of Medicine, Division of Allergy and Infectious Diseases, and Department of Global Health, University of Washington, Seattle, WA, USA
| | - Carlos F Caceres
- Unit of Health, Sexuality and Human Development and Laboratory of Sexual Health, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Jeffrey D Klausner
- Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA
| |
Collapse
|
12
|
Li W, Luo C, Xie X, Xiao Y, Zhao F, Cai J, Zhou X, Zeng T, Fu B, Wu Y, Xiao X, Liu S. Identification of key genes and pathways in syphilis combined with diabetes: a bioinformatics study. AMB Express 2020; 10:83. [PMID: 32342229 PMCID: PMC7186291 DOI: 10.1186/s13568-020-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
We noticed that syphilis patients seem to be more susceptible to diabetes and the lesions often involve the kidneys, but the pathogenesis is not yet completely understood. In this study, microarray analysis was performed to investigate the dysregulated expressed genes (DEGs) in rabbit model of syphilis combined with diabetes. A total of 1045 genes were identified to be significantly differentially expressed, among which 571 were up-regulated and 474 were down-regulated (≥ 2.0fold, p < 0.05). Using the database visualization and integration discovery for the Kyoto Encyclopedia of Gene and Genome (KEGG) pathway enrichment analysis. The downregulated DEGs were significantly enriched for biosynthesis of antibiotics, carbon metabolism and protein digestion, while the upregulated DEGs were mainly enriched for cancer and PI3K-Akt signaling pathway. Molecular Complex Detection (MCODE) plugins were used to visualize protein–protein interaction (PPI) network of DEGs and Screening for hub genes and gene modules. ALB, FN1, CASP3, MMP9, IL8, CTGF, STAT3, IGF1, VCAM-1 and HGF were filtrated as the hub genes according to the degree of connectivity from the PPI network. To the best of our knowledge, this study is the first to comprehensively identify the expression patterns of dysregulated genes in syphilis combined with diabetes, providing a basis for revealing the underlying pathogenesis of syphilis combined with diabetes and exploring the goals of therapeutic intervention.
Collapse
|
13
|
Identification of the Neuroinvasive Pathogen Host Target, LamR, as an Endothelial Receptor for the Treponema pallidum Adhesin Tp0751. mSphere 2020; 5:5/2/e00195-20. [PMID: 32238570 PMCID: PMC7113585 DOI: 10.1128/msphere.00195-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Treponema pallidum subsp. pallidum is the causative agent of syphilis, a human-specific sexually transmitted infection that causes a multistage disease with diverse clinical manifestations. Treponema pallidum undergoes rapid vascular dissemination to penetrate tissue, placental, and blood-brain barriers and gain access to distant tissue sites. The rapidity and extent of T. pallidum dissemination are well documented, but the molecular mechanisms have yet to be fully elucidated. One protein that has been shown to play a role in treponemal dissemination is Tp0751, a T. pallidum adhesin that interacts with host components found within the vasculature and mediates bacterial adherence to endothelial cells under shear flow conditions. In this study, we further explore the molecular interactions of Tp0751-mediated adhesion to the vascular endothelium. We demonstrate that recombinant Tp0751 adheres to human endothelial cells of macrovascular and microvascular origin, including a cerebral brain microvascular endothelial cell line. Adhesion assays using recombinant Tp0751 N-terminal truncations reveal that endothelial binding is localized to the lipocalin fold-containing domain of the protein. We also confirm this interaction using live T. pallidum and show that spirochete attachment to endothelial monolayers is disrupted by Tp0751-specific antiserum. Further, we identify the 67-kDa laminin receptor (LamR) as an endothelial receptor for Tp0751 using affinity chromatography, coimmunoprecipitation, and plate-based binding methodologies. Notably, LamR has been identified as a receptor for adhesion of other neurotropic invasive bacterial pathogens to brain endothelial cells, including Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, suggesting the existence of a common mechanism for extravasation of invasive extracellular bacterial pathogens.IMPORTANCE Syphilis is a sexually transmitted infection caused by the spirochete bacterium Treponema pallidum subsp. pallidum. The continued incidence of syphilis demonstrates that screening and treatment strategies are not sufficient to curb this infectious disease, and there is currently no vaccine available. Herein we demonstrate that the T. pallidum adhesin Tp0751 interacts with endothelial cells that line the lumen of human blood vessels through the 67-kDa laminin receptor (LamR). Importantly, LamR is also a receptor for meningitis-causing neuroinvasive bacterial pathogens such as Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae Our findings enhance understanding of the Tp0751 adhesin and present the intriguing possibility that the molecular events of Tp0751-mediated treponemal dissemination may mimic the endothelial interaction strategies of other invasive pathogens.
Collapse
|
14
|
Huang T, Zhang J, Ke W, Zhang X, Chen W, Yang J, Liao Y, Liang F, Mei S, Li M, Luo Z, Zhang Q, Yang B, Zheng H. MicroRNA expression profiling of peripheral blood mononuclear cells associated with syphilis. BMC Infect Dis 2020; 20:165. [PMID: 32087699 PMCID: PMC7036247 DOI: 10.1186/s12879-020-4846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Treponema pallidum (T. pallidum) infection evokes significant immune responses, resulting in tissue damage. The immune mechanism underlying T. pallidum infection is still unclear, although microRNAs (miRNAs) have been shown to influence immune cell function and, consequently, the generation of antibody responses during other microbe infections. However, these mechanisms are unknown for T. pallidum. METHODS In this study, we performed a comprehensive analysis of differentially expressed miRNAs in healthy individuals, untreated patients with syphilis, patients in the serofast state, and serologically cured patients. miRNAs were profiled from the peripheral blood of patients obtained at the time of serological diagnosis. Then, both the target sequence analysis of these different miRNAs and pathway analysis were performed to identify important immune and cell signaling pathways. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was performed for microRNA analysis. RESULTS A total of 74 differentially regulated miRNAs were identified. Following RT-qPCR confirmation, three miRNAs (hsa-miR-195-5p, hsa-miR-223-3p, hsa-miR-589-3p) showed significant differences in the serofast and serologically cured states (P < 0.05). One miRNA (hsa-miR-195-5p) showed significant differences between untreated patients and healthy individuals. CONCLUSIONS This is the first study of miRNA expression differences in peripheral blood mononuclear cells (PBMCs) in different stages of T. pallium infection. Our study suggests that the combination of three miRNAs has great potential to serve as a non-invasive biomarker of T. pallium infections, which will facilitate better diagnosis and treatment of T. pallium infections.
Collapse
Affiliation(s)
- Tao Huang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.,Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wujian Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohui Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wentao Chen
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jieyi Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yiwen Liao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Fangwen Liang
- Yingde Center for Chronic Disease Control, Yingde, China
| | - Shuqing Mei
- Zhuhai Center Chronic Disease Control, Zhuhai, China
| | - Mingjiu Li
- Panyu Institute of Chronic Disease, Guangzhou, China
| | - Zhenzhou Luo
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, China
| | - Qiwei Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.,Department of Microbiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
15
|
Djokic V, Giacani L, Parveen N. Analysis of host cell binding specificity mediated by the Tp0136 adhesin of the syphilis agent Treponema pallidum subsp. pallidum. PLoS Negl Trop Dis 2019; 13:e0007401. [PMID: 31071095 PMCID: PMC6529012 DOI: 10.1371/journal.pntd.0007401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/21/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Background Syphilis affects approximately 11 million people each year globally, and is the third most prevalent sexually transmitted bacterial infection in the United States. Inability to independently culture and genetically manipulate Treponema pallidum subsp. pallidum, the causative agent of this disease, has hindered our understanding of the molecular mechanisms of syphilis pathogenesis. Here, we used the non-infectious and poorly adherent B314 strain of the Lyme disease-causing spirochete, Borrelia burgdorferi, to express two variants of a known fibronectin-binding adhesin, Tp0136, from T. pallidum SS14 and Nichols strains. Using this surrogate system, we investigated the ability of Tp0136 in facilitating differential binding to mammalian cell lines offering insight into the possible role of this virulence factor in colonization of specific tissues by T. pallidum during infection. Principal findings Expression of Tp0136 could be detected on the surface of B. burgdorferi by indirect immunofluorescence assay using sera from a secondary syphilis patient that does not react with intact B314 spirochetes transformed with the empty vector. Increase in Tp0136-mediated adherence of B314 strain to human epithelial HEK293 cells was observed with comparable levels of binding exhibited by both Tp0136 alleles. Adherence of Tp0136-expressing B314 was highest to epithelial HEK293 and C6 glioma cells. Gain in binding of B314 strain expressing Tp0136 to purified fibronectin and poor binding of these spirochetes to the fibronectin-deficient cell line (HEp-2) indicated that Tp0136 interaction with this host receptor plays an important role in spirochetal attachment to mammalian cells. Furthermore, preincubation of these cell lines with fibronectin-binding peptide from Staphylococcus aureus FnbA-2 protein significantly inhibited binding of B314 expressing Tp0136. Conclusions Our results show that Tp0136 facilitates differential level of binding to cell lines representing various host tissues, which highlights the importance of this protein in colonization of human organs by T. pallidum and resulting syphilis pathogenesis. Syphilis is one of the most prevalent sexually transmitted infections that affect millions of people around the world. The causative bacterium, Treponema pallidum subsp. pallidum, can be transmitted from mother to fetus during maternal infection, resulting in adverse pregnancy outcomes. Although timely treatment of syphilis is highly effective, untreated infection causes late syphilis that affects virtually every organ and leads to serious clinical manifestations. Therefore, syphilis remains a serious healthcare problem. T. pallidum cannot be grown in laboratory using traditional methods, which has slowed the progress in understanding this pathogen biology and pathogenesis. We employed a novel approach of using a related bacterium, Borrelia burgdorferi, to express Tp0136 protein from two different T. pallidum isolates to study the function of this protein. This strategy enabled us to demonstrate the ability of this protein to bind to fibronectin and laminin receptors present on the surface of various host cells. We showed that Tp0136 facilitates binding to only those host cells that produce fibronectin. In addition, we found that Tp0136-mediated binding is not equivalent in all host cell types, suggesting that the protein could help in colonization of specific human organs and tissues during infection by T. pallidum.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ghosh KK, Prakash A, Shrivastav P, Balamurugan V, Kumar M. Evaluation of a novel outer membrane surface-exposed protein, LIC13341 of Leptospira, as an adhesin and serodiagnostic candidate marker for leptospirosis. Microbiology (Reading) 2018; 164:1023-1037. [DOI: 10.1099/mic.0.000685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Karukriti Kaushik Ghosh
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aman Prakash
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Prateek Shrivastav
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vinayagamurthy Balamurugan
- 2Indian Council of Agricultural Research-National Institute of Veterinary Epidemiology and Disease Informatics (ICAR-NIVEDI), Bengaluru, India
| | - Manish Kumar
- 1Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
17
|
Houston S, Lithgow KV, Osbak KK, Kenyon CR, Cameron CE. Functional insights from proteome-wide structural modeling of Treponema pallidum subspecies pallidum, the causative agent of syphilis. BMC STRUCTURAL BIOLOGY 2018; 18:7. [PMID: 29769048 PMCID: PMC5956850 DOI: 10.1186/s12900-018-0086-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Background Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale. Results Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens. Conclusions Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome. Electronic supplementary material The online version of this article (10.1186/s12900-018-0086-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen Vivien Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | | | - Chris Richard Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
18
|
Van Raemdonck GA, Osbak KK, Van Ostade X, Kenyon CR. Needle lost in the haystack: multiple reaction monitoring fails to detect Treponema pallidum candidate protein biomarkers in plasma and urine samples from individuals with syphilis. F1000Res 2018; 7:336. [PMID: 30519456 PMCID: PMC6248270 DOI: 10.12688/f1000research.13964.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Current syphilis diagnostic strategies are lacking a sensitive manner of directly detecting
Treponema pallidum antigens. A diagnostic test that could directly detect
T. pallidum antigens in individuals with syphilis would be of considerable clinical utility, especially for the diagnosis of reinfections and for post-treatment serological follow-up. Methods: In this study, 11 candidate
T. pallidum biomarker proteins were chosen according to their physiochemical characteristics,
T. pallidum specificity and predicted abundance. Thirty isotopically labelled proteotypic surrogate peptides (hPTPs) were synthesized and incorporated into a scheduled multiple reaction monitoring assay. Protein extracts from undepleted/unenriched plasma (N = 18) and urine (N = 4) samples from 18 individuals with syphilis in various clinical stages were tryptically digested, spiked with the hPTP mixture and analysed with a triple quadruple mass spectrometer. Results: No endogenous PTPs corresponding to the eleven candidate biomarkers were detected in any samples analysed. To estimate the Limit of Detection (LOD) of a comparably sensitive mass spectrometer (LTQ-Orbitrap), two dilution series of rabbit cultured purified
T. pallidum were prepared in PBS. Polyclonal anti-
T. pallidum antibodies coupled to magnetic Dynabeads were used to enrich one sample series; no LOD improvement was found compared to the unenriched series. The estimated LOD of MS instruments is 300
T. pallidum/ml in PBS. Conclusions: Biomarker protein detection likely failed due to the low (femtomoles/liter) predicted concentration of
T. pallidum proteins. Alternative sample preparation strategies may improve the detectability of
T. pallidum proteins in biofluids.
Collapse
Affiliation(s)
- Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signalling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, 2610, Belgium
| | - Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signalling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, 2610, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, 2000, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, 7925, South Africa
| |
Collapse
|
19
|
Abstract
Treponema pallidum subspecies pallidum (T. pallidum) causes syphilis via sexual exposure or via vertical transmission during pregnancy. T. pallidum is renowned for its invasiveness and immune-evasiveness; its clinical manifestations result from local inflammatory responses to replicating spirochaetes and often imitate those of other diseases. The spirochaete has a long latent period during which individuals have no signs or symptoms but can remain infectious. Despite the availability of simple diagnostic tests and the effectiveness of treatment with a single dose of long-acting penicillin, syphilis is re-emerging as a global public health problem, particularly among men who have sex with men (MSM) in high-income and middle-income countries. Syphilis also causes several hundred thousand stillbirths and neonatal deaths every year in developing nations. Although several low-income countries have achieved WHO targets for the elimination of congenital syphilis, an alarming increase in the prevalence of syphilis in HIV-infected MSM serves as a strong reminder of the tenacity of T. pallidum as a pathogen. Strong advocacy and community involvement are needed to ensure that syphilis is given a high priority on the global health agenda. More investment is needed in research on the interaction between HIV and syphilis in MSM as well as into improved diagnostics, a better test of cure, intensified public health measures and, ultimately, a vaccine.
Collapse
Affiliation(s)
- Rosanna W Peeling
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - David Mabey
- London School of Hygiene &Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Mary L Kamb
- Division of STD Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Xiang-Sheng Chen
- National Center for STD Control, Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Dermatology, Nanjing, China
| | - Justin D Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | - Adele S Benzaken
- Department of Surveillance, Prevention and Control of STI, HIV/AIDS and Viral Hepatitis, Ministry of Health, Brasília, Brazil
| |
Collapse
|
20
|
A preliminary study on the proinflammatory mechanisms of Treponema pallidum outer membrane protein Tp92 in human macrophages and HMEC-1 cells. Microb Pathog 2017; 110:176-183. [DOI: 10.1016/j.micpath.2017.06.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 02/07/2023]
|
21
|
Kao WCA, Pětrošová H, Ebady R, Lithgow KV, Rojas P, Zhang Y, Kim YE, Kim YR, Odisho T, Gupta N, Moter A, Cameron CE, Moriarty TJ. Identification of Tp0751 (Pallilysin) as a Treponema pallidum Vascular Adhesin by Heterologous Expression in the Lyme disease Spirochete. Sci Rep 2017; 7:1538. [PMID: 28484210 PMCID: PMC5431505 DOI: 10.1038/s41598-017-01589-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 11/25/2022] Open
Abstract
Treponema pallidum subsp. pallidum, the causative agent of syphilis, is a highly invasive spirochete pathogen that uses the vasculature to disseminate throughout the body. Identification of bacterial factors promoting dissemination is crucial for syphilis vaccine development. An important step in dissemination is bacterial adhesion to blood vessel surfaces, a process mediated by bacterial proteins that can withstand forces imposed on adhesive bonds by blood flow (vascular adhesins). The study of T. pallidum vascular adhesins is hindered by the uncultivable nature of this pathogen. We overcame these limitations by expressing T. pallidum adhesin Tp0751 (pallilysin) in an adhesion-attenuated strain of the cultivable spirochete Borrelia burgdorferi. Under fluid shear stress representative of conditions in postcapillary venules, Tp0751 restored bacterial-vascular interactions to levels similar to those observed for infectious B. burgdorferi and a gain-of-function strain expressing B. burgdorferi vascular adhesin BBK32. The strength and stability of Tp0751- and BBK32-dependent endothelial interactions under physiological shear stress were similar, although the mechanisms stabilizing these interactions were distinct. Tp0751 expression also permitted bacteria to interact with postcapillary venules in live mice as effectively as BBK32-expressing strains. These results demonstrate that Tp0751 can function as a vascular adhesin.
Collapse
Affiliation(s)
- Wei-Chien Andrew Kao
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Pablo Rojas
- Charité University Medicine Berlin, Berlin, Germany
| | - Yang Zhang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yae-Eun Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Yae-Ram Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Tanya Odisho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Nupur Gupta
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Annette Moter
- Biofilmcenter, German Heart Center Berlin, Berlin, Germany
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Tara J Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
22
|
Novel Treponema pallidum Recombinant Antigens for Syphilis Diagnostics: Current Status and Future Prospects. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1436080. [PMID: 28523273 PMCID: PMC5421087 DOI: 10.1155/2017/1436080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/21/2017] [Indexed: 11/18/2022]
Abstract
The recombinant protein technology considerably promoted the development of rapid and accurate treponema-specific laboratory diagnostics of syphilis infection. For the last ten years, the immunodominant recombinant inner membrane lipoproteins are proved to be sensitive and specific antigens for syphilis screening. However, the development of an enlarged T. pallidum antigen panel for diagnostics of early and late syphilis and differentiation of syphilis stages or cured syphilis remains as actual goal of multidisciplinary expertise. Current review revealed novel recombinant antigens: surface-exposed proteins, adhesins, and periplasmic and flagellar proteins, which are promising candidates for the improved syphilis serological diagnostics. The opportunities and limitations of diagnostic usage of these antigens are discussed and the criteria for selection of optimal antigens panel summarized.
Collapse
|
23
|
Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 2016; 14:744-759. [PMID: 27721440 DOI: 10.1038/nrmicro.2016.141] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The past two decades have seen a worldwide resurgence in infections caused by Treponema pallidum subsp. pallidum, the syphilis spirochete. The well-recognized capacity of the syphilis spirochete for early dissemination and immune evasion has earned it the designation 'the stealth pathogen'. Despite the many hurdles to studying syphilis pathogenesis, most notably the inability to culture and to genetically manipulate T. pallidum, in recent years, considerable progress has been made in elucidating the structural, physiological, and regulatory facets of T. pallidum pathogenicity. In this Review, we integrate this eclectic body of information to garner fresh insights into the highly successful parasitic lifestyles of the syphilis spirochete and related pathogenic treponemes.
Collapse
Affiliation(s)
- Justin D Radolf
- Departments of Medicine, Pediatrics, Genetics and Genomic Science, Molecular Biology and Biophysics, and Immunology, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - Ranjit K Deka
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - Arvind Anand
- Department of Medicine, UConn Health, 263 Farmington Avenue, Farmington, Connecticut 06030-3715, USA
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Michael V Norgard
- Department of Microbiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9048, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
24
|
Parker ML, Houston S, Pětrošová H, Lithgow KV, Hof R, Wetherell C, Kao WC, Lin YP, Moriarty TJ, Ebady R, Cameron CE, Boulanger MJ. The Structure of Treponema pallidum Tp0751 (Pallilysin) Reveals a Non-canonical Lipocalin Fold That Mediates Adhesion to Extracellular Matrix Components and Interactions with Host Cells. PLoS Pathog 2016; 12:e1005919. [PMID: 27683203 PMCID: PMC5040251 DOI: 10.1371/journal.ppat.1005919] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/08/2016] [Indexed: 12/02/2022] Open
Abstract
Syphilis is a chronic disease caused by the bacterium Treponema pallidum subsp. pallidum. Treponema pallidum disseminates widely throughout the host and extravasates from the vasculature, a process that is at least partially dependent upon the ability of T. pallidum to interact with host extracellular matrix (ECM) components. Defining the molecular basis for the interaction between T. pallidum and the host is complicated by the intractability of T. pallidum to in vitro culturing and genetic manipulation. Correspondingly, few T. pallidum proteins have been identified that interact directly with host components. Of these, Tp0751 (also known as pallilysin) displays a propensity to interact with the ECM, although the underlying mechanism of these interactions remains unknown. Towards establishing the molecular mechanism of Tp0751-host ECM attachment, we first determined the crystal structure of Tp0751 to a resolution of 2.15 Å using selenomethionine phasing. Structural analysis revealed an eight-stranded beta-barrel with a profile of short conserved regions consistent with a non-canonical lipocalin fold. Using a library of native and scrambled peptides representing the full Tp0751 sequence, we next identified a subset of peptides that showed statistically significant and dose-dependent interactions with the ECM components fibrinogen, fibronectin, collagen I, and collagen IV. Intriguingly, each ECM-interacting peptide mapped to the lipocalin domain. To assess the potential of these ECM-coordinating peptides to inhibit adhesion of bacteria to host cells, we engineered an adherence-deficient strain of the spirochete Borrelia burgdorferi to heterologously express Tp0751. This engineered strain displayed Tp0751 on its surface and exhibited a Tp0751-dependent gain-of-function in adhering to human umbilical vein endothelial cells that was inhibited in the presence of one of the ECM-interacting peptides (p10). Overall, these data provide the first structural insight into the mechanisms of Tp0751-host interactions, which are dependent on the protein’s lipocalin fold. The Treponema pallidum protein, Tp0751, possesses adhesive properties and has been previously reported to mediate attachment to the host extracellular matrix components laminin, fibronectin, and fibrinogen. Herein we demonstrate that Tp0751 adopts an eight-stranded beta barrel-containing lipocalin structure, and using a peptide library approach we show that the extracellular matrix component adhesive functionality of Tp0751 is localized to the lipocalin domain. Further, using a heterologous expression system we demonstrate that Tp0751 mediates attachment to endothelial cells, and that this interaction is specifically inhibited by a peptide derived from the Tp0751 lipocalin domain. Through these studies we have delineated the regions of the Tp0751 protein that mediate interaction with host extracellular matrix components and endothelial cells. These findings enhance our understanding of the role of this protein in treponemal dissemination via the bloodstream and provide defined regions of the Tp0751 protein that can be targeted to disrupt the treponemal-host interaction.
Collapse
Affiliation(s)
- Michelle L. Parker
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen V. Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Charmaine Wetherell
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Wei-Chien Kao
- Matrix Dynamics Group, Faculty of Dentistry, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Yi-Pin Lin
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Tara J. Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (CEC); (MJB)
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail: (CEC); (MJB)
| |
Collapse
|
25
|
Osbak KK, Houston S, Lithgow KV, Meehan CJ, Strouhal M, Šmajs D, Cameron CE, Van Ostade X, Kenyon CR, Van Raemdonck GA. Characterizing the Syphilis-Causing Treponema pallidum ssp. pallidum Proteome Using Complementary Mass Spectrometry. PLoS Negl Trop Dis 2016; 10:e0004988. [PMID: 27606673 PMCID: PMC5015957 DOI: 10.1371/journal.pntd.0004988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/19/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The spirochete bacterium Treponema pallidum ssp. pallidum is the etiological agent of syphilis, a chronic multistage disease. Little is known about the global T. pallidum proteome, therefore mass spectrometry studies are needed to bring insights into pathogenicity and protein expression profiles during infection. METHODOLOGY/PRINCIPAL FINDINGS To better understand the T. pallidum proteome profile during infection, we studied T. pallidum ssp. pallidum DAL-1 strain bacteria isolated from rabbits using complementary mass spectrometry techniques, including multidimensional peptide separation and protein identification via matrix-assisted laser desorption ionization-time of flight (MALDI-TOF/TOF) and electrospray ionization (ESI-LTQ-Orbitrap) tandem mass spectrometry. A total of 6033 peptides were detected, corresponding to 557 unique T. pallidum proteins at a high level of confidence, representing 54% of the predicted proteome. A previous gel-based T. pallidum MS proteome study detected 58 of these proteins. One hundred fourteen of the detected proteins were previously annotated as hypothetical or uncharacterized proteins; this is the first account of 106 of these proteins at the protein level. Detected proteins were characterized according to their predicted biological function and localization; half were allocated into a wide range of functional categories. Proteins annotated as potential membrane proteins and proteins with unclear functional annotations were subjected to an additional bioinformatics pipeline analysis to facilitate further characterization. A total of 116 potential membrane proteins were identified, of which 16 have evidence supporting outer membrane localization. We found 8/12 proteins related to the paralogous tpr gene family: TprB, TprC/D, TprE, TprG, TprH, TprI and TprJ. Protein abundance was semi-quantified using label-free spectral counting methods. A low correlation (r = 0.26) was found between previous microarray signal data and protein abundance. CONCLUSIONS This is the most comprehensive description of the global T. pallidum proteome to date. These data provide valuable insights into in vivo T. pallidum protein expression, paving the way for improved understanding of the pathogenicity of this enigmatic organism.
Collapse
Affiliation(s)
- Kara K Osbak
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Karen V Lithgow
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Conor J Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michal Strouhal
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Xaveer Van Ostade
- Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| | - Chris R Kenyon
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Geert A Van Raemdonck
- HIV/STI Unit, Institute of Tropical Medicine, Antwerp, Belgium.,Laboratory for Protein Science, Proteomics and Epigenetic Signaling (PPES) and Centre for Proteomics (CFP), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
26
|
Abstract
INTRODUCTION Syphilis, caused by the spirochete Treponema pallidum subspecies pallidum, continues to be a globally prevalent disease despite remaining susceptible to penicillin treatment. Syphilis vaccine development is a viable preventative approach that will serve to complement public health-oriented syphilis prevention, screening and treatment initiatives to deliver a two-pronged approach to stemming disease spread worldwide. Areas covered: This article provides an overview of the need for development of a syphilis vaccine, summarizes significant information that has been garnered from prior syphilis vaccine studies, discusses the critical aspects of infection that would have to be targeted by a syphilis vaccine, and presents the current understanding within the field of the correlates of protection needed to be achieved through vaccination. Expert commentary: Syphilis vaccine development should be considered a priority by industry, regulatory and funding agencies, and should be appropriately promoted and supported.
Collapse
Affiliation(s)
- Karen V Lithgow
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| | - Caroline E Cameron
- a Department of Biochemistry and Microbiology , University of Victoria , Victoria , Canada
| |
Collapse
|
27
|
Houston S, Taylor JS, Denchev Y, Hof R, Zuerner RL, Cameron CE. Conservation of the Host-Interacting Proteins Tp0750 and Pallilysin among Treponemes and Restriction of Proteolytic Capacity to Treponema pallidum. Infect Immun 2015; 83:4204-16. [PMID: 26283341 PMCID: PMC4598410 DOI: 10.1128/iai.00643-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/06/2015] [Indexed: 12/13/2022] Open
Abstract
The spirochete Treponema pallidum subsp. pallidum is the causative agent of syphilis, a chronic, sexually transmitted infection characterized by multiple symptomatic and asymptomatic stages. Although several other species in the genus are able to cause or contribute to disease, T. pallidum differs in that it is able to rapidly disseminate via the bloodstream to tissue sites distant from the site of initial infection. It is also the only Treponema species able to cross both the blood-brain and placental barriers. Previously, the T. pallidum proteins, Tp0750 and Tp0751 (also called pallilysin), were shown to degrade host proteins central to blood coagulation and basement membrane integrity, suggesting a role for these proteins in T. pallidum dissemination and tissue invasion. In the present study, we characterized Tp0750 and Tp0751 sequence variation in a diversity of pathogenic and nonpathogenic treponemes. We also determined the proteolytic potential of the orthologs from the less invasive species Treponema denticola and Treponema phagedenis. These analyses showed high levels of sequence similarity among Tp0750 orthologs from pathogenic species. For pallilysin, lower levels of sequence conservation were observed between this protein and orthologs from other treponemes, except for the ortholog from the highly invasive rabbit venereal syphilis-causing Treponema paraluiscuniculi. In vitro host component binding and degradation assays demonstrated that pallilysin and Tp0750 orthologs from the less invasive treponemes tested were not capable of binding or degrading host proteins. The results show that pallilysin and Tp0750 host protein binding and degradative capability is positively correlated with treponemal invasiveness.
Collapse
Affiliation(s)
- Simon Houston
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John S Taylor
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Yavor Denchev
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Rebecca Hof
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Richard L Zuerner
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, USA Department of Biomedicine and Veterinary Public Health, Swedish University of Agricultural Research, Uppsala, Sweden
| | - Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
28
|
Giacani L, Brandt SL, Ke W, Reid TB, Molini BJ, Iverson-Cabral S, Ciccarese G, Drago F, Lukehart SA, Centurion-Lara A. Transcription of TP0126, Treponema pallidum putative OmpW homolog, is regulated by the length of a homopolymeric guanosine repeat. Infect Immun 2015; 83:2275-89. [PMID: 25802057 PMCID: PMC4432754 DOI: 10.1128/iai.00360-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
An effective mechanism for introduction of phenotypic diversity within a bacterial population exploits changes in the length of repetitive DNA elements located within gene promoters. This phenomenon, known as phase variation, causes rapid activation or silencing of gene expression and fosters bacterial adaptation to new or changing environments. Phase variation often occurs in surface-exposed proteins, and in Treponema pallidum subsp. pallidum, the syphilis agent, it was reported to affect transcription of three putative outer membrane protein (OMP)-encoding genes. When the T. pallidum subsp. pallidum Nichols strain genome was initially annotated, the TP0126 open reading frame was predicted to include a poly(G) tract and did not appear to have a predicted signal sequence that might suggest the possibility of its being an OMP. Here we show that the initial annotation was incorrect, that this poly(G) is instead located within the TP0126 promoter, and that it varies in length in vivo during experimental syphilis. Additionally, we show that TP0126 transcription is affected by changes in the poly(G) length consistent with regulation by phase variation. In silico analysis of the TP0126 open reading frame based on the experimentally identified transcriptional start site shortens this hypothetical protein by 69 amino acids, reveals a predicted cleavable signal peptide, and suggests structural homology with the OmpW family of porins. Circular dichroism of recombinant TP0126 supports structural homology to OmpW. Together with the evidence that TP0126 is fully conserved among T. pallidum subspecies and strains, these data suggest an important role for TP0126 in T. pallidum biology and syphilis pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Stephanie L Brandt
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Wujian Ke
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA Graduate School, Southern Medical University, Guangzhou, People's Republic of China, and Division of STD, Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou, People's Republic of China
| | - Tara B Reid
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Barbara J Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Stefanie Iverson-Cabral
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Giulia Ciccarese
- Department of Dermatology, IRCCS Azienda Universitaria Ospedaliera San Martino-IST, Genoa, Italy
| | - Francesco Drago
- Department of Dermatology, IRCCS Azienda Universitaria Ospedaliera San Martino-IST, Genoa, Italy
| | - Sheila A Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Arturo Centurion-Lara
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Quintero CA, Tudela JG, Damiani MT. Rho GTPases as pathogen targets: Focus on curable sexually transmitted infections. Small GTPases 2015; 6:108-18. [PMID: 26023809 DOI: 10.4161/21541248.2014.991233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogens have evolved highly specialized mechanisms to infect hosts. Several microorganisms modulate the eukaryotic cell surface to facilitate their engulfment. Once internalized, they hijack the molecular machinery of the infected cell for their own benefit. At different stages of phagocytosis, particularly during invasion, certain pathogens manipulate pathways governed by small GTPases. In this review, we focus on the role of Rho proteins on curable, sexually transmitted infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum. Despite the high, worldwide frequencies of these sexually-transmitted diseases, very little is known about the strategies developed by these microorganisms to usurp key eukaryotic proteins that control intracellular signaling and actin dynamics. Improved knowledge of these molecular mechanisms will contribute to the elucidation of how these clinically important pathogens manipulate intracellular processes and parasitize their hosts.
Collapse
Affiliation(s)
- Cristián A Quintero
- a Laboratory of Phagocytosis and Intracellular Trafficking; IHEM-CONICET; School of Medicine; University of Cuyo ; Mendoza , Argentina
| | | | | |
Collapse
|
30
|
Ke W, Molini BJ, Lukehart SA, Giacani L. Treponema pallidum subsp. pallidum TP0136 protein is heterogeneous among isolates and binds cellular and plasma fibronectin via its NH2-terminal end. PLoS Negl Trop Dis 2015; 9:e0003662. [PMID: 25793702 PMCID: PMC4368718 DOI: 10.1371/journal.pntd.0003662] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022] Open
Abstract
Adherence-mediated colonization plays an important role in pathogenesis of microbial infections, particularly those caused by extracellular pathogens responsible for systemic diseases, such as Treponema pallidum subsp. pallidum (T. pallidum), the agent of syphilis. Among T. pallidum adhesins, TP0136 is known to bind fibronectin (Fn), an important constituent of the host extracellular matrix. To deepen our understanding of the TP0136-Fn interaction dynamics, we used two naturally-occurring sequence variants of the TP0136 protein to investigate which region of the protein is responsible for Fn binding, and whether TP0136 would adhere to human cellular Fn in addition to plasma Fn and super Fn as previously reported. Fn binding assays were performed with recombinant proteins representing the two full-length TP0136 variants and their discrete regions. As a complementary approach, we tested inhibition of T. pallidum binding to Fn by recombinant full-length TP0136 proteins and fragments, as well as by anti-TP0136 immune sera. Our results show that TP0136 adheres more efficiently to cellular Fn than to plasma Fn, that the TP0136 NH2-terminal conserved region of the protein is primarily responsible for binding to plasma Fn but that binding sites for cellular Fn are also present in the protein’s central and COOH-terminal regions. Additionally, message quantification studies show that tp0136 is highly transcribed during experimental infection, and that its message level increases in parallel to the host immune pressure on the pathogen, which suggests a possible role for this protein in T. pallidum persistence. In a time where syphilis incidence is high, our data will help in the quest to identify suitable targets for development of a much needed vaccine against this important disease. The study of Treponema pallidum subsp. pallidum (T. pallidum) proteins that mediate adhesion to host tissue components is pivotal to understand how the syphilis agent establishes infection and is able to invade virtually every organ system following dissemination from the site of entry. This study focuses on T. pallidum TP0136, a known plasma fibronectin (Fn) and super Fn binding protein that is heterogeneous in sequence among T. pallidum isolates. This study shows that TP0136 also mediates attachment to human cellular Fn, that TP0136 conserved NH2-terminus is primarily responsible for binding to plasma Fn, but that cellular Fn binding sites appears to be scattered throughout the molecule. Message quantification experiments reveal that tp0136 transcription is high during experimental syphilis and increases at the time of bacterial immune clearance, suggesting a role for this antigen in counteracting the host defenses during infection, as reported for other Fn binding proteins in other pathogens. Our data deepen the current knowledge of the function of T. pallidum TP0136 and further support a role for this virulence factor in syphilis pathogenesis.
Collapse
Affiliation(s)
- Wujian Ke
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Graduate School, Southern Medical University, Guangzhou, PR China
- Division of STD, Guangdong Provincial Center for STI & Skin Diseases Control and Prevention, Guangzhou, PR China
| | - Barbara J. Molini
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
| | - Sheila A. Lukehart
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lorenzo Giacani
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Harborview Medical Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Zhang RL, Zhang JP, Wang QQ. Recombinant Treponema pallidum protein Tp0965 activates endothelial cells and increases the permeability of endothelial cell monolayer. PLoS One 2014; 9:e115134. [PMID: 25514584 PMCID: PMC4267829 DOI: 10.1371/journal.pone.0115134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
The recombinant Treponema pallidum protein Tp0965 (rTp0965), one of the many proteins derived from the genome of T. pallidum subsp. pallidum, shows strong immunogenicity and immunoreactivity. In this study, we investigated the effects of rTp0965 on the endothelial barrier. Treatment of human umbilical vein endothelial cells (HUVECs) with rTp0965 resulted in increased levels of ICAM-1, E-selectin, and MCP-1 mRNA and protein expression. These increases contributed to the adhesion and chemataxis of monocytes (THP-1 cells) to HUVECs preincubated with rTp0965. In addition, rTp0965 induced reorganization of F-actin and decreased expression of claudin-1 in HUVECs. Interestingly, inhibition of the RhoA/ROCK signal pathway protected against rTp0965-induced higher endothelial permeability as well as transendothelial migration of monocytes. These data indicate that Tp0965 protein may play an important role in the immunopathogenesis of syphilis.
Collapse
Affiliation(s)
- Rui-Li Zhang
- Department of Dermatology, Wuxi Second Affiliated Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, China
| | - Jing-Ping Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
| | - Qian-Qiu Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, & National Center for STD Control, China Centers for Diseases Control and Prevention, Nanjing, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
32
|
Reid TB, Molini BJ, Fernandez MC, Lukehart SA. Antigenic variation of TprK facilitates development of secondary syphilis. Infect Immun 2014; 82:4959-67. [PMID: 25225245 PMCID: PMC4249288 DOI: 10.1128/iai.02236-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Although primary syphilis lesions heal spontaneously, the infection is chronic, with subsequent clinical stages. Healing of the primary chancre occurs as antibodies against outer membrane antigens facilitate opsonophagocytosis of the bacteria by activated macrophages. TprK is an outer membrane protein that undergoes antigenic variation at 7 variable regions, and variants are selected by immune pressure. We hypothesized that individual TprK variants escape immune clearance and seed new disseminated lesions to cause secondary syphilis. As in human syphilis, infected rabbits may develop disseminated secondary skin lesions. This study explores the nature of secondary syphilis, specifically, the contribution of antigenic variation to the development of secondary lesions. Our data from the rabbit model show that the odds of secondary lesions containing predominately TprK variant treponemes is 3.3 times higher than the odds of finding TprK variants in disseminated primary lesions (odds ratio [OR] = 3.3 [95% confidence interval {CI}, 0.98 to 11.0]; P = 0.055) and that 96% of TprK variant secondary lesions are likely seeded by single treponemes. Analysis of antibody responses demonstrates significantly higher antibody titers to tprK variable region sequences found in the inoculum compared to reactivity to tprK variant sequences found in newly arising secondary lesions. This suggests that tprK variants escape the initial immune response raised against the V regions expressed in the inoculum. These data further support a role for TprK in immune evasion and suggest that the ability of TprK variants to persist despite a robust immune response is instrumental in the development of later stages of syphilis.
Collapse
Affiliation(s)
- Tara B Reid
- Interdisciplinary Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Barbara J Molini
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Mark C Fernandez
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Sheila A Lukehart
- Interdisciplinary Graduate Program in Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, USA Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
33
|
Wang H, Liu J, Lin S, Wang B, Xing M, Guo Z, Xu L. MCLR-induced PP2A inhibition and subsequent Rac1 inactivation and hyperphosphorylation of cytoskeleton-associated proteins are involved in cytoskeleton rearrangement in SMMC-7721 human liver cancer cell line. CHEMOSPHERE 2014; 112:141-153. [PMID: 25048900 DOI: 10.1016/j.chemosphere.2014.03.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacteria-derived toxin microcystin-LR (MCLR) has been widely investigated in its effects on normal cells, there is little information concerning its effects on cancer cells. In the present study, the SMMC-7721 human liver cancer cell line treated with MCLR was used to investigate the change of PP2A, cytoskeleton rearrangement, phosphorylation levels of PP2A substrates that related with cytoskeleton stability and explored underlying mechanisms. Here, we confirmed that MCLR entered into SMMC-7721 cells, bound to PP2A/C subunit and inhibited the activity of PP2A. The upregulation of phosphorylation of the PP2A/C subunit and PP2A regulation protein α4, as well as the change in the association of PP2A/C with α4, were responsible for the decrease in PP2A activity. Another novel finding is that the rearrangement of filamentous actin and microtubules led by MCLR may attribute to the increased phosphorylation of HSP27, VASP and cofilin due to PP2A inhibition. As a result of weakened interactions with PP2A and alterations in its subcellular localization, Rac1 may contribute to the cytoskeletal rearrangement induced by MCLR in SMMC-7721 cells. The current paper presents the first report demonstrating the characteristic of PP2A in MCLR exposed cancer cells, which were more susceptible to MCLR compared with the normal cell lines we previously found, which may be owing to the absence of some type of compensatory mechanisms. The hyperphosphorylation of cytoskeleton-associated proteins and Rac1 inactivation which were induced by inhibition of PP2A are shown to be involved in cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuyan Lin
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Beilei Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mingluan Xing
- Zhejiang Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Zonglou Guo
- Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Brissette CA, Gaultney RA. That's my story, and I'm sticking to it--an update on B. burgdorferi adhesins. Front Cell Infect Microbiol 2014; 4:41. [PMID: 24772392 PMCID: PMC3982108 DOI: 10.3389/fcimb.2014.00041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/18/2014] [Indexed: 11/25/2022] Open
Abstract
Adhesion is the initial event in the establishment of any infection. Borrelia burgdorferi, the etiological agent of Lyme disease, possesses myriad proteins termed adhesins that facilitate contact with its vertebrate hosts. B. burgdorferi adheres to host tissues through interactions with host cells and extracellular matrix, as well as other molecules present in serum and extracellular fluids. These interactions, both general and specific, are critical in the establishment of infection. Modulation of borrelial adhesion to host tissues affects the microorganisms's ability to colonize, disseminate, and persist. In this review, we update the current knowledge on structure, function, and role in pathogenesis of these “sticky” B. burgdorferi infection-associated proteins.
Collapse
Affiliation(s)
- Catherine A Brissette
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| | - Robert A Gaultney
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences Grand Forks, ND, USA
| |
Collapse
|
35
|
Cullen PA, Cameron CE. Progress towards an effective syphilis vaccine: the past, present and future. Expert Rev Vaccines 2014; 5:67-80. [PMID: 16451109 DOI: 10.1586/14760584.5.1.67] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Syphilis is a disease caused by infection with the spirochetal pathogen Treponema pallidum subspp. pallidum. Despite intensive efforts, the unusual biology of T. pallidum has hindered progress towards the development of a vaccine to prevent infection. This review describes previous endeavors to develop a syphilis vaccine, outlines the key issues in the field and proposes new directions in the design of a T. pallidum vaccine. Following a brief overview of the disease symptoms, epidemiology, diagnosis and treatment, a case is put forward for the benefit of pursuing a syphilis vaccine. Relevant material concerning immunity to T. pallidum infection is summarized and evaluated, and pilot experiments describing the use of whole-cell bacterin vaccines and similar preparations are included. A detailed section concerning subunit vaccines is provided, incorporating discussions pertaining to relevant antigen selection, the identification of putative T. pallidum surface-exposed outer membrane proteins, factors hindering previous attempts to vaccinate with recombinant outer membrane proteins, problems and pitfalls of syphilis outer membrane protein-based vaccines, anti-attachment vaccines and the potential use of nonprotein subunit preparations as vaccinogens. Subsequently, critical aspects concerning vaccine antigen preparation and delivery are noted, including protein conformation, synergy, post-translational modifications, live attenuated organisms as vaccine vectors, prime-boost methodologies, adjuvant selection and immunization routes. Finally, animal models are discussed with particular reference to immunoprotection studies. A more thorough understanding of immunity to syphilis, a comprehensive assessment of the immunoprotective capacity of the putative surface-accessible antigens of T. pallidum and utilization of the latest advances in vaccine science should set the scene for future development of a syphilis vaccine.
Collapse
Affiliation(s)
- Paul A Cullen
- Australian Bacterial Pathogenesis Program, Department of Microbiology, Monash University, VIC 3800, Australia.
| | | |
Collapse
|
36
|
Fernandes LGV, Vieira ML, Alves IJ, de Morais ZM, Vasconcellos SA, Romero EC, Nascimento ALTO. Functional and immunological evaluation of two novel proteins of Leptospira spp. Microbiology (Reading) 2014; 160:149-164. [DOI: 10.1099/mic.0.072074-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work shows the production and characterization of two novel putative lipoproteins encoded by the genes LIC10645 and LIC10731 identified in the genome sequences of Leptospira
interrogans. In silico conservation analysis indicated that the proteins are well conserved among pathogenic leptospiral serovars and species. Recombinant proteins were obtained in Escherichia coli BL21(DE3) Star pLysS strain, purified by metal-affinity chromatography, and used for characterization and immunological evaluations. Recombinant proteins were capable of eliciting a combination of humoral and cellular immune responses in animal models, and could be recognized by antibodies present in human serum samples. The recombinant proteins Lsa44 and Lsa45 were able to bind laminin, and were named Lsa44 and Lsa45 for leptospiral surface adhesins of 44 and 45 kDa, respectively. The attachment to laminin was dose-responsive with K
D values of 108.21 and 250.38 nM for Lsa44 and Lsa45, respectively. Moreover, these proteins interact with plasminogen (PLG) with K
D values of 53.56 and 36.80 nM, respectively. PLG bound to the recombinant proteins could be converted to plasmin (PLA) in the presence of an activator. Cellular localization assays suggested that the Lsa44 and Lsa45 were surface-exposed. These are versatile proteins capable of interacting with laminin and PLG/PLA, and hence could mediate bacterial adhesion and contribute to tissue penetration.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Monica L. Vieira
- Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Ivy J. Alves
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Eliete C. Romero
- Divisão de Biologia Medica, Instituto Adolfo Lutz, São Paulo, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
| |
Collapse
|
37
|
Cameron CE, Lukehart SA. Current status of syphilis vaccine development: need, challenges, prospects. Vaccine 2013; 32:1602-9. [PMID: 24135571 DOI: 10.1016/j.vaccine.2013.09.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/13/2013] [Accepted: 09/24/2013] [Indexed: 12/22/2022]
Abstract
Syphilis is a multistage disease caused by the invasive spirochete Treponema pallidum subsp. pallidum. Despite inexpensive and effective antibiotic therapy, syphilis remains a prevalent disease in developing countries and has re-emerged as a public health threat in developed nations. In addition to the medical burden imparted by infectious syphilis, congenital syphilis is considered the most significant infectious disease affecting fetuses and newborns worldwide, and individuals afflicted with syphilis have an enhanced risk for HIV transmission and acquisition. The global disease burden of syphilis and failure of decades of public health efforts to stem the incidence of disease highlight the need for an effective syphilis vaccine. Although challenges associated with T. pallidum research have impeded understanding of this pathogen, the existence of a relevant animal model has enabled insight into the correlates of disease protection. Complete protection against infection has been achieved in the animal model using an extended immunization regimen of γ-irradiated T. pallidum, demonstrating the importance of treponemal surface components in generation of protective immunity and the feasibility of syphilis vaccine development. Syphilis is a prime candidate for development of a successful vaccine due to the (1) research community's accumulated knowledge of immune correlates of protection; (2) existence of a relevant animal model that enables effective pre-clinical analyses; (3) universal penicillin susceptibility of T. pallidum which enhances the attractiveness of clinical vaccine trials; and (4) significant public health benefit a vaccine would have on reduction of infectious/congenital syphilis and HIV rates. Critical personnel, research and market gaps need to be addressed before the goal of a syphilis vaccine can be realized, including recruitment of additional researchers to the T. pallidum research field with a proportional increase in research funding, attainment of a definitive understanding of correlates of protection in humans, and engagement of industry/funding partnerships for syphilis vaccine production.
Collapse
Affiliation(s)
- Caroline E Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
| | - Sheila A Lukehart
- Departments of Medicine and Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
38
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Dickerson MT, Abney MB, Cameron CE, Knecht M, Bachas LG, Anderson KW. Fibronectin binding to the Treponema pallidum adhesin protein fragment rTp0483 on functionalized self-assembled monolayers. Bioconjug Chem 2012; 23:184-95. [PMID: 22175441 PMCID: PMC3288308 DOI: 10.1021/bc200436x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction, it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM), rTp0483 adsorption and subsequent FN adsorption onto rTp0483 were determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (-COO(-) SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multistep event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on -COO(-) SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274-289 and 316-333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316-333. Finally, surface adsorbed rTp0483 with FN bound significantly less anti-RGD and gelatin compared to FN adsorbed directly to -COO(-) SAMs, indicating that one or both binding regions may play a role in binding between rTp0483 and FN.
Collapse
Affiliation(s)
- Matthew T. Dickerson
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0054, USA
| | - Morgan B. Abney
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0054, USA
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Marc Knecht
- Department of Chemistry, University of Miami, Miami, FL, 33124-4620, USA
| | - Leonidas G. Bachas
- Department of Chemistry, University of Miami, Miami, FL, 33124-4620, USA
| | - Kimberly W. Anderson
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0054, USA
| |
Collapse
|
40
|
Ho EL, Lukehart SA. Syphilis: using modern approaches to understand an old disease. J Clin Invest 2011; 121:4584-92. [PMID: 22133883 DOI: 10.1172/jci57173] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Syphilis is a fascinating and perplexing infection, with protean clinical manifestations and both diagnostic and management ambiguities. Treponema pallidum subsp. pallidum, the agent of syphilis, is challenging to study in part because it cannot be cultured or genetically manipulated. Here, we review recent progress in the application of modern molecular techniques to understanding the biological basis of this multistage disease and to the development of new tools for diagnosis, for predicting efficacy of treatment with alternative antibiotics, and for studying the transmission of infection through population networks.
Collapse
Affiliation(s)
- Emily L Ho
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | | |
Collapse
|
41
|
Bamford CV, Francescutti T, Cameron CE, Jenkinson HF, Dymock D. Characterization of a novel family of fibronectin-binding proteins with M23 peptidase domains from Treponema denticola. Mol Oral Microbiol 2011; 25:369-83. [PMID: 21040511 DOI: 10.1111/j.2041-1014.2010.00584.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interactions with fibronectin are important in the virulence strategies of a range of disease-related bacteria. The periodontitis-associated oral spirochaete Treponema denticola expresses at least two fibronectin-binding proteins, designated Msp (major surface protein) and OppA (oligopeptide-binding protein homologue). To identify other T. denticola outer membrane fibronectin-binding proteins, the amino acid sequence of the Treponema pallidum fibronectin-binding protein Tp0155 was used to survey the T. denticola genome. Seven T. denticola genes encoding orthologous proteins were identified. All but two were expressed in Escherichia coli and purified recombinant proteins bound fibronectin. Using antibodies to the N-terminal region of Tp0155, it was demonstrated that T. denticola TDE2318, with highest homology to Tp0155, was cell surface localized. Like Tp0155, the seven T. denticola proteins contained an M23 peptidase domain and four (TDE2318, TDE2753, TDE1738, TDE1297) contained one or two LysM domains. M23 peptidases can degrade peptidoglycan whereas LysM domains recognize carbohydrate polymers. In addition, TDE1738 may act as a bacteriocin based on homology with other bacterial lysins and the presence of an adjacent gene encoding a putative immunity factor. Collectively, these results suggest that T. denticola expresses fibronectin-binding proteins associated with the cell surface that may also have cell wall modifying or lytic functions.
Collapse
Affiliation(s)
- C V Bamford
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol, UK.
| | | | | | | | | |
Collapse
|
42
|
Henderson B, Nair S, Pallas J, Williams MA. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol Rev 2011; 35:147-200. [DOI: 10.1111/j.1574-6976.2010.00243.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
43
|
Bifunctional role of the Treponema pallidum extracellular matrix binding adhesin Tp0751. Infect Immun 2010; 79:1386-98. [PMID: 21149586 DOI: 10.1128/iai.01083-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treponema pallidum, the causative agent of syphilis, is a highly invasive pathogenic spirochete capable of attaching to host cells, invading the tissue barrier, and undergoing rapid widespread dissemination via the circulatory system. The T. pallidum adhesin Tp0751 was previously shown to bind laminin, the most abundant component of the basement membrane, suggesting a role for this adhesin in host tissue colonization and bacterial dissemination. We hypothesized that similar to that of other invasive pathogens, the interaction of T. pallidum with host coagulation proteins, such as fibrinogen, may also be crucial for dissemination via the circulatory system. To test this prediction, we used enzyme-linked immunosorbent assay (ELISA) methodology to demonstrate specific binding of soluble recombinant Tp0751 to human fibrinogen. Click-chemistry-based palmitoylation profiling of heterologously expressed Tp0751 confirmed the presence of a lipid attachment site within this adhesin. Analysis of the Tp0751 primary sequence revealed the presence of a C-terminal putative HEXXH metalloprotease motif, and in vitro degradation assays confirmed that recombinant Tp0751 purified from both insect and Escherichia coli expression systems degrades human fibrinogen and laminin. The proteolytic activity of Tp0751 was abolished by the presence of the metalloprotease inhibitor 1,10-phenanthroline. Further, inductively coupled plasma-mass spectrometry showed that Tp0751 binds zinc and calcium. Collectively, these results indicate that Tp0751 is a zinc-dependent, membrane-associated protease that exhibits metalloprotease-like characteristics. However, site-directed mutagenesis of the HEXXH motif to HQXXH did not abolish the proteolytic activity of Tp0751, indicating that further mutagenesis studies are required to elucidate the critical active site residues associated with this protein. This study represents the first published description of a T. pallidum protease capable of degrading host components and thus provides novel insight into the mechanism of T. pallidum dissemination.
Collapse
|
44
|
Characterization of novel bovine gastrointestinal tract Treponema isolates and comparison with bovine digital dermatitis treponemes. Appl Environ Microbiol 2010; 77:138-47. [PMID: 21057019 DOI: 10.1128/aem.00993-10] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study aimed to isolate and characterize treponemes present in the bovine gastrointestinal (GI) tract and compare them with bovine digital dermatitis (BDD) treponemes. Seven spirochete isolates were obtained from the bovine GI tract, which, on the basis of 16S rRNA gene comparisons, clustered within the genus Treponema as four novel phylotypes. One phylotype was isolated from several different GI tract regions, including the omasum, colon, rumen, and rectum. These four phylotypes could be divided into two phylotype pairs that clustered closest with each other and then with different, previously reported rumen treponemes. The treponemes displayed great genotypic and phenotypic diversity between phylotypes and differed considerably from named treponeme species and those recently reported by metagenomic studies of the bovine GI tract. Phylogenetic inference, based on comparisons of 16S rRNA sequences from only bovine treponemes, suggested a marked divergence between two important groups. The dendrogram formed two major clusters, with one cluster containing GI tract treponemes and the other containing BDD treponemes. This division among the bovine treponemes is likely the result of adaptation to different niches. To further differentiate the bovine GI and BDD strains, we designed a degenerate PCR for a gene encoding a putative virulence factor, tlyC, which gave a positive reaction only for treponemes from the BDD cluster.
Collapse
|
45
|
|
46
|
Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 2010; 78:5178-94. [PMID: 20876295 DOI: 10.1128/iai.00834-10] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Treponema pallidum reacts poorly with the antibodies present in rabbit and human syphilitic sera, a property attributed to the paucity of proteins in its outer membrane. To better understand the basis for the syphilis spirochete's "stealth pathogenicity," we used a dual-label, 3-step amplified assay in which treponemes encapsulated in gel microdroplets were probed with syphilitic sera in parallel with anti-FlaA antibodies. A small (approximately 5 to 10%) but reproducible fraction of intact treponemes bound IgG and/or IgM antibodies. Three lines of evidence supported the notion that the surface antigens were likely β-barrel-forming outer membrane proteins (OMPs): (i) surface labeling with anti-lipoidal (VDRL) antibodies was not observed, (ii) immunoblot analysis confirmed prior results showing that T. pallidum glycolipids are not immunoreactive, and (iii) labeling of intact organisms was not appreciably affected by proteinase K (PK) treatment. With this method, we also demonstrate that TprK (TP0897), an extensively studied candidate OMP, and TP0136, a lipoprotein recently reported to be surface exposed, are both periplasmic. Consistent with the immunolabeling studies, TprK was also found to lack amphiphilicity, a characteristic property of β-barrel-forming proteins. Using a consensus computational framework that combined subcellular localization and β-barrel structural prediction tools, we generated ranked groups of candidate rare OMPs, the predicted T. pallidum outer membrane proteome (OMPeome), which we postulate includes the surface-exposed molecules detected by our enhanced gel microdroplet assay. In addition to underscoring the syphilis spirochete's remarkably poor surface antigenicity, our findings help to explain the complex and shifting balance between pathogen and host defenses that characterizes syphilitic infection.
Collapse
|
47
|
Abstract
Borrelia burgdorferi, the Lyme disease-causing spirochete, can persistently infect its vertebrate hosts for years. B. burgdorferi is often found associated with host connective tissue, where it interacts with components of the extracellular matrix, including fibronectin. Some years ago, a borrelial surface protein, named BBK32, was identified as a fibronectin-binding protein. However, B. burgdorferi BBK32 mutants are still able to bind fibronectin, indicating that the spirochete possesses additional mechanisms for adherence to fibronectin. We now demonstrate that RevA, an unrelated B. burgdorferi outer surface protein, binds mammalian fibronectin in a saturable manner. Site-directed mutagenesis studies identified the amino terminus of the RevA protein as being required for adhesion to fibronectin. RevA bound to the amino-terminal region of fibronectin. RevA binding to fibronectin was not inhibited by salt or heparin, suggesting that adhesin-ligand interactions are primarily nonionic and occur through the non-heparin-binding regions of the fibronectin amino-terminal domains. revA genes are widely distributed among Lyme disease spirochetes, and the present studies determined that all RevA alleles tested bound fibronectin. In addition, RevB, a paralogous protein found in a subset of B. burgdorferi strains, also bound fibronectin. We also confirmed that RevA is produced during mammalian infection but not during colonization of vector ticks and determined that revA transcription is controlled through a mechanism distinct from that of BBK32.
Collapse
|
48
|
Lin YP, Chang YF. The C-terminal variable domain of LigB from Leptospira mediates binding to fibronectin. J Vet Sci 2008; 9:133-44. [PMID: 18487934 PMCID: PMC2839090 DOI: 10.4142/jvs.2008.9.2.133] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adhesion through microbial surface components that recognize adhesive matrix molecules is an essential step in infection for most pathogenic bacteria. In this study, we report that LigB interacts with fibronectin (Fn) through its variable region. A possible role for LigB in bacterial attachment to host cells during the course of infection is supported by the following observations: (i) binding of the variable region of LigB to Madin-Darby canine kidney (MDCK) cells in a dose-dependent manner reduces the adhesion of Leptospira, (ii) inhibition of leptospiral attachment to Fn by the variable region of LigB, and (iii) decrease in binding of the variable region of LigB to the MDCK cells in the presence of Fn. Furthermore, we found a significant reduction in binding of the variable region of LigB to Fn using small interfering RNA (siRNA). Finally, the isothermal titration calorimetric results confirmed the interaction between the variable region of LigB and Fn. This is the first report to demonstrate that LigB binds to MDCK cells. In addition, the reduction of Fn expression in the MDCK cells, by siRNA, reduced the binding of LigB. Taken together, the data from the present study showed that LigB is a Fn-binding protein of pathogenic Leptospira spp. and may play a pivotal role in Leptospira-host interaction during the initial stage of infection.
Collapse
Affiliation(s)
- Yi-Pin Lin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
49
|
In LipL32, the major leptospiral lipoprotein, the C terminus is the primary immunogenic domain and mediates interaction with collagen IV and plasma fibronectin. Infect Immun 2008; 76:2642-50. [PMID: 18391007 DOI: 10.1128/iai.01639-07] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LipL32 is the major leptospiral outer membrane lipoprotein expressed during infection and is the immunodominant antigen recognized during the humoral immune response to leptospirosis in humans. In this study, we investigated novel aspects of LipL32. In order to define the immunodominant domains(s) of the molecule, subfragments corresponding to the N-terminal, intermediate, and C-terminal portions of the LipL32 gene were cloned and the proteins were expressed and purified by metal affinity chromatography. Our immunoblot results indicate that the C-terminal and intermediate domains of LipL32 are recognized by sera of patients with laboratory-confirmed leptospirosis. An immunoglobulin M response was detected exclusively against the LipL32 C-terminal fragment in both the acute and convalescent phases of illness. We also evaluated the capacity of LipL32 to interact with extracellular matrix (ECM) components. Dose-dependent, specific binding of LipL32 to collagen type IV and plasma fibronectin was observed, and the binding capacity could be attributed to the C-terminal portion of this molecule. Both heparin and gelatin could inhibit LipL32 binding to fibronectin in a concentration-dependent manner, indicating that the 30-kDa heparin-binding and 45-kDa gelatin-binding domains of fibronectin are involved in this interaction. Taken together, our results provide evidence that the LipL32 C terminus is recognized early in the course of infection and is the domain responsible for mediating interaction with ECM proteins.
Collapse
|
50
|
A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun 2008; 76:1848-57. [PMID: 18332212 DOI: 10.1128/iai.01424-07] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antigenicity, structural location, and function of the predicted lipoprotein TP0136 of Treponema pallidum subsp. pallidum were investigated based on previous screening studies indicating that anti-TP0136 antibodies are present in the sera of syphilis patients and experimentally infected rabbits. Recombinant TP0136 (rTP0136) protein was purified and shown to be strongly antigenic during human and experimental rabbit infection. The TP0136 protein was exposed on the surface of the bacterial outer membrane and bound to the host extracellular matrix glycoproteins fibronectin and laminin. In addition, the TP0136 open reading frame was shown to be highly polymorphic among T. pallidum subspecies and strains at the nucleotide and amino acid levels. Finally, the ability of rTP0136 protein to act as a protective antigen to subsequent challenge with infectious T. pallidum in the rabbit model of infection was assessed. Immunization with rTP0136 delayed ulceration but did not prevent infection or the formation of lesions. These results demonstrate that TP0136 is expressed on the outer membrane of the treponeme during infection and may be involved in attachment to host extracellular matrix components.
Collapse
|