1
|
Song E, Han S, Uhm H, Kang C, Hohng S. Single-mode termination of phage transcriptions, disclosing bacterial adaptation for facilitated reinitiations. Nucleic Acids Res 2024; 52:9092-9102. [PMID: 39011892 PMCID: PMC11347151 DOI: 10.1093/nar/gkae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Bacterial and bacteriophage RNA polymerases (RNAPs) have divergently evolved and share the RNA hairpin-dependent intrinsic termination of transcription. Here, we examined phage T7, T3 and SP6 RNAP terminations utilizing the single-molecule fluorescence assays we had developed for bacterial terminations. We discovered the phage termination mode or outcome is virtually single with decomposing termination. Therein, RNAP is displaced forward along DNA and departs both RNA and DNA for one-step decomposition, three-dimensional diffusion and reinitiation at any promoter. This phage displacement-mediated decomposing termination is much slower than readthrough and appears homologous with the bacterial one. However, the phage sole mode of termination contrasts with the bacterial dual mode, where both decomposing and recycling terminations occur compatibly at any single hairpin- or Rho-dependent terminator. In the bacterial recycling termination, RNA is sheared from RNA·DNA hybrid, and RNAP remains bound to DNA for one-dimensional diffusion, which enables facilitated recycling for reinitiation at the nearest promoter located downstream or upstream in the sense or antisense orientation. Aligning with proximity of most terminators to adjacent promoters in bacterial genomes, the shearing-mediated recycling termination could be bacterial adaptation for the facilitated reinitiations repeated at a promoter for accelerated expression and coupled at adjoining promoters for coordinated regulation.
Collapse
Affiliation(s)
- Eunho Song
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Heesoo Uhm
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| | - Changwon Kang
- Department of Biological Sciences, and KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Went SC, Picton DM, Morgan RD, Nelson A, Brady A, Mariano G, Dryden DTF, Smith DL, Wenner N, Hinton JCD, Blower TR. Structure and rational engineering of the PglX methyltransferase and specificity factor for BREX phage defence. Nat Commun 2024; 15:7236. [PMID: 39174540 PMCID: PMC11341690 DOI: 10.1038/s41467-024-51629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Bacteria have evolved a broad range of systems that provide defence against their viral predators, bacteriophages. Bacteriophage Exclusion (BREX) systems recognise and methylate 6 bp non-palindromic motifs within the host genome, and prevent replication of non-methylated phage DNA that encodes these same motifs. How BREX recognises cognate motifs has not been fully understood. In this study we characterise BREX from pathogenic Salmonella and present X-ray crystallographic structures of the conserved BREX protein, PglX. The PglX N-terminal domain encodes the methyltransferase, whereas the C-terminal domain is for motif recognition. We also present the structure of PglX bound to the phage-derived DNA mimic, Ocr, an inhibitor of BREX activity. Our analyses propose modes for DNA-binding by PglX and indicate that both methyltransferase activity and defence require larger BREX complexes. Through rational engineering of PglX we broaden both the range of phages targeted, and the host motif sequences that are methylated by BREX. Our data demonstrate that PglX is used to recognise specific DNA sequences for BREX activity, contributing to motif recognition for both phage defence and host methylation.
Collapse
Affiliation(s)
- Sam C Went
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - David M Picton
- Department of Biosciences, Durham University, South Road, Durham, UK
| | | | - Andrew Nelson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Aisling Brady
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Giuseppina Mariano
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, South Road, Durham, UK
| | - Darren L Smith
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Nicolas Wenner
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, South Road, Durham, UK.
| |
Collapse
|
3
|
Gunathilake KMD, Makumi A, Loignon S, Tremblay D, Labrie S, Svitek N, Moineau S. Diversity of Salmonella enterica phages isolated from chicken farms in Kenya. Microbiol Spectr 2024; 12:e0272923. [PMID: 38078723 PMCID: PMC10783031 DOI: 10.1128/spectrum.02729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Non-typhoidal Salmonella enterica infections are one of the leading causes of diarrhoeal diseases that spread to humans from animal sources such as poultry. Hence, keeping poultry farms free of Salmonella is essential for consumer safety and for a better yield of animal products. However, the emergence of antibiotic resistance due to over usage has sped up the search for alternative biocontrol methods such as the use of bacteriophages. Isolation and characterization of novel bacteriophages are key to adapt phage-based biocontrol applications. Here, we isolated and characterized Salmonella phages from samples collected at chicken farms and slaughterhouses in Kenya. The genomic characterization of these phage isolates revealed that they belong to four ICTV (International Committee on Taxonomy of Viruses) phage genera. All these phages are lytic and possibly suitable for biocontrol applications because no lysogenic genes or virulence factors were found in their genomes. Hence, we recommend further studies on these phages for their applications in Salmonella biocontrol.
Collapse
Affiliation(s)
- K. M. Damitha Gunathilake
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Angela Makumi
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Stéphanie Loignon
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
| | - Denise Tremblay
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| | | | - Nicholas Svitek
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec city, Quebec, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec city, Quebec, Canada
| |
Collapse
|
4
|
Elek CKA, Brown TL, Le Viet T, Evans R, Baker DJ, Telatin A, Tiwari SK, Al-Khanaq H, Thilliez G, Kingsley RA, Hall LJ, Webber MA, Adriaenssens EM. A hybrid and poly-polish workflow for the complete and accurate assembly of phage genomes: a case study of ten przondoviruses. Microb Genom 2023; 9:mgen001065. [PMID: 37463032 PMCID: PMC10438801 DOI: 10.1099/mgen.0.001065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023] Open
Abstract
Bacteriophages (phages) within the genus Przondovirus are T7-like podoviruses belonging to the subfamily Studiervirinae, within the family Autographiviridae, and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies. Moreover, long-read-only assemblies are often littered with sequencing and/or assembly errors and require additional curation. Here, we present the isolation and characterisation of ten novel przondoviruses targeting Klebsiella spp. We describe HYPPA, a HYbrid and Poly-polish Phage Assembly workflow, which utilises long-read assemblies in combination with short-read sequencing to resolve phage DTRs and correcting errors, negating the need for laborious primer walking and Sanger sequencing validation. Our assembly workflow utilised Oxford Nanopore Technologies for long-read sequencing for its accessibility, making it the more relevant long-read sequencing technology at this time, and Illumina DNA Prep for short-read sequencing, representing the most commonly used technologies globally. Our data demonstrate the importance of careful curation of phage assemblies before publication, and prior to using them for comparative genomics.
Collapse
Affiliation(s)
- Claire K. A. Elek
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Teagan L. Brown
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Thanh Le Viet
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Rhiannon Evans
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - David J. Baker
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Andrea Telatin
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Sumeet K. Tiwari
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Haider Al-Khanaq
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Gaëtan Thilliez
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
| | - Robert A. Kingsley
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | - Lindsay J. Hall
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL—Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mark A. Webber
- Quadram Institute Bioscience, Rosalind Franklin Road, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
5
|
Singh SR, Murali A. pH modulates the role of SP6 RNA polymerase in transcription process: an in silico study. J Biomol Struct Dyn 2023; 41:11763-11780. [PMID: 36709448 DOI: 10.1080/07391102.2023.2170916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/22/2022] [Indexed: 01/30/2023]
Abstract
SP6 RNA polymerase (SP6 RNAP) is an essential enzyme for the transcription process in SP6 bacteriophage. SP6 RNAP plays a vital role in mRNA vaccine designing technology and other translational biotechnology research due to the high specificity towards its promoter. The self-replicating performance also put this polymerase to study extensively. Despite of the reports emphasizing the function of this enzyme, a detailed structural and functional understanding of RNA polymerase is not reported so far. Here, we report the first-ever information about SP6RNAP structure and its effect on promoter binding at different pH environments using molecular docking and molecular dynamics simulation (MDS) study. We also report the changes in polymerase conformations in different pH conditions using in-silico approach. The docking study was also performed for SP6 RNAP with SP6 promoter at different pH environments using the in-silico docking tools and conducted the MDS study for complexes. MM/PBSA and per residue energy contribution has been performed at three different pH environments. The structural aspects confirmed that the pH 7.9 state favors the polymerase functional activity in the transcription process which was in the range reported using transcription assay. This polymerase's unique features may play its emerging role as an efficient transcription factor in translational biological research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Abstract
The serious threats posed by drug-resistant bacterial infections and recent developments in synthetic biology have fueled a growing interest in genetically engineered phages with therapeutic potential. To date, many investigations on engineered phages have been limited to proof of concept or fundamental studies using phages with relatively small genomes or commercially available "phage display kits". Moreover, safeguards supporting efficient translation for practical use have not been implemented. Here, we developed a cell-free phage engineering and rebooting platform. We successfully assembled natural, designer, and chemically synthesized genomes and rebooted functional phages infecting gram-negative bacteria and acid-fast mycobacteria. Furthermore, we demonstrated the creation of biologically contained phages for the treatment of bacterial infections. These synthetic biocontained phages exhibited similar properties to those of a parent phage against lethal sepsis in vivo. This efficient, flexible, and rational approach will serve to accelerate phage biology studies and can be used for many practical applications, including phage therapy.
Collapse
|
7
|
Bujak K, Decewicz P, Kitowicz M, Radlinska M. Characterization of Three Novel Virulent Aeromonas Phages Provides Insights into the Diversity of the Autographiviridae Family. Viruses 2022; 14:1016. [PMID: 35632757 PMCID: PMC9145550 DOI: 10.3390/v14051016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we isolated and characterized three novel virulent Autographiviridae bacteriophages, vB_AspA_Bolek, vB_AspA_Lolek, and vB_AspA_Tola, which infect different Aeromonas strains. These three host-pathogen pairs were derived from the same sampling location-the arsenic-containing microbial mats of the Zloty Stok gold mine. Functional analysis showed they are psychrotolerant (4-25 °C), albeit with a much wider temperature range of propagation for the hosts (≤37 °C). Comparative genomic analyses revealed a high nucleotide and amino acid sequence similarity of vB_AspA_Bolek and vB_AspA_Lolek, with significant differences exclusively in the C-terminal region of their tail fibers, which might explain their host range discrimination. The protein-based phage network, together with a phylogenetic analysis of the marker proteins, allowed us to assign vB_AspA_Bolek and vB_AspA_Lolek to the Beijerinckvirinae and vB_AspA_Tola to the Colwellvirinae subfamilies, but as three novel species, due to their low nucleotide sequence coverage and identity with other known phage genomes. Global comparative analysis showed that the studied phages are also markedly different from most of the 24 Aeromonas autographiviruses known so far. Finally, this study provides in-depth insight into the diversity of the Autographiviridae phages and reveals genomic similarities between selected groups of this family as well as between autographiviruses and their relatives of other Caudoviricetes families.
Collapse
Affiliation(s)
| | | | | | - Monika Radlinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (K.B.); (P.D.); (M.K.)
| |
Collapse
|
8
|
Boeckman J, Korn A, Yao G, Ravindran A, Gonzalez C, Gill J. Sheep in wolves’ clothing: Temperate T7-like bacteriophages and the origins of the Autographiviridae. Virology 2022; 568:86-100. [DOI: 10.1016/j.virol.2022.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/14/2022] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
|
9
|
Dubrovin EV, Klinov DV, Schäffer TE. Evidence of (anti)metamorphic properties of modified graphitic surfaces obtained in real time at a single-molecule level. Colloids Surf B Biointerfaces 2020; 193:111077. [DOI: 10.1016/j.colsurfb.2020.111077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/31/2022]
|
10
|
Gilcrease E, Williams R, Goel R. Evaluating the effect of silver nanoparticles on bacteriophage lytic infection cycle-a mechanistic understanding. WATER RESEARCH 2020; 181:115900. [PMID: 32504909 DOI: 10.1016/j.watres.2020.115900] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/10/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Bacteriophages and engineered nano-material (AgNPS) interactions is a relatively unexplored area of research. To answer the fundamental question whether bacteriophage lytic growth cycle is affected by the presence of AgNPs, laboratory experiments were performed with phages of Klebsiella pneumoniae, Delftia tsuruhatensis, Salmonella typhimurium, and Shigella flexneri using silver nanoparticles (AgNPs) with coating materials. One-step growth curves of bacteriophages indicated that the presence of these nanoparticles, and the associated ions of silver, produced pronounced effects on the lytic infection of certain bacteriophages. Effects included 96% reductions in post-infection phage yield in terms of plaque forming units (PFUs) after phages were incubated with silver nanoparticles and 28%-43% reductions from the presence of Ag+ alone. However, when Klebsiella pneumonia phage KL and Salmonella typhimurium phage Det7 were exposed to silver nanoparticles coated with poly-N-vinyl-2 pyrrolidone (PVP), an increase in final phage yield by as much as 250% was observed compared with the same phage not incubated with nanoparticles. A proposed mechanism, observed by transmission electron microscopy and verified using synthetic biology by which the nanoparticle binding phenotype can be produced, is that the binding of metal nanomaterial to phage virions results in potentially inhibitory effects. This binding was found to be dependent on the presence of exposed positively charged C-terminal amino-acid residues on the phage capsid surface, implied at first by amino-acid sequence comparisons between capsid proteins of the different phages used in this study. This was then proven experimentally using targeted DNA editing methods to fuse positive charged amino-acid residues to the coat protein C-terminus of non-binding phage. This induced the AgNP binding phenotype, as observed by TEM, DLS size measurements, and growth curve data that show the mutant constructs to be functionally inhibited after exposure to AgNPs. This research sets up a first platform for further research in the unexplored area of phage and AgNP interactions and provides useful findings.
Collapse
Affiliation(s)
- Eddie Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ryan Williams
- Department of Civil and Environmental Engineering, University of Utah, UT, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, UT, USA.
| |
Collapse
|
11
|
Bao H, Zhou Y, Shahin K, Zhang H, Cao F, Pang M, Zhang X, Zhu S, Olaniran A, Schmidt S, Wang R. The complete genome of lytic Salmonella phage vB_SenM-PA13076 and therapeutic potency in the treatment of lethal Salmonella Enteritidis infections in mice. Microbiol Res 2020; 237:126471. [PMID: 32298944 DOI: 10.1016/j.micres.2020.126471] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/18/2020] [Indexed: 01/05/2023]
|
12
|
Lukianova AA, Shneider MM, Evseev PV, Shpirt AM, Bugaeva EN, Kabanova AP, Obraztsova EA, Miroshnikov KK, Senchenkova SN, Shashkov AS, Toschakov SV, Knirel YA, Ignatov AN, Miroshnikov KA. Morphologically Different Pectobacterium brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection. Front Microbiol 2020; 10:3147. [PMID: 32038580 PMCID: PMC6989608 DOI: 10.3389/fmicb.2019.03147] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/29/2019] [Indexed: 01/31/2023] Open
Abstract
Soft rot caused by numerous species of Pectobacterium and Dickeya is a serious threat to the world production of potatoes. The application of bacteriophages to combat bacterial infections in medicine, agriculture, and the food industry requires the selection of comprehensively studied lytic phages and the knowledge of their infection mechanism for more rational composition of therapeutic cocktails. We present the study of two bacteriophages, infective for the Pectobacterium brasiliense strain F152. Podoviridae PP99 is a representative of the genus Zindervirus, and Myoviridae PP101 belongs to the still unclassified genomic group. The structure of O-polysaccharide of F152 was established by sugar analysis and 1D and 2D NMR spectroscopy: → 4)-α-D-Manp6Ac-(1→ 2)-α-D-Manp-(1→ 3)-β-D-Galp-(1→
3↑1α-l-6dTalpAc0−2 The recombinant tail spike protein of phage PP99, gp55, was shown to deacetylate the side chain talose residue of bacterial O-polysaccharide, thus providing the selective attachment of the phage to the cell surface. Both phages demonstrate lytic behavior, thus being prospective for therapeutic purposes.
Collapse
Affiliation(s)
- Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail M Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna M Shpirt
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Anastasia P Kabanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Research Center "PhytoEngineering" Ltd., Rogachevo, Moscow, Russia
| | - Ekaterina A Obraztsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Kirill K Miroshnikov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Sofiya N Senchenkova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stepan V Toschakov
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, Russia
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Cao Y, Li S, Wang D, Zhao J, Xu L, Liu H, Lu T, Mou Z. Genomic characterization of a novel virulent phage infecting the Aeromonas hydrophila isolated from rainbow trout (Oncorhynchus mykiss). Virus Res 2019; 273:197764. [PMID: 31550486 DOI: 10.1016/j.virusres.2019.197764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022]
Abstract
The virulent bacteriophage MJG that specifically infects Aeromonas hydrophila was isolated from a water sample from a river in Harbin, China. The genome of phage MJG was a double-stranded linear DNA with 45,057 bp, possessing 50.11% GC content. No virulence or resistance genes were found in the phage genome. Morphological observation, genomic characterization, and phylogenetic analysis indicated that MJG was closely related to phages belonging to the genus Sp6virus in the Podoviridae family. This phage is a novel member within Sp6virus that could infect and lyse A. hydrophila. This study could serve as a genomic reference of A. hydrophila phages and provide a potential agent for phage therapy.
Collapse
Affiliation(s)
- Yongsheng Cao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China; Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| | - Shaowu Li
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Di Wang
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Jingzhuang Zhao
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Liming Xu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Hongbai Liu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Tongyan Lu
- Laboratory of Fish Diseases, Department of Aquaculture, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Songfa Street No. 43, Daoli District, Harbin, 150070, China.
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, 130 Jinzhu West Road, Lhasa, 850002, Tibet, China.
| |
Collapse
|
14
|
Plattner M, Shneider MM, Arbatsky NP, Shashkov AS, Chizhov AO, Nazarov S, Prokhorov NS, Taylor NMI, Buth SA, Gambino M, Gencay YE, Brøndsted L, Kutter EM, Knirel YA, Leiman PG. Structure and Function of the Branched Receptor-Binding Complex of Bacteriophage CBA120. J Mol Biol 2019; 431:3718-3739. [PMID: 31325442 DOI: 10.1016/j.jmb.2019.07.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/21/2023]
Abstract
Bacteriophages recognize their host cells with the help of tail fiber and tailspike proteins that bind, cleave, or modify certain structures on the cell surface. The spectrum of ligands to which the tail fibers and tailspikes can bind is the primary determinant of the host range. Bacteriophages with multiple tailspike/tail fibers are thought to have a wider host range than their less endowed relatives but the function of these proteins remains poorly understood. Here, we describe the structure, function, and substrate specificity of three tailspike proteins of bacteriophage CBA120-TSP2, TSP3 and TSP4 (orf211 through orf213, respectively). We show that tailspikes TSP2, TSP3 and TSP4 are hydrolases that digest the O157, O77, and O78 Escherichia coli O-antigens, respectively. We demonstrate that recognition of the E. coli O157:H7 host by CBA120 involves binding to and digesting the O157 O-antigen by TSP2. We report the crystal structure of TSP2 in complex with a repeating unit of the O157 O-antigen. We demonstrate that according to the specificity of its tailspikes TSP2, TSP3, and TSP4, CBA120 can infect E. coli O157, O77, and O78, respectively. We also show that CBA120 infects Salmonella enterica serovar Minnesota, and this host range expansion is likely due to the function of TSP1. Finally, we describe the assembly pathway and the architecture of the TSP1-TSP2-TSP3-TSP4 branched complex in CBA120 and its related ViI-like phages.
Collapse
Affiliation(s)
- Michel Plattner
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA; École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Mikhail M Shneider
- Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay P Arbatsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander O Chizhov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Nazarov
- École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Programme, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Sergey A Buth
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA
| | - Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | | | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr G Leiman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555-0647, USA.
| |
Collapse
|
15
|
Korf IHE, Meier-Kolthoff JP, Adriaenssens EM, Kropinski AM, Nimtz M, Rohde M, van Raaij MJ, Wittmann J. Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses 2019; 11:E454. [PMID: 31109012 PMCID: PMC6563267 DOI: 10.3390/v11050454] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/29/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to gain further insight into the diversity of Escherichia coli phagesfollowed by enhanced work on taxonomic issues in that field. Therefore, we present the genomiccharacterization and taxonomic classification of 50 bacteriophages against E. coli isolated fromvarious sources, such as manure or sewage. All phages were examined for their host range on a setof different E. coli strains, originating, e.g., from human diagnostic laboratories or poultry farms.Transmission electron microscopy revealed a diversity of morphotypes (70% Myo-, 22% Sipho-, and8% Podoviruses), and genome sequencing resulted in genomes sizes from ~44 to ~370 kb.Annotation and comparison with databases showed similarities in particular to T4- and T5-likephages, but also to less-known groups. Though various phages against E. coli are already describedin literature and databases, we still isolated phages that showed no or only few similarities to otherphages, namely phages Goslar, PTXU04, and KWBSE43-6. Genome-based phylogeny andclassification of the newly isolated phages using VICTOR resulted in the proposal of new generaand led to an enhanced taxonomic classification of E. coli phages.
Collapse
Affiliation(s)
- Imke H E Korf
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | - Jan P Meier-Kolthoff
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| | | | - Andrew M Kropinski
- Departments of Food Science and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Manfred Nimtz
- Protein Analytics Platform, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), 38124 Braunschweig,Germany.
| | - Mark J van Raaij
- Department of Macromolecular Structure, Centro Nacional de Biotecnologia CNB-CSIC, 28049 Madrid,Spain.
| | - Johannes Wittmann
- Leibniz Institute DSMZ⁻German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig,Germany.
| |
Collapse
|
16
|
New Bacteriophages against Emerging Lineages ST23 and ST258 of Klebsiella pneumoniae and Efficacy Assessment in Galleria mellonella Larvae. Viruses 2019; 11:v11050411. [PMID: 31058805 PMCID: PMC6563190 DOI: 10.3390/v11050411] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
Klebsiella pneumoniae is a bacterial pathogen of high public health importance. Its polysaccharide capsule is highly variable but only a few capsular types are associated with emerging pathogenic sublineages. The aim of this work is to isolate and characterize new lytic bacteriophages and assess their potential to control infections by the ST23 and ST258 K. pneumoniae sublineages using a Galleria mellonella larvae model. Three selected bacteriophages, targeting lineages ST258 (bacteriophages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54) and ST23 (bacteriophage vB_KpnP_K1-ULIP33), display specificity for capsular types KL106 and K1, respectively. These podoviruses belong to the Autographivirinae subfamily and their genomes are devoid of lysogeny or toxin-associated genes. In a G. mellonella larvae model, a mortality rate of 70% was observed upon infection by K. pneumoniae ST258 and ST23. This number was reduced to 20% upon treatment with bacteriophages at a multiplicity of infection of 10. This work increases the number of characterized bacteriophages infecting K. pneumoniae and provides information regarding genome sequence and efficacy during preclinical phage therapy against two prominent sublineages of this bacterial species.
Collapse
|
17
|
Kim S, Kim SH, Rahman M, Kim J. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J Microbiol 2018; 56:917-925. [PMID: 30361974 DOI: 10.1007/s12275-018-8310-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 01/03/2023]
Abstract
In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.
Collapse
Affiliation(s)
- Shukho Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Sung-Hun Kim
- CJ CheilJedang Research Institute of Biotechnology, Suwon, 16495, Republic of Korea
| | - Marzia Rahman
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.,Present address: Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jungmin Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
18
|
|
19
|
Kokkari C, Sarropoulou E, Bastias R, Mandalakis M, Katharios P. Isolation and characterization of a novel bacteriophage infecting Vibrio alginolyticus. Arch Microbiol 2018; 200:707-718. [DOI: 10.1007/s00203-018-1480-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 01/13/2018] [Accepted: 01/18/2018] [Indexed: 01/21/2023]
|
20
|
Tu J, Park T, Morado DR, Hughes KT, Molineux IJ, Liu J. Dual host specificity of phage SP6 is facilitated by tailspike rotation. Virology 2017; 507:206-215. [PMID: 28456019 DOI: 10.1016/j.virol.2017.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023]
Abstract
Bacteriophage SP6 exhibits dual-host adsorption specificity. The SP6 tailspikes are recognized as important in host range determination but the mechanisms underlying dual host specificity are unknown. Cryo-electron tomography and sub-tomogram classification were used to analyze the SP6 virion with a particular focus on the interaction of tailspikes with host membranes. The SP6 tail is surrounded by six V-shaped structures that interconnect in forming a hand-over-hand hexameric garland. Each V-shaped structure consists of two trimeric tailspike proteins: gp46 and gp47, connected through the adaptor protein gp37. SP6 infection of Salmonella enterica serovars Typhimurium and Newport results in distinguishable changes in tailspike orientation, providing the first direct demonstration how tailspikes can confer dual host adsorption specificity. SP6 also infects S. Typhimurium strains lacking O antigen; in these infections tailspikes have no apparent specific role and the phage tail must therefore interact with a distinct host receptor to allow infection.
Collapse
Affiliation(s)
- Jiagang Tu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Taehyun Park
- Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Dustin R Morado
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Kelly T Hughes
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ian J Molineux
- Center for Infectious Disease, Department of Molecular Biosciences, Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jun Liu
- Department of Pathology and Laboratory Medicine, McGovern Medical School at UTHealth, Houston, TX 77030, USA.
| |
Collapse
|
21
|
Wirjon IA, Lau NS, Arip YM. Complete Genome Sequence of Proteus mirabilis Phage pPM_01 Isolated from Raw Sewage. Intervirology 2017; 59:243-253. [PMID: 28384626 DOI: 10.1159/000468987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/02/2017] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Phage pPM_01 was previously isolated from a raw sewage treatment facility located in Batu Maung, Penang, Malaysia, and it was highly lytic against Proteus mirabilis, which causes urinary tract infections in humans. In this paper, we characterize the biology and complete genome sequence of the phage. METHODS AND RESULTS Transmission electron microscopy revealed phage pPM_01 to be a siphovirus (the first reported virus to infect P. mirabilis), with its complete genome sequence successfully determined. The genome was sequenced using Illumina technology and the reads obtained were assembled using CLC Genomic Workbench v.7.0.3. The whole genome contains a total of 58,546 bp of linear double-stranded DNA with a G+C content of 46.9%. Seventy putative genes were identified and annotated using various bioinformatics tools including RAST, Geneious v.R7, National Center for Biotechnology Information (NCBI) BLAST, and tRNAscan-SE-v1.3 Search. Functional clusters of related potential genes were defined (structural, lytic, packaging, replication, modification, and modulatory). The whole genome sequence showed a low similarity to known phages (i.e., Enterobacter phage Enc34 and Enterobacteria phage Chi). Host range determination and SDS-PAGE analysis were also performed. CONCLUSIONS The inability to lysogenize a host, the absence of endotoxin genes in the annotated genome, and the lytic behavior suggest phage pPM_01 as a possible safe biological candidate to control P. mirabilis infection.
Collapse
Affiliation(s)
- Ira Aryani Wirjon
- School of Biological Sciences, University Sains Malaysia, Sains@USM, Bayan Lepas, Penang, Malaysia
| | | | | |
Collapse
|
22
|
Gebhart D, Williams SR, Scholl D. Bacteriophage SP6 encodes a second tailspike protein that recognizes Salmonella enterica serogroups C 2 and C 3. Virology 2017; 507:263-266. [PMID: 28285722 DOI: 10.1016/j.virol.2017.02.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
Abstract
SP6 is a salmonella phage closely related to coliphage K1-5. K1-5 is notable in that it encodes two polysaccharide-degrading tailspike proteins, an endosialidase that allows it to infect E. coli K1, and a lyase that enables it to infect K5 strains. SP6 is similar to K1-5 except that it encodes a P22-like endorhamnosidase tailspike, gp46, allowing it to infect group B Salmonella. We show here that SP6 can also infect Salmonella serogroups C2 and C3 and that a mutation in a putative second tailspike, gp47, eliminates this specificity. Gene 47 was fused to the coding region of the N-terminal portion of the Pseudomonas aeruginosa R2 pyocin tail fiber and expressed in trans such that the fusion protein becomes incorporated into pyocin particles. These pyocins, termed AvR2-SP47, killed serogroups C2 and C3Salmonella. We conclude that SP6 encodes two tail proteins providing it a broad host range among Salmonella enterica.
Collapse
Affiliation(s)
- Dana Gebhart
- AvidBiotics Corporation, 100 Kimball Way, S., San Francisco, CA 94080, USA
| | - Steven R Williams
- AvidBiotics Corporation, 100 Kimball Way, S., San Francisco, CA 94080, USA
| | - Dean Scholl
- AvidBiotics Corporation, 100 Kimball Way, S., San Francisco, CA 94080, USA.
| |
Collapse
|
23
|
Sharaf A, Mercati F, Elmaghraby I, Elbaz RM, Marei EM. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens. BMC Microbiol 2017; 17:51. [PMID: 28257628 PMCID: PMC5336643 DOI: 10.1186/s12866-017-0940-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Next Generation Sequencing (NGS) technologies provide exciting possibilities for whole genome sequencing of a plethora of organisms including bacterial strains and phages, with many possible applications in research and diagnostics. No Streptomyces flavovirens phages have been sequenced to date; there is therefore a lack in available information about S. flavovirens phage genomics. We report biological and physiochemical features and use NGS to provide the complete annotated genomes for two new strains (Sf1 and Sf3) of the virulent phage Streptomyces flavovirens, isolated from Egyptian soil samples. Results The S. flavovirens phages (Sf1 and Sf3) examined in this study show higher adsorption rates (82 and 85%, respectively) than other actinophages, indicating a strong specificity to their host, and latent periods (15 and 30 min.), followed by rise periods of 45 and 30 min. As expected for actinophages, their burst sizes were 1.95 and 2.49 virions per mL. Both phages were stable and, as reported in previous experiments, showed a significant increase in their activity after sodium chloride (NaCl) and magnesium chloride (MgCl2.6H2O) treatments, whereas after zinc chloride (ZnCl2) application both phages showed a significant decrease in infection. The sequenced phage genomes are parts of a singleton cluster with sizes of 43,150 bp and 60,934 bp, respectively. Bioinformatics analyses and functional characterizations enabled the assignment of possible functions to 19 and 28 putative identified ORFs, which included phage structural proteins, lysis components and metabolic proteins. Thirty phams were identified in both phages, 10 (33.3%) of them with known function, which can be used in cluster prediction. Comparative genomic analysis revealed significant homology between the two phages, showing the highest hits among Sf1, Sf3 and the closest Streptomyces phage (VWB phages) in a specific 13Kb region. However, the phylogenetic analysis using the Major Capsid Protein (MCP) sequences highlighted that the isolated phages belong to the BG Streptomyces phage group but are clearly separated, representing a novel sub-cluster. Conclusion The results of this study provide the first physiological and genomic information for S. flavovirens phages and will be useful for pharmaceutical industries based on S. flavovirens and future phage evolution studies.
Collapse
Affiliation(s)
- A Sharaf
- Genetic Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt. .,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005, České Budějovice, Czechia.
| | - F Mercati
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR) of Italy, 90129, Palermo, Italy
| | - I Elmaghraby
- Central Lab. of Organic Agriculture, Agricultural Research Center, Giza, 12619, Egypt
| | - R M Elbaz
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo, 11970, Egypt
| | - E M Marei
- Microbiology Department, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt
| |
Collapse
|
24
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
25
|
Bardina C, Colom J, Spricigo DA, Otero J, Sánchez-Osuna M, Cortés P, Llagostera M. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella. Front Microbiol 2016; 7:545. [PMID: 27148229 PMCID: PMC4837284 DOI: 10.3389/fmicb.2016.00545] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/04/2016] [Indexed: 02/06/2023] Open
Abstract
Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large terminase subunits confirms their packaging strategies and grouping to the different phage genus type. All these studies are necessary for the development and the use of an efficient cocktail with commercial applications in bacteriophage therapy against Salmonella.
Collapse
Affiliation(s)
| | | | | | | | | | - Pilar Cortés
- Departament de Genètica i de Microbiologia, Molecular Microbiology, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | |
Collapse
|
26
|
Lee JS, Jang HB, Kim KS, Kim TH, Im SP, Kim SW, Lazarte JMS, Kim JS, Jung TS. Complete Genomic and Lysis-Cassette Characterization of the Novel Phage, KBNP1315, which Infects Avian Pathogenic Escherichia coli (APEC). PLoS One 2015; 10:e0142504. [PMID: 26555076 PMCID: PMC4640515 DOI: 10.1371/journal.pone.0142504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is a major pathogen that causes avian colibacillosis and is associated with severe economic losses in the chicken-farming industry. Here, bacteriophage KBNP1315, infecting APEC strain KBP1315, was genomically and functionally characterized. The evolutionary relationships of KBNP1315 were analyzed at the genomic level using gene (protein)-sharing networks, the Markov clustering (MCL) algorithm, and comparative genomics. Our network analysis showed that KBNP1315 was connected to 30 members of the Autographivirinae subfamily, which comprises the SP6-, T7-, P60-, phiKMV-, GAP227- and KP34-related groups. Network decomposition suggested that KBNP1315 belongs to the SP6-like phages, but our comparison of putative encoded proteins revealed that key proteins of KBNP1315, including the tail spike protein and endolysin, had relative low levels of amino acid sequence similarity with other members of the SP6-like phages. Thus KBNP1315 may only be distantly related to the SP6-like phages, and (based on the difference in endolysin) its lysis mechanism may differ from theirs. To characterize the lytic functions of the holin and endolysin proteins from KBNP1315, we expressed these proteins individually or simultaneously in E. coli BL21 (DE3) competent cell. Interestingly, the expressed endolysin was secreted into the periplasm and caused a high degree of host cell lysis that was dose-dependently delayed/blocked by NaN3-mediated inhibition of the SecA pathway. The expressed holin triggered only a moderate inhibition of cell growth, whereas coexpression of holin and endolysin enhanced the lytic effect of endolysin. Together, these results revealed that KBNP1315 appears to use a pin-holin/signal-arrest-release (SAR) endolysin pathway to trigger host cell lysis.
Collapse
Affiliation(s)
- Jung Seok Lee
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Ho Bin Jang
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001, Leuven, Belgium
| | - Ki Sei Kim
- KBNP Technology Institute, KBNP, Inc., Yesan, Choongcheongnam-do, South Korea
| | - Tae Hwan Kim
- KBNP Technology Institute, KBNP, Inc., Yesan, Choongcheongnam-do, South Korea
| | - Se Pyeong Im
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Si Won Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jassy Mary S. Lazarte
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Jae Sung Kim
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Tae Sung Jung
- Laboratory of Aquatic Animal Diseases, Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, 660-701, South Korea
- * E-mail:
| |
Collapse
|
27
|
Zhao X, Huang S, Zhao J, He X, Li E, Li H, Liu W, Zou D, Wei X, Wang X, Dong D, Yang Z, Yan X, Shen Z, Yuan J. Characterization of phiCFP-1, a virulent bacteriophage specific for Citrobacter freundii. J Med Virol 2015; 88:895-905. [PMID: 26455439 DOI: 10.1002/jmv.24401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2015] [Indexed: 12/14/2022]
Abstract
Citrobacter freundii, a Gram-negative bacterium, causes many opportunistic infections. Bacteriophage phiCFP-1 was isolated and characterized by its ability to lyse the multidrug-resistant clinical C. freundii strain P10159. Transmission electron microscopy showed that the phage has an icosahedral head and a short tail, making it a Podoviridae family member. In a single-step growth experiment, phiCFP-1 exhibited an eclipse period of 20 min and a burst size of 100 particles per cell. Its genome assembled as a circular molecule when genomic sequencing was completed. However, based on genome content and organization, it was categorized as a classic T7-related phage, and such phages are known to have linear genomes with direct terminal repeats. With the quick and simple method established herein, the 38,625-bp linear double-stranded DNA with 229-bp direct terminal repeats was accurately identified. The genome contained 43 putative open reading frames and no tRNA genes. Using a proteomics-based approach, seven viral and two host proteins from purified phiCFP-1 particles were identified. Comparative genomics and recombination analyzes revealed close genetic relatedness among phiCFP-1, phiYeO3-12/vB_YenP_AP5 (from Yersinia enterocolitica O3), and phiSG-JL2 (from Salmonella enterica).
Collapse
Affiliation(s)
- Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Jiangtao Zhao
- Emergency Department, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoming He
- College of Food Science and Engineering, Northwest A and F University, Yangling, China
| | - Erna Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Xiabei Yan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| | - Zhiqiang Shen
- Tianjin Institute of Health and Environmental Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
28
|
Eriksson H, Maciejewska B, Latka A, Majkowska-Skrobek G, Hellstrand M, Melefors Ö, Wang JT, Kropinski AM, Drulis-Kawa Z, Nilsson AS. A suggested new bacteriophage genus, "Kp34likevirus", within the Autographivirinae subfamily of Podoviridae. Viruses 2015; 7:1804-22. [PMID: 25853484 PMCID: PMC4411677 DOI: 10.3390/v7041804] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/22/2015] [Accepted: 03/27/2015] [Indexed: 12/17/2022] Open
Abstract
Klebsiella pneumoniae phages vB_KpnP_SU503 (SU503) and vB_KpnP_SU552A (SU552A) are virulent viruses belonging to the Autographivirinae subfamily of Podoviridae that infect and kill multi-resistant K. pneumoniae isolates. Phages SU503 and SU552A show high pairwise nucleotide identity to Klebsiella phages KP34 (NC_013649), F19 (NC_023567) and NTUH-K2044-K1-1 (NC_025418). Bioinformatic analysis of these phage genomes show high conservation of gene arrangement and gene content, conserved catalytically active residues of their RNA polymerase, a common and specific lysis cassette, and form a joint cluster in phylogenetic analysis of their conserved genes. Also, we have performed biological characterization of the burst size, latent period, host specificity (together with KP34 and NTUH-K2044-K1-1), morphology, and structural genes as well as sensitivity testing to various conditions. Based on the analyses of these phages, the creation of a new phage genus is suggested within the Autographivirinae, called "Kp34likevirus" after their type phage, KP34. This genus should encompass the recently genome sequenced Klebsiella phages KP34, SU503, SU552A, F19 and NTUH-K2044-K1-1.
Collapse
Affiliation(s)
- Harald Eriksson
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden; E-Mails: (H.E.); (M.H.)
| | - Barbara Maciejewska
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw 51-148, Poland; E-Mails: (B.M.); (A.L.); (G.M.-S.); (Z.D.-K.)
| | - Agnieszka Latka
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw 51-148, Poland; E-Mails: (B.M.); (A.L.); (G.M.-S.); (Z.D.-K.)
| | - Grazyna Majkowska-Skrobek
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw 51-148, Poland; E-Mails: (B.M.); (A.L.); (G.M.-S.); (Z.D.-K.)
| | - Marios Hellstrand
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden; E-Mails: (H.E.); (M.H.)
| | - Öjar Melefors
- Department of Microbiology, Public Health Agency of Sweden, Solna 171 82, Sweden; E-Mail:
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University, College of Medicine, Taipei 10051, Taiwan; E-Mail:
| | - Andrew M. Kropinski
- Departments of Food Science, Molecular & Cellular Biology, and Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada; E-Mail:
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw 51-148, Poland; E-Mails: (B.M.); (A.L.); (G.M.-S.); (Z.D.-K.)
| | - Anders S. Nilsson
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden; E-Mails: (H.E.); (M.H.)
| |
Collapse
|
29
|
Grose JH, Casjens SR. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 2015; 468-470:421-443. [PMID: 25240328 DOI: 10.1016/j.virol.2014.08.024] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/18/2014] [Accepted: 08/22/2014] [Indexed: 02/03/2023]
Abstract
Bacteriophages are the predominant biological entity on the planet. The recent explosion of sequence information has made estimates of their diversity possible. We describe the genomic comparison of 337 fully sequenced tailed phages isolated on 18 genera and 31 species of bacteria in the Enterobacteriaceae. These phages were largely unambiguously grouped into 56 diverse clusters (32 lytic and 24 temperate) that have syntenic similarity over >50% of the genomes within each cluster, but substantially less sequence similarity between clusters. Most clusters naturally break into sets of more closely related subclusters, 78% of which are correlated with their host genera. The largest groups of related phages are superclusters united by genome synteny to lambda (81 phages) and T7 (51 phages). This study forms a robust framework for understanding diversity and evolutionary relationships of existing tailed phages, for relating newly discovered phages and for determining host/phage relationships.
Collapse
Affiliation(s)
- Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
30
|
Switt AIM, Sulakvelidze A, Wiedmann M, Kropinski AM, Wishart DS, Poppe C, Liang Y. Salmonella phages and prophages: genomics, taxonomy, and applied aspects. Methods Mol Biol 2015; 1225:237-87. [PMID: 25253259 DOI: 10.1007/978-1-4939-1625-2_15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since this book was originally published in 2007 there has been a significant increase in the number of Salmonella bacteriophages, particularly lytic virus, and Salmonella strains which have been fully sequenced. In addition, new insights into phage taxonomy have resulted in new phage genera, some of which have been recognized by the International Committee of Taxonomy of Viruses (ICTV). The properties of each of these genera are discussed, along with the role of phage as agents of genetic exchange, as therapeutic agents, and their involvement in phage typing.
Collapse
Affiliation(s)
- Andrea I Moreno Switt
- Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Escuela de Medicina Veterinaria, Republica 440, 8370251, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
31
|
Shang A, Liu Y, Wang J, Mo Z, Li G, Mou H. Complete nucleotide sequence of Klebsiella phage P13 and prediction of an EPS depolymerase gene. Virus Genes 2014; 50:118-28. [PMID: 25392088 DOI: 10.1007/s11262-014-1138-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
The complete genome of Klebsiella phage P13 was sequenced and analyzed. Bacteriophage P13 has a double-stranded linear DNA with a length of 45,976 bp and a G+C content of 51.7 %, which is slightly lower than that of Klebsiella pneumoniae KCTC 2242. The codon biases of phage P13 are very similar to those of SP6-like phages and K. pneumoniae KCTC 2242. Bioinformatics analysis shows that the phage P13 genome has 282 open reading frames (ORFs) that are greater than 100 bp in length, and 50 of these ORFs were identified as predicted genes with an average length of 833 bp. Among these genes, 41 show homology to known proteins in the GenBank database. The functions of the 24 putative proteins were investigated, and 13 of these were found to be highly conserved. According to the homology analysis of the 50 predicted genes and the whole genome, phage P13 is homologous to SP6-like phages. Furthermore, the morphological characteristics of phage P13 suggest that it belongs to the SP6-like viral genus of the Podoviridae subfamily Autographivirinae. Two hypothetical genes encoding an extracellular polysaccharide depolymerase were predicted using PSI-BLAST. This analysis serves as groundwork for further research and application of the enzyme.
Collapse
Affiliation(s)
- Anqi Shang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, Shandong, China
| | | | | | | | | | | |
Collapse
|
32
|
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas. J Bacteriol 2013; 196:459-71. [PMID: 24214944 DOI: 10.1128/jb.01080-13] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Collapse
|
33
|
Lynch KH, Abdu AH, Schobert M, Dennis JJ. Genomic characterization of JG068, a novel virulent podovirus active against Burkholderia cenocepacia. BMC Genomics 2013; 14:574. [PMID: 23978260 PMCID: PMC3765740 DOI: 10.1186/1471-2164-14-574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 08/09/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND As is true for many other antibiotic-resistant Gram-negative pathogens, members of the Burkholderia cepacia complex (BCC) are currently being assessed for their susceptibility to phage therapy as an antimicrobial treatment. The objective of this study was to perform genomic and limited functional characterization of the novel BCC phage JG068 (vB_BceP_JG068). RESULTS JG068 is a podovirus that forms large, clear plaques on Burkholderia cenocepacia K56-2. Host range analysis indicates that this phage can infect environmental, clinical, and epidemic isolates of Burkholderia multivorans, B. cenocepacia, Burkholderia stabilis, and Burkholderia dolosa, likely through interaction with the host lipopolysaccharide as a receptor. The JG068 chromosome is 41,604 base pairs (bp) in length and is flanked by 216 bp short direct terminal repeats. Gene expression originates from both host and phage promoters and is in the forward direction for all 49 open reading frames. The genome sequence shows similarity to Ralstonia phage ϕRSB1, Caulobacter phage Cd1, and uncharacterized genetic loci of blood disease bacterium R229 and Burkholderia pseudomallei 1710b. CoreGenesUniqueGenes analysis indicates that JG068 belongs to the Autographivirinae subfamily and ϕKMV-like phages genus. Modules within the genome encode proteins involved in DNA-binding, morphogenesis, and lysis, but none associated with pathogenicity or lysogeny. Similar to the signal-arrest-release (SAR) endolysin of ϕKMV, inducible expression of the JG068 SAR endolysin causes lysis of Escherichia coli that is dependent on the presence of an N-terminal signal sequence. In an in vivo assay using the Galleria mellonella infection model, treatment of B. cenocepacia K56-2-infected larvae with JG068 results in a significant increase in larval survival. CONCLUSIONS As JG068 has a broad host range, does not encode virulence factors, is obligately lytic, and has activity against an epidemic B. cenocepacia strain in vivo, this phage is a highly promising candidate for BCC phage therapy development.
Collapse
Affiliation(s)
- Karlene H Lynch
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Ashraf H Abdu
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| | - Max Schobert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jonathan J Dennis
- Department of Biological Sciences, 6–008 Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, AB T6G 2E9 Canada
| |
Collapse
|
34
|
Song MS, Choi SP, Lee J, Kwon YJ, Sim SJ. Real-time, sensitive, and specific detection of promoter-polymerase interactions in gene transcription using a nanoplasmonic sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:1265-1269. [PMID: 23166096 DOI: 10.1002/adma.201203467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/15/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Min Sun Song
- Department of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | |
Collapse
|
35
|
Generation of a novel nucleic acid-based reporter system to detect phenotypic susceptibility to antibiotics in Mycobacterium tuberculosis. mBio 2012; 3:mBio.00312-11. [PMID: 22415006 PMCID: PMC3312217 DOI: 10.1128/mbio.00312-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We designed, constructed, and evaluated a prototype novel reporter system comprised of two functional cassettes: (i) the SP6 RNA polymerase gene under transcriptional control of a promoter active in mycobacteria and (ii) the consensus SP6 polymerase promoter that directs expression of an otherwise unexpressed sequence. We incorporated the reporter system into a mycobacteriophage for delivery into viable Mycobacterium tuberculosis, and introduction led to synthesis of an SP6 polymerase-dependent surrogate marker RNA that we detected by reverse transcriptase PCR (RT-PCR). The reporter confirmed the susceptibility profile of both drug-susceptible and drug-resistant M. tuberculosis strains exposed to first-line antitubercular drugs and required as little as 16 h of exposure to antibacterial agents targeting bacterial metabolic processes to accurately read the reaction. The reporter system translated the bacterial phenotype into a language interpretable by rapid and sensitive nucleic acid detection. As a phenotypic assay that works only on viable M. tuberculosis, it could be used to rapidly assess resistance to any drug, including drugs for which the mechanism of resistance is unknown or which result from many potential known (and unknown) genetic alterations. The ability to detect antibiotic resistance of slow-growing bacteria (i.e., Mycobacterium tuberculosis) is hampered by two factors, the time to detection (weeks to months) and the resistance mechanism (unknown for many drugs), delaying the appropriate treatment of patients with drug-resistant or multidrug-resistant tuberculosis (TB). The novel technique described in this article uses a unique surrogate nucleic acid marker produced by phage that infects M. tuberculosis to record phenotypic antibiotic susceptibility in less than a day.
Collapse
|
36
|
Nguyen AH, Molineux IJ, Springman R, Bull JJ. Multiple genetic pathways to similar fitness limits during viral adaptation to a new host. Evolution 2012; 66:363-74. [PMID: 22276534 PMCID: PMC3377685 DOI: 10.1111/j.1558-5646.2011.01433.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gain in fitness during adaptation depends on the supply of beneficial mutations. Despite a good theoretical understanding of how evolution proceeds for a defined set of mutations, there is little understanding of constraints on net fitness-whether fitness will reach a limit despite ongoing selection and mutation, and if there is a limit, what determines it. Here, the dsDNA bacteriophage SP6, a virus of Salmonella, was adapted to Escherichia coli K-12. From an isolate capable of modest growth on E. coli, four lines were adapted for rapid growth by protocols differing in use of mutagen, propagation method, and duration, but using the same media, temperature, and a continual excess of the novel host. Nucleotide changes underlying those adaptations differed greatly in number and identity, but the four lines achieved similar absolute fitness at the end, an increase of more than 4000-fold phage descendants per hour. Thus, the fitness landscape allows multiple genetic paths to the same approximate fitness limit. The existence and causes of fitness limits have ramifications to genome engineering, vaccine design, and "lethal mutagenesis" treatments to cure viral infections.
Collapse
Affiliation(s)
- Andre H Nguyen
- Section of Integrative Biology, The University of Texas at Austin Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
37
|
Casjens SR, Molineux IJ. Short noncontractile tail machines: adsorption and DNA delivery by podoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 726:143-79. [PMID: 22297513 DOI: 10.1007/978-1-4614-0980-9_7] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tailed dsDNA bacteriophage virions bind to susceptible cells with the tips of their tails and then deliver their DNA through the tail into the cells to initiate infection. This chapter discusses what is known about this process in the short-tailed phages (Podoviridae). Their short tails require that many of these virions adsorb to the outer layers of the cell and work their way down to the outer membrane surface before releasing their DNA. Interestingly, the receptor-binding protein of many short-tailed phages (and some with long tails) has an enzymatic activity that cleaves their polysaccharide receptors. Reversible adsorption and irreversible adsorption to primary and secondary receptors are discussed, including how sequence divergence in tail fiber and tailspike proteins leads to different host specificities. Upon reaching the outer membrane of Gram-negative cells, some podoviral tail machines release virion proteins into the cell that help the DNA efficiently traverse the outer layers of the cell and/or prepare the cell cytoplasm for phage genome arrival. Podoviruses utilize several rather different variations on this theme. The virion DNA is then released into the cell; the energetics of this process is discussed. Phages like T7 and N4 deliver their DNA relatively slowly, using enzymes to pull the genome into the cell. At least in part this mechanism ensures that genes in late-entering DNA are not expressed at early times. On the other hand, phages like P22 probably deliver their DNA more rapidly so that it can be circularized before the cascade of gene expression begins.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
38
|
Born Y, Fieseler L, Marazzi J, Lurz R, Duffy B, Loessner MJ. Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl Environ Microbiol 2011; 77:5945-54. [PMID: 21764969 PMCID: PMC3165370 DOI: 10.1128/aem.03022-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 07/05/2011] [Indexed: 12/16/2022] Open
Abstract
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.
Collapse
Affiliation(s)
- Yannick Born
- Agroscope Changins-Wädenswil ACW, Swiss National Competence Center for Fire Blight, 8820 Wädenswil, Switzerland
- Institute of Food, Nutrition, and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Lars Fieseler
- Institute of Food, Nutrition, and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Janine Marazzi
- Institute of Food, Nutrition, and Health, ETH Zürich, 8092 Zürich, Switzerland
| | - Rudi Lurz
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Brion Duffy
- Agroscope Changins-Wädenswil ACW, Swiss National Competence Center for Fire Blight, 8820 Wädenswil, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition, and Health, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
39
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
40
|
Kerby MB, Sarma AA, Patel MS, Artenstein AW, Opal SM, Tripathi A. Early in vitro transcription termination in human H5 influenza viral RNA synthesis. Appl Biochem Biotechnol 2011; 164:497-513. [PMID: 21207185 DOI: 10.1007/s12010-010-9152-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/20/2010] [Indexed: 10/18/2022]
Abstract
Rapid diagnostic identification of the human H5 influenza virus is a strategic cornerstone for outbreak prevention. We recently reported a method for direct detection of viral RNA from a highly pathogenic human H5 influenza strain (A/Hanoi/30408/2005(H5N1)), which necessarily was transcribed in vitro from non-viral sources. This article provides an in-depth analysis of the reaction conditions for in vitro transcription (IVT) of full-length influenza H5 RNA, which is needed for diagnostic RNA production, for the T7 and SP6 phage promoter systems. Gel analysis of RNA transcribed from plasmids containing the H5 sequence between a 5' SP6 promoter and 3' restriction site (BsmBI) showed that three sequence-verified bands at 1,776, 784, and 591 bases were consistently produced, whereas only one 1,776-base band was expected. These fragments were not observed in H1 or H3 influenza RNA transcribed under similar conditions. A reverse complement of the sequence produced only a single band at 1,776 bases, which suggested either self-cleavage or early termination. Aliquots of the IVT reaction were quenched with EDTA to track the generation of the bands over time, which maintained a constant concentration ratio. The H5 sequence was cloned with T7 and SP6 RNA polymerase promoters to allow transcription in either direction with either polymerase. The T7 transcription product from purified, restricted plasmids in the vRNA direction only produced the 1,776-base full-length sequence and the 784-base fragment, instead of the three bands generated by the SP6 system, suggesting an early termination mechanism. Additionally, the T7 system produced a higher fraction of full-length vRNA transcripts than the SP6 system did under similar reaction conditions. By sequencing we identified a type II RNA hairpin loop terminator, which forms in a transcription direction-dependent fashion. Variation of the magnesium concentration produced the greatest impact on termination profiles, where some reaction mixtures were unable to produce full-length transcripts. Optimized conditions are presented for the T7 and SP6 phage polymerase systems to minimize these early termination events during in vitro transcription of H5 influenza vRNA.
Collapse
Affiliation(s)
- Matthew B Kerby
- School of Engineering and Division of Biology and Medicine, Biomedical Engineering, Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | | | | | | | | | | |
Collapse
|
41
|
A conserved acetyl esterase domain targets diverse bacteriophages to the Vi capsular receptor of Salmonella enterica serovar Typhi. J Bacteriol 2010; 192:5746-54. [PMID: 20817773 DOI: 10.1128/jb.00659-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of bacteriophages have been identified that target the Vi capsular antigen of Salmonella enterica serovar Typhi. Here we show that these Vi phages represent a remarkably diverse set of phages belonging to three phage families, including Podoviridae and Myoviridae. Genome analysis facilitated the further classification of these phages and highlighted aspects of their independent evolution. Significantly, a conserved protein domain carrying an acetyl esterase was found to be associated with at least one tail fiber gene for all Vi phages, and the presence of this domain was confirmed in representative phage particles by mass spectrometric analysis. Thus, we provide a simple explanation and paradigm of how a diverse group of phages target a single key virulence antigen associated with this important human-restricted pathogen.
Collapse
|
42
|
Whichard JM, Weigt LA, Borris DJ, Li LL, Zhang Q, Kapur V, Pierson FW, Lingohr EJ, She YM, Kropinski AM, Sriranganathan N. Complete genomic sequence of bacteriophage felix o1. Viruses 2010; 2:710-730. [PMID: 21994654 PMCID: PMC3185647 DOI: 10.3390/v2030710] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/25/2010] [Accepted: 03/08/2010] [Indexed: 11/16/2022] Open
Abstract
Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein), Gp49, Gp53, Gp54, Gp55, Gp57, Gp58 (major capsid protein), Gp59, Gp63, Gp64, Gp67, Gp68, Gp69, Gp73, Gp74 and Gp77 (tail fiber). Based on phage-host codon differences, 7 tRNAs could affect translation rate during infection. Introns, holin-lysin cassettes, bacterial toxin homologs and host RNA polymerase-modifying genes were absent.
Collapse
Affiliation(s)
- Jean M. Whichard
- Mailstop G29, Centers for Disease Control and Prevention; 1600 Clifton Road, Atlanta, GA 30329, USA; E-Mail: (J.M.W.)
| | - Lee A. Weigt
- Smithsonian National Institution, National Museum in Natural History, MRC 534, Washington, DC 20560, USA; E-Mail: (L.A.W.)
| | - Douglas J. Borris
- Abbot Point of Care, 185 Corkstown Road, Ottawa, ON, K2H 8V4, Canada
| | - Ling Ling Li
- Pennsylvania State University, Department of Veterinary and Biomedical Sciences, 204 Wartick Laboratory, University Park, PA 16802, USA; E-Mail: (L.L.L.)
| | - Qing Zhang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. Seattle, WA 98109, USA; E-Mail: (Q.Z.)
| | - Vivek Kapur
- Pennsylvania State University, 115 Henning Bldg., University Park, PA 16802, USA; E-Mail: (V.K.)
| | - F. William Pierson
- VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Duck Pond Drive (0442), Blacksburg, Virginia 24061, USA, E-Mail: (F.W.P.)
| | - Erika J. Lingohr
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario N1G 3W4, Canada; E-Mails: (E.J.L.); (A.M.K.)
| | - Yi-Min She
- Centre for Biologics Research, Health Canada, Room D159, Frederick G. Banting Building 251 Sir Frederick Banting Driveway, Tunney’s Pasture, Ottawa, ON K1A 0K9, Canada; E-Mail: (Y.-M.S.)
| | - Andrew M. Kropinski
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario N1G 3W4, Canada; E-Mails: (E.J.L.); (A.M.K.)
- University of Guelph, Department of Molecular and Cellular Biology, Guelph, Ontario N1G 2W1, Canada
| | - Nammalwar Sriranganathan
- Center for Molecular Medicine and Infectious Disease; 1410 Prices Fork Road; Blacksburg, VA 24061-0342, USA
| |
Collapse
|
43
|
Heineman RH, Bull JJ, Molineux IJ. Layers of evolvability in a bacteriophage life history trait. Mol Biol Evol 2009; 26:1289-98. [PMID: 19264970 PMCID: PMC2680503 DOI: 10.1093/molbev/msp037] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional redundancy in genomes arises from genes with overlapping functions, allowing phenotypes to persist after gene knockouts. Evolutionary redundancy or evolvability of a genome is one step removed, in that functional redundancy is absent but the genome has the potential to evolve to restore a lost phenotype. Exploring the extent to which this recovery alters gene networks can illuminate how functional gene interactions change through time. Here, the evolvability of lysis was studied in bacteriophage T7, revealing hidden functional interactions. Lysis is the destruction of host cell wall and membranes that releases progeny and is therefore essential for phage propagation. In most phages, lysis is mediated by a two-component genetic module: a muralytic enzyme that degrades the bacterial cell wall (endolysin) and a holin that permeabilizes the inner membrane to allow the endolysin access to the cell wall. T7 carries one known holin, one endolysin, and a second muralytic enzyme that plays little role in lysis by wild-type phage. If the primary endolysin is deleted, the second muralytic enzyme evolves to restore normal lysis after selection for faster growth. Here, a second level of evolutionary redundancy was revealed. When the second muralytic enzyme was prevented from adapting in a genome lacking the primary endolysin, the phage reevolved lysis de novo in the absence of any known muralytic enzymes by changes in multiple genes outside the original lysis module. This second level of redundancy proved to be evolutionarily inferior to the first, and both result in a lower fitness and slower lysis than wild-type T7. Deletion of the holin gene delayed lysis time modestly; fitness was restored by compensatory substitutions in genes that lack known roles in lysis of the wild type.
Collapse
|
44
|
Lavigne R, Villegas A, Kropinksi AM. In silico characterization of DNA motifs with particular reference to promoters and terminators. Methods Mol Biol 2009; 502:113-129. [PMID: 19082554 DOI: 10.1007/978-1-60327-565-1_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Knowledge of the regulatory elements contained within bacteriophage genomes forms the basis for understanding genomic expression and organization. The in silico prediction of promoter and terminator sequences in phage genomes is a first step towards this understanding. In this chapter, a number of programs and resources to identify regulatory elements are listed and discussed. Combining the available web-resources and literature data optimizes these predictions and can thus aid in a more directed experimental identification of these regulatory elements.
Collapse
Affiliation(s)
- Rob Lavigne
- Department of Biosystems, Division of Gene Technology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | |
Collapse
|
45
|
Casjens SR, Gilcrease EB. Determining DNA packaging strategy by analysis of the termini of the chromosomes in tailed-bacteriophage virions. Methods Mol Biol 2009; 502:91-111. [PMID: 19082553 DOI: 10.1007/978-1-60327-565-1_7] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Tailed-bacteriophage virions contain a single linear dsDNA chromosome which can range in size from about 18 to 500 kbp across the known tailed-phage types. These linear chromosomes can have one of several known types of termini as follows: cohesive ends (5'- or 3'-single-strand extensions), circularly permuted direct terminal repeats, short or long exact direct terminal repeats, terminal host DNA sequences, or covalently bound terminal proteins. These different types of ends reflect differing DNA replication strategies and especially differing terminase actions during DNA packaging. In general, complete genome sequence determination does not by itself elucidate the nature of these ends, so directed experimental analysis is usually required to understand the nature of the virion chromosome ends. This chapter discusses these methods.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT, USA
| | | |
Collapse
|
46
|
Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol 2008; 159:340-8. [PMID: 18550341 DOI: 10.1016/j.resmic.2008.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/14/2008] [Indexed: 11/23/2022]
Abstract
Complete genome sequences have been determined for 73 tailed-phages that infect members of the bacterial Enterobacteriaceae family. Biological criteria such as genome size, gene organization and gene orientation were used to place these phages into categories. There are 13 such categories, some of which are themselves extremely diverse. The relationships between and within these categories are discussed with an emphasis on the head assembly genes. Although some of them are clearly homologues, suggesting a very ancient origin, there is little evidence for exchange of individual head genes between these phage categories. More recent horizontal exchange of phage tail fiber and early proteins between the categories occurs, but is probably not extremely rapid.
Collapse
|
47
|
Lavigne R, Seto D, Mahadevan P, Ackermann HW, Kropinski AM. Unifying classical and molecular taxonomic classification: analysis of the Podoviridae using BLASTP-based tools. Res Microbiol 2008; 159:406-14. [PMID: 18555669 DOI: 10.1016/j.resmic.2008.03.005] [Citation(s) in RCA: 235] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 03/18/2008] [Accepted: 03/31/2008] [Indexed: 11/19/2022]
Abstract
We defined phage genera by measuring genome relationships by the numbers of shared homologous/orthologous proteins. We used BLAST-based tools (CoreExtractor.vbs and CoreGenes) to analyze 55 fully sequenced bacteriophage genomes from the NCBI and EBI databases. This approach was first applied to the T7-related phages. Using a cut-off score of 40% homologous proteins, we identified three genera within the T7-related phages, redefined the phi29-related phages, and introduced five novel genera. The T7- and phi29-related phages were given subfamily status and named "Autographivirinae" and "Picovirinae", respectively. Our results confirm and refine the ICTV phage classification, enable elimination of errors in public databases, and provide a straightforward tool for the molecular classification of new phage genomes.
Collapse
Affiliation(s)
- Rob Lavigne
- Laboratory of Gene Technology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 21, Leuven, B-3001, Belgium
| | | | | | | | | |
Collapse
|
48
|
Structure of the receptor-binding protein of bacteriophage det7: a podoviral tail spike in a myovirus. J Virol 2007; 82:2265-73. [PMID: 18077713 DOI: 10.1128/jvi.01641-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A new Salmonella enterica phage, Det7, was isolated from sewage and shown by electron microscopy to belong to the Myoviridae morphogroup of bacteriophages. Det7 contains a 75-kDa protein with 50% overall sequence identity to the tail spike endorhamnosidase of podovirus P22. Adsorption of myoviruses to their bacterial hosts is normally mediated by long and short tail fibers attached to a contractile tail, whereas podoviruses do not contain fibers but attach to host cells through stubby tail spikes attached to a very short, noncontractile tail. The amino-terminal 150 residues of the Det7 protein lack homology to the P22 tail spike and are probably responsible for binding to the base plate of the myoviral tail. Det7 tail spike lacking this putative particle-binding domain was purified from Escherichia coli, and well-diffracting crystals of the protein were obtained. The structure, determined by molecular replacement and refined at a 1.6-A resolution, is very similar to that of bacteriophage P22 tail spike. Fluorescence titrations with an octasaccharide suggest Det7 tail spike to bind its receptor lipopolysaccharide somewhat less tightly than the P22 tail spike. The Det7 tail spike is even more resistant to thermal unfolding than the already exceptionally stable homologue from P22. Folding and assembly of both trimeric proteins are equally temperature sensitive and equally slow. Despite the close structural, biochemical, and sequence similarities between both proteins, the Det7 tail spike lacks both carboxy-terminal cysteines previously proposed to form a transient disulfide during P22 tail spike assembly. Our data suggest receptor-binding module exchange between podoviruses and myoviruses in the course of bacteriophage evolution.
Collapse
|
49
|
Leiman PG, Battisti AJ, Bowman VD, Stummeyer K, Mühlenhoff M, Gerardy-Schahn R, Scholl D, Molineux IJ. The Structures of Bacteriophages K1E and K1-5 Explain Processive Degradation of Polysaccharide Capsules and Evolution of New Host Specificities. J Mol Biol 2007; 371:836-49. [PMID: 17585937 DOI: 10.1016/j.jmb.2007.05.083] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 05/18/2007] [Accepted: 05/29/2007] [Indexed: 10/23/2022]
Abstract
External polysaccharides of many pathogenic bacteria form capsules protecting the bacteria from the animal immune system and phage infection. However, some bacteriophages can digest these capsules using glycosidases displayed on the phage particle. We have utilized cryo-electron microscopy to determine the structures of phages K1E and K1-5 and thereby establish the mechanism by which these phages attain and switch their host specificity. Using a specific glycosidase, both phages penetrate the capsule and infect the neuroinvasive human pathogen Escherichia coli K1. In addition to the K1-specific glycosidase, each K1-5 particle carries a second enzyme that allows it to infect E. coli K5, whose capsule is chemically different from that of K1. The enzymes are organized into a multiprotein complex attached via an adapter protein to the virus portal vertex, through which the DNA is ejected during infection. The structure of the complex suggests a mechanism for the apparent processivity of degradation that occurs as the phage drills through the polysaccharide capsule. The enzymes recognize the adapter protein by a conserved N-terminal sequence, providing a mechanism for phages to acquire different enzymes and thus to evolve new host specificities.
Collapse
Affiliation(s)
- Petr G Leiman
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ackermann HW, Kropinski AM. Curated list of prokaryote viruses with fully sequenced genomes. Res Microbiol 2007; 158:555-66. [PMID: 17889511 DOI: 10.1016/j.resmic.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/19/2022]
Abstract
Genome sequencing is of enormous importance for classification of prokaryote viruses and for understanding the evolution of these viruses. This survey covers 284 sequenced viruses for which a full description has been published and for which the morphology is known. This corresponds to 219 (4%) of tailed and 75 (36%) of tailless viruses of prokaryotes. The number of sequenced tailless viruses almost doubles if viruses of unknown morphology are counted. The sequences are from representatives of 15 virus families and three groups without family status, including eight taxa of archaeal viruses. Tailed phages, especially those with large genomes and hosts other than enterobacteria or lactococci, mycobacteria and pseudomonads, are vastly under investigated.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Felix d'Herelle Reference Center for Bacterial Viruses, Department of Medical Biology, Faculty of Medicine, Laval University, Québec, QC G1K 7P4, Canada.
| | | |
Collapse
|