1
|
Wang B, Liao Q, Xia C, Gan F. Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli. Biotechnol Bioeng 2025; 122:710-723. [PMID: 39690792 DOI: 10.1002/bit.28908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli. The production of the starting compound, Mg protoporphyrin monomethylester, was optimized by screening the ribosome binding sites for the expression of each of the five genes. By fusing a maltose-binding protein and apolipoprotein A-I domain with the membrane protein BchF, the yield of 3-hydroxyethyl-Chlide a was increased by five-fold. Anaerobic cultivation of the engineered E. coli strains facilitated the reduction of the C7=C8 double bond by chlorophyllide a oxidoreductase, a critical step in BChl a synthesis. We further enhanced BChl a production by adjusting the isopropyl-β-d-thiogalactopyranoside concentration to optimize enzyme production and introducing an exogenous superoxide dismutase to combat oxidative stress. Additionally, fusing BciC with a RIAD tag resulted in an eight-fold increase in the production of 3-vinyl BChlide d. This study lays the foundation for the reconstitution of BChl-based photosynthetic apparatus in heterotrophic model organisms, offering promising avenues for future research and applications in biotechnology.
Collapse
Affiliation(s)
- Baiyang Wang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qiancheng Liao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chenyang Xia
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. In vitro reversible dehydration in C3-substituents of zinc chlorophyll analogs by BchF and BchV enzymes: Stereoselectivity and substrate specificity in the dehydration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148959. [PMID: 36822492 DOI: 10.1016/j.bbabio.2023.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
In the biosynthetic pathway of bacteriochlorophyll(BChl)-a/b/c/d/e molecules, BchF and BchV enzymes catalyze the hydration of a C3-vinyl to C3-1-hydroxyethyl group. In this study, the in vitro reactions catalyzed by BchF and BchV partially afforded a C31-epimeric mixture of the hydrated products (secondary alcohols), with the primary recovery of the C3-vinylated substrate. The stereoselectivity and substrate specificity for the in vitro reverse enzymatic dehydration were examined using zinc chlorophyll analogs as model substrates by BchF and BchV, which were obtained from extracts of Escherichia coli overexpressing the respective genes from Chlorobaculum tepidum and used without further purification. Both BchF and BchV preferred dehydration of the (31R)-epimers over the (31S)-epimers. The (31R)-epimer was directly dehydrated by BchF and BchV to give the C3-vinylated product. By contrast, two reaction pathways for BchF and BchV dehydrations of the (31S)-epimer were proposed: (1) the (31S)-epimer would be directly dehydrated to C3-vinyl group. (2) the (31S)-epimer would be epimerized to the (31R)-epimer, and the resulting epimer was dehydrated. The results indicated that both BchF and BchV did function as a hydratase/dehydratase and could play a role in the C31-epimerization. An increase in the alkyl size at the C8-position gradually suppressed the BchF and BchV-catalyzed dehydration in vitro, while the C121- and C20-methylation only slightly affected the reaction. Using the BchF dehydration, a large amount of 3-vinyl-bacteriochlorophyllide-a was successfully prepared, with the retention of the chemically labile, central magnesium atom.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
3
|
Proctor MS, Sutherland GA, Canniffe DP, Hitchcock A. The terminal enzymes of (bacterio)chlorophyll biosynthesis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211903. [PMID: 35573041 PMCID: PMC9066304 DOI: 10.1098/rsos.211903] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 05/03/2023]
Abstract
(Bacterio)chlorophylls are modified tetrapyrroles that are used by phototrophic organisms to harvest solar energy, powering the metabolic processes that sustain most of the life on Earth. Biosynthesis of these pigments involves enzymatic modification of the side chains and oxidation state of a porphyrin precursor, modifications that differ by species and alter the absorption properties of the pigments. (Bacterio)chlorophylls are coordinated by proteins that form macromolecular assemblies to absorb light and transfer excitation energy to a special pair of redox-active (bacterio)chlorophyll molecules in the photosynthetic reaction centre. Assembly of these pigment-protein complexes is aided by an isoprenoid moiety esterified to the (bacterio)chlorin macrocycle, which anchors and stabilizes the pigments within their protein scaffolds. The reduction of the isoprenoid 'tail' and its addition to the macrocycle are the final stages in (bacterio)chlorophyll biosynthesis and are catalysed by two enzymes, geranylgeranyl reductase and (bacterio)chlorophyll synthase. These enzymes work in conjunction with photosynthetic complex assembly factors and the membrane biogenesis machinery to synchronize delivery of the pigments to the proteins that coordinate them. In this review, we summarize current understanding of the catalytic mechanism, substrate recognition and regulation of these crucial enzymes and their involvement in thylakoid biogenesis and photosystem repair in oxygenic phototrophs.
Collapse
Affiliation(s)
- Matthew S. Proctor
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - George A. Sutherland
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Daniel P. Canniffe
- Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
4
|
Lambrecht N, Stevenson Z, Sheik CS, Pronschinske MA, Tong H, Swanner ED. " Candidatus Chlorobium masyuteum," a Novel Photoferrotrophic Green Sulfur Bacterium Enriched From a Ferruginous Meromictic Lake. Front Microbiol 2021; 12:695260. [PMID: 34305861 PMCID: PMC8302410 DOI: 10.3389/fmicb.2021.695260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Anoxygenic phototrophic bacteria can be important primary producers in some meromictic lakes. Green sulfur bacteria (GSB) have been detected in ferruginous lakes, with some evidence that they are photosynthesizing using Fe(II) as an electron donor (i.e., photoferrotrophy). However, some photoferrotrophic GSB can also utilize reduced sulfur compounds, complicating the interpretation of Fe-dependent photosynthetic primary productivity. An enrichment (BLA1) from meromictic ferruginous Brownie Lake, Minnesota, United States, contains an Fe(II)-oxidizing GSB and a metabolically flexible putative Fe(III)-reducing anaerobe. "Candidatus Chlorobium masyuteum" grows photoautotrophically with Fe(II) and possesses the putative Fe(II) oxidase-encoding cyc2 gene also known from oxygen-dependent Fe(II)-oxidizing bacteria. It lacks genes for oxidation of reduced sulfur compounds. Its genome encodes for hydrogenases and a reverse TCA cycle that may allow it to utilize H2 and acetate as electron donors, an inference supported by the abundance of this organism when the enrichment was supplied by these substrates and light. The anaerobe "Candidatus Pseudopelobacter ferreus" is in low abundance (∼1%) in BLA1 and is a putative Fe(III)-reducing bacterium from the Geobacterales ord. nov. While "Ca. C. masyuteum" is closely related to the photoferrotrophs C. ferroooxidans strain KoFox and C. phaeoferrooxidans strain KB01, it is unique at the genomic level. The main light-harvesting molecule was identified as bacteriochlorophyll c with accessory carotenoids of the chlorobactene series. BLA1 optimally oxidizes Fe(II) at a pH of 6.8, and the rate of Fe(II) oxidation was 0.63 ± 0.069 mmol day-1, comparable to other photoferrotrophic GSB cultures or enrichments. Investigation of BLA1 expands the genetic basis for phototrophic Fe(II) oxidation by GSB and highlights the role these organisms may play in Fe(II) oxidation and carbon cycling in ferruginous lakes.
Collapse
Affiliation(s)
- Nicholas Lambrecht
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Zackry Stevenson
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Cody S. Sheik
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
- Large Lakes Observatory, University of Minnesota Duluth, Duluth, MN, United States
| | - Matthew A. Pronschinske
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| | - Hui Tong
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Elizabeth D. Swanner
- Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
5
|
Berg M, Goudeau D, Olmsted C, McMahon KD, Yitbarek S, Thweatt JL, Bryant DA, Eloe-Fadrosh EA, Malmstrom RR, Roux S. Host population diversity as a driver of viral infection cycle in wild populations of green sulfur bacteria with long standing virus-host interactions. THE ISME JOURNAL 2021; 15:1569-1584. [PMID: 33452481 PMCID: PMC8163819 DOI: 10.1038/s41396-020-00870-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023]
Abstract
Temperate phages are viruses of bacteria that can establish two types of infection: a lysogenic infection in which the virus replicates with the host cell without producing virions, and a lytic infection where the host cell is eventually destroyed, and new virions are released. While both lytic and lysogenic infections are routinely observed in the environment, the ecological and evolutionary processes regulating these viral dynamics are still not well understood, especially for uncultivated virus-host pairs. Here, we characterized the long-term dynamics of uncultivated viruses infecting green sulfur bacteria (GSB) in a model freshwater lake (Trout Bog Lake, TBL). As no GSB virus has been formally described yet, we first used two complementary approaches to identify new GSB viruses from TBL; one in vitro based on flow cytometry cell sorting, the other in silico based on CRISPR spacer sequences. We then took advantage of existing TBL metagenomes covering the 2005-2018 period to examine the interactions between GSB and their viruses across years and seasons. From our data, GSB populations in TBL were constantly associated with at least 2-8 viruses each, including both lytic and temperate phages. The dominant GSB population in particular was consistently associated with two prophages with a nearly 100% infection rate for >10 years. We illustrate with a theoretical model that such an interaction can be stable given a low, but persistent, level of prophage induction in low-diversity host populations. Overall, our data suggest that lytic and lysogenic viruses can readily co-infect the same host population, and that host strain-level diversity might be an important factor controlling virus-host dynamics including lytic/lysogeny switch.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Simon Roux
- Joint Genome Institute, Berkeley, CA, USA.
| |
Collapse
|
6
|
Garcia SL, Mehrshad M, Buck M, Tsuji JM, Neufeld JD, McMahon KD, Bertilsson S, Greening C, Peura S. Freshwater Chlorobia Exhibit Metabolic Specialization among Cosmopolitan and Endemic Populations. mSystems 2021; 6:e01196-20. [PMID: 33975970 PMCID: PMC8125076 DOI: 10.1128/msystems.01196-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/09/2021] [Indexed: 01/15/2023] Open
Abstract
Photosynthetic bacteria from the class Chlorobia (formerly phylum Chlorobi) sustain carbon fixation in anoxic water columns. They harvest light at extremely low intensities and use various inorganic electron donors to fix carbon dioxide into biomass. Until now, most information on the functional ecology and local adaptations of Chlorobia members came from isolates and merely 26 sequenced genomes that may not adequately represent natural populations. To address these limitations, we analyzed global metagenomes to profile planktonic Chlorobia cells from the oxyclines of 42 freshwater bodies, spanning subarctic to tropical regions and encompassing all four seasons. We assembled and compiled over 500 genomes, including metagenome-assembled genomes (MAGs), single-amplified genomes (SAGs), and reference genomes from cultures, clustering them into 71 metagenomic operational taxonomic units (mOTUs or "species"). Of the 71 mOTUs, 57 were classified within the genus Chlorobium, and these mOTUs represented up to ∼60% of the microbial communities in the sampled anoxic waters. Several Chlorobium-associated mOTUs were globally distributed, whereas others were endemic to individual lakes. Although most clades encoded the ability to oxidize hydrogen, many lacked genes for the oxidation of specific sulfur and iron substrates. Surprisingly, one globally distributed Scandinavian clade encoded the ability to oxidize hydrogen, sulfur, and iron, suggesting that metabolic versatility facilitated such widespread colonization. Overall, these findings provide new insight into the biogeography of the Chlorobia and the metabolic traits that facilitate niche specialization within lake ecosystems.IMPORTANCE The reconstruction of genomes from metagenomes has helped explore the ecology and evolution of environmental microbiota. We applied this approach to 274 metagenomes collected from diverse freshwater habitats that spanned oxic and anoxic zones, sampling seasons, and latitudes. We demonstrate widespread and abundant distributions of planktonic Chlorobia-associated bacteria in hypolimnetic waters of stratified freshwater ecosystems and show they vary in their capacities to use different electron donors. Having photoautotrophic potential, these Chlorobia members could serve as carbon sources that support metalimnetic and hypolimnetic food webs.
Collapse
Affiliation(s)
- Sarahi L Garcia
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
- Department of Ecology, Environment, and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Uppsala, Sweden
| | - Moritz Buck
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Uppsala, Sweden
| | - Jackson M Tsuji
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Josh D Neufeld
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Katherine D McMahon
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Stefan Bertilsson
- Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Uppsala, Sweden
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sari Peura
- Department of Forest Mycology and Plant Pathology, Science for Life Laboratory, Swedish University of Agricultural Sciences, Uppsala, Uppsala, Sweden
| |
Collapse
|
7
|
A Review of Bacteriochlorophyllides: Chemical Structures and Applications. Molecules 2021; 26:molecules26051293. [PMID: 33673610 PMCID: PMC7957641 DOI: 10.3390/molecules26051293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 01/08/2023] Open
Abstract
Generally, bacteriochlorophyllides were responsible for the photosynthesis in bacteria. Seven types of bacteriochlorophyllides have been disclosed. Bacteriochlorophyllides a/b/g could be synthesized from divinyl chlorophyllide a. The other bacteriochlorophyllides c/d/e/f could be synthesized from chlorophyllide a. The chemical structure and synthetic route of bacteriochlorophyllides were summarized in this review. Furthermore, the potential applications of bacteriochlorophyllides in photosensitizers, immunosensors, influence on bacteriochlorophyll aggregation, dye-sensitized solar cell, heme synthesis and for light energy harvesting simulation were discussed.
Collapse
|
8
|
Günther LM, Knoester J, Köhler J. Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes. Molecules 2021; 26:899. [PMID: 33572047 PMCID: PMC7914687 DOI: 10.3390/molecules26040899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Linear dichroism (LD) spectroscopy is a widely used technique for studying the mutual orientation of the transition-dipole moments of the electronically excited states of molecular aggregates. Often the method is applied to aggregates where detailed information about the geometrical arrangement of the monomers is lacking. However, for complex molecular assemblies where the monomers are assembled hierarchically in tiers of supramolecular structural elements, the method cannot extract well-founded information about the monomer arrangement. Here we discuss this difficulty on the example of chlorosomes, which are the light-harvesting aggregates of photosynthetic green-(non) sulfur bacteria. Chlorosomes consist of hundreds of thousands of bacteriochlorophyll molecules that self-assemble into secondary structural elements of curved lamellar or cylindrical morphology. We exploit data from polarization-resolved fluorescence-excitation spectroscopy performed on single chlorosomes for reconstructing the corresponding LD spectra. This reveals that LD spectroscopy is not suited for benchmarking structural models in particular for complex hierarchically organized molecular supramolecular assemblies.
Collapse
Affiliation(s)
- Lisa M. Günther
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany;
| | - Jasper Knoester
- University of Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany;
- Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
9
|
Abstract
Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.
Collapse
Affiliation(s)
- Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Martin J Warren
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| |
Collapse
|
10
|
Hirose M, Teramura M, Harada J, Tamiaki H. BciC-Catalyzed C13 2 -Demethoxycarbonylation of Metal Pheophorbide a Alkyl Esters. Chembiochem 2020; 21:1473-1480. [PMID: 31900999 DOI: 10.1002/cbic.201900745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 11/10/2022]
Abstract
Bacteriochlorophyll c molecules self-aggregate to form large oligomers in the core part of chlorosomes, which are the main light-harvesting antenna systems of green photosynthetic bacteria. In the biosynthetic pathway of bacteriochlorophyll c, a BciC enzyme catalyzes the removal of the C132 -methoxycarbonyl group of chlorophyllide a, which possesses a free propionate residue at the C17-position and a magnesium ion as the central metal. The in vitro C132 -demethoxycarbonylations of chlorophyll a derivatives with various alkyl propionate residues and central metals were examined by using the BciC enzyme derived from one green sulfur bacteria species, Chlorobaculum tepidum. The BciC enzymatic reactions of zinc pheophorbide a alkyl esters were gradually suppressed with an increase of the alkyl chain length in the C17-propionate residue (from methyl to pentyl esters) and finally the hexyl ester became inactive for the BciC reaction. Although not only the zinc but also nickel and copper complexes were demethoxycarbonylated by the BciC enzyme, the reactions were largely dependent on the coordination ability of the central metals: Zn>Ni>Cu. The above substrate specificity indicates that the BciC enzyme would not bind directly to the carboxy group of chlorophyllide a, but would bind to its central magnesium to form the stereospecific complex of BciC with chlorophyllide a, giving pyrochlorophyllide a, which lacks the (132 R)-methoxycarbonyl group.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Misato Teramura
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduated School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
11
|
Yang SH, Tandon K, Lu CY, Wada N, Shih CJ, Hsiao SSY, Jane WN, Lee TC, Yang CM, Liu CT, Denis V, Wu YT, Wang LT, Huang L, Lee DC, Wu YW, Yamashiro H, Tang SL. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. MICROBIOME 2019; 7:3. [PMID: 30609942 PMCID: PMC6320609 DOI: 10.1186/s40168-018-0616-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/21/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Endolithic microbes in coral skeletons are known to be a nutrient source for the coral host. In addition to aerobic endolithic algae and Cyanobacteria, which are usually described in the various corals and form a green layer beneath coral tissues, the anaerobic photoautotrophic green sulfur bacteria (GSB) Prosthecochloris is dominant in the skeleton of Isopora palifera. However, due to inherent challenges in studying anaerobic microbes in coral skeleton, the reason for its niche preference and function are largely unknown. RESULTS This study characterized a diverse and dynamic community of endolithic microbes shaped by the availability of light and oxygen. In addition, anaerobic bacteria isolated from the coral skeleton were cultured for the first time to experimentally clarify the role of these GSB. This characterization includes GSB's abundance, genetic and genomic profiles, organelle structure, and specific metabolic functions and activity. Our results explain the advantages endolithic GSB receive from living in coral skeletons, the potential metabolic role of a clade of coral-associated Prosthecochloris (CAP) in the skeleton, and the nitrogen fixation ability of CAP. CONCLUSION We suggest that the endolithic microbial community in coral skeletons is diverse and dynamic and that light and oxygen are two crucial factors for shaping it. This study is the first to demonstrate the ability of nitrogen uptake by specific coral-associated endolithic bacteria and shed light on the role of endolithic bacteria in coral skeletons.
Collapse
Affiliation(s)
- Shan-Hua Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, 905-0227 Japan
- Department of Life Science, Tunghai University, Taichung, 40704 Taiwan
- Center for Ecology and Environment, Tunghai University, Taichung, 40704 Taiwan
| | - Kshitij Tandon
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529 Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013 Taiwan
| | - Chih-Ying Lu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Naohisa Wada
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Chao-Jen Shih
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062 Taiwan
| | - Silver Sung-Yun Hsiao
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529 Taiwan
- Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, 11529 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529 Taiwan
| | - Tzan-Chain Lee
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Chi-Ming Yang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, 10672 Taiwan
| | - Vianney Denis
- Institute of Oceanography, National Taiwan University, Taipei, 10617 Taiwan
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pintung, 91201 Taiwan
| | - Li-Ting Wang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062 Taiwan
| | - Lina Huang
- Bioresource Collection and Research Center, Food Industry Research and Development Institute, Hsinchu, 30062 Taiwan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031 Taiwan
| | - Hideyuki Yamashiro
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, 905-0227 Japan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, 11529 Taiwan
| |
Collapse
|
12
|
Günther LM, Löhner A, Reiher C, Kunsel T, Jansen TLC, Tank M, Bryant DA, Knoester J, Köhler J. Structural Variations in Chlorosomes from Wild-Type and a bchQR Mutant of Chlorobaculum tepidum Revealed by Single-Molecule Spectroscopy. J Phys Chem B 2018; 122:6712-6723. [PMID: 29863357 DOI: 10.1021/acs.jpcb.8b02875] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Green sulfur bacteria can grow photosynthetically by absorbing only a few photons per bacteriochlorophyll molecule per day. They contain chlorosomes, perhaps the most efficient light-harvesting antenna system found in photosynthetic organisms. Chlorosomes contain supramolecular structures comprising hundreds of thousands of bacteriochlorophyll molecules, which are properly positioned with respect to one another solely by self-assembly and not by using a protein scaffold as a template for directing the mutual arrangement of the monomers. These two features-high efficiency and self-assembly-have attracted considerable attention for developing light-harvesting systems for artificial photosynthesis. However, reflecting the heterogeneity of the natural system, detailed structural information at atomic resolution of the molecular aggregates is not yet available. Here, we compare the results for chlorosomes from the wild type and two mutants of Chlorobaculum tepidum obtained by polarization-resolved, single-particle fluorescence-excitation spectroscopy and theoretical modeling with results previously obtained from nuclear-magnetic resonance spectroscopy and cryo-electron microscopy. Only the combination of information obtained from all of these techniques allows for an unambiguous description of the molecular packing of bacteriochlorophylls within chlorosomes. In contrast to some suggestions in the literature, we find that, for the chlorosomes from the wild type as well as for those from mutants, the dominant secondary structural element features tubular symmetry following a very similar construction principle. Moreover, the results suggest that the various options for methylation of the bacteriochlorophyll molecules, which are a primary source of the structural (and spectral) heterogeneity of wild-type chlorosome samples, are exploited by nature to achieve improved spectral coverage at the level of individual chlorosomes.
Collapse
Affiliation(s)
| | | | | | - Tenzin Kunsel
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Thomas L C Jansen
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | - Marcus Tank
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , State College , Pennsylvania 16802 , United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology , The Pennsylvania State University , University Park , State College , Pennsylvania 16802 , United States.,Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Jasper Knoester
- Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 4 , 9747 AG Groningen , The Netherlands
| | | |
Collapse
|
13
|
Harada J, Shibata Y, Teramura M, Mizoguchi T, Kinoshita Y, Yamamoto K, Tamiaki H. In Vivo Energy Transfer from Bacteriochlorophyll c,d,e, orfto Bacteriochlorophyll ain Wild-Type and Mutant Cells of the Green Sulfur BacteriumChlorobaculum limnaeum. CHEMPHOTOCHEM 2017. [DOI: 10.1002/cptc.201700164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science; Tohoku University; Sendai 980-8578 Japan
| | - Misato Teramura
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Yusuke Kinoshita
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry; Kurume University School of Medicine; Kurume 830-0011 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences; Ritsumeikan University; Kusatsu 525-8577 Japan
| |
Collapse
|
14
|
Orf GS, Collins AM, Niedzwiedzki DM, Tank M, Thiel V, Kell A, Bryant DA, Montaño GA, Blankenship RE. Polymer-Chlorosome Nanocomposites Consisting of Non-Native Combinations of Self-Assembling Bacteriochlorophylls. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6427-6438. [PMID: 28585832 DOI: 10.1021/acs.langmuir.7b01761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chlorosomes are one of the characteristic light-harvesting antennas from green sulfur bacteria. These complexes represent a unique paradigm: self-assembly of bacteriochlorophyll pigments within a lipid monolayer without the influence of protein. Because of their large size and reduced complexity, they have been targeted as models for the development of bioinspired light-harvesting arrays. We report the production of biohybrid light-harvesting nanocomposites mimicking chlorosomes, composed of amphiphilic diblock copolymer membrane bodies that incorporate thousands of natural self-assembling bacteriochlorophyll molecules derived from green sulfur bacteria. The driving force behind the assembly of these polymer-chlorosome nanocomposites is the transfer of the mixed raw materials from the organic to the aqueous phase. We incorporated up to five different self-assembling pigment types into single nanocomposites that mimic chlorosome morphology. We establish that the copolymer-BChl self-assembly process works smoothly even when non-native combinations of BChl homologues are included. Spectroscopic characterization revealed that the different types of self-assembling pigments participate in ultrafast energy transfer, expanding beyond single chromophore constraints of the natural chlorosome system. This study further demonstrates the utility of flexible short-chain, diblock copolymers for building scalable, tunable light-harvesting arrays for technological use and allows for an in vitro analysis of the flexibility of natural self-assembling chromophores in unique and controlled combinations.
Collapse
Affiliation(s)
| | - Aaron M Collins
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | | - Marcus Tank
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Biological Sciences, Tokyo Metropolitan University , Tokyo, Japan 192-0397
| | - Adam Kell
- Department of Chemistry, Kansas State University , Manhattan, Kansas 66506, United States
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
- Department of Chemistry and Biochemistry, Montana State University , Bozeman, Montana 59717, United States
| | - Gabriel A Montaño
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
15
|
Thweatt JL, Ferlez BH, Golbeck JH, Bryant DA. BciD Is a Radical S-Adenosyl-l-methionine (SAM) Enzyme That Completes Bacteriochlorophyllide e Biosynthesis by Oxidizing a Methyl Group into a Formyl Group at C-7. J Biol Chem 2016; 292:1361-1373. [PMID: 27994052 DOI: 10.1074/jbc.m116.767665] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/12/2016] [Indexed: 01/05/2023] Open
Abstract
Green bacteria are chlorophotorophs that synthesize bacteriochlorophyll (BChl) c, d, or e, which assemble into supramolecular, nanotubular structures in large light-harvesting structures called chlorosomes. The biosynthetic pathways of these chlorophylls are known except for one reaction. Null mutants of bciD, which encodes a putative radical S-adenosyl-l-methionine (SAM) protein, are unable to synthesize BChl e but accumulate BChl c; however, it is unknown whether BciD is sufficient to convert BChl c (or its precursor, bacteriochlorophyllide (BChlide) c) into BChl e (or BChlide e). To determine the function of BciD, we expressed the bciD gene of Chlorobaculum limnaeum strain DSMZ 1677T in Escherichia coli and purified the enzyme under anoxic conditions. Electron paramagnetic resonance spectroscopy of BciD indicated that it contains a single [4Fe-4S] cluster. In assays containing SAM, BChlide c or d, and sodium dithionite, BciD catalyzed the conversion of SAM into 5'-deoxyadenosine and BChlide c or d into BChlide e or f, respectively. Our analyses also identified intermediates that are proposed to be 71-OH-BChlide c and d Thus, BciD is a radical SAM enzyme that converts the methyl group of BChlide c or d into the formyl group of BChlide e or f This probably occurs by a mechanism involving consecutive hydroxylation reactions of the C-7 methyl group to form a geminal diol intermediate, which spontaneously dehydrates to produce the final products, BChlide e or BChlide f The demonstration that BciD is sufficient to catalyze the conversion of BChlide c into BChlide e completes the biosynthetic pathways for all "Chlorobium chlorophylls."
Collapse
Affiliation(s)
| | - Bryan H Ferlez
- From the Departments of Biochemistry and Molecular Biology and
| | - John H Golbeck
- From the Departments of Biochemistry and Molecular Biology and.,Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 and
| | - Donald A Bryant
- From the Departments of Biochemistry and Molecular Biology and .,the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
16
|
Teramura M, Harada J, Tamiaki H. In vitro stereospecific hydration activities of the 3-vinyl group of chlorophyll derivatives by BchF and BchV enzymes involved in bacteriochlorophyll c biosynthesis of green sulfur bacteria. PHOTOSYNTHESIS RESEARCH 2016; 130:33-45. [PMID: 26816140 DOI: 10.1007/s11120-016-0220-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
The photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum produces bacteriochlorophyll (BChl) c pigments bearing a chiral 1-hydroxyethyl group at the 3-position, which self-aggregate to construct main light-harvesting antenna complexes, chlorosomes. The secondary alcoholic hydroxy group is requisite for chlorosomal aggregation and biosynthesized by hydrating the 3-vinyl group of their precursors. Using recombinant proteins of Cba. tepidum BchF and BchV, we examined in vitro enzymatic hydration of some 3-vinyl-chlorophyll derivatives. Both the enzymes catalyzed stereoselective hydration of zinc 3-vinyl-8-ethyl-12-methyl-bacteriopheophorbide c or d to the zinc 31 R-bacteriopheophorbide c or d homolog, respectively, with a slight amount of the 31 S-epimric species. A similar R-stereoselectivity was observed in the BchF-hydration of zinc 3-vinyl-8-ethyl- and propyl-12-ethyl-bacteriopheophorbides c, while their BchV-hydration gave a relatively larger amount of the 31 S-epimers. The in vitro stereoselective hydration confirmed the in vivo production of the S-epimeric species by BchV. The enzymatic hydration for the above 8-propylated substrate proceeded more slowly than that for the 8-ethylated, and the 8-isobutylated substrate was no longer hydrated. Based on these results, biosynthetic pathways of BChl c homologs and epimers are proposed.
Collapse
Affiliation(s)
- Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
17
|
Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H. Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 2015; 98:1184-98. [PMID: 26331578 DOI: 10.1111/mmi.13208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Photosynthetic green sulfur bacteria inhabit anaerobic environments with very low-light conditions. To adapt to such environments, these bacteria have evolved efficient light-harvesting antenna complexes called as chlorosomes, which comprise self-aggregated bacteriochlorophyll c in the model green sulfur, bacterium Chlorobaculum tepidum. The pigment possess a hydroxy group at the C3(1) position that produces a chiral center with R- or S-stereochemistry and the C3(1) -hydroxy group serves as a connecting moiety for the self-aggregation. Chlorobaculum tepidum carries the two possible homologous genes for C3-vinyl hydratase, bchF and bchV. In the present study, we constructed deletion mutants of each of these genes. Pigment analyses of the bchF-inactivated mutant, which still has BchV as a sole hydratase, showed higher ratios of S-epimeric bacteriochlorophyll c than the wild-type strain. The heightened prevalence of S-stereoisomers in the mutant was more remarkable at lower light intensities and caused a red shift of the chlorosomal Qy absorption band leading to advantages for light-energy transfer. In contrast, the bchV-mutant possessing only BchF showed a significant decrease of the S-epimers and accumulations of C3-vinyl BChl c species. As trans- criptional level of bchV was upregulated at lower light intensity, the Chlorobaculum tepidum adapted to low-light environments by control of the bchV transcription.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Misato Teramura
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
18
|
Jendrny M, Aartsma TJ, Köhler J. Insights into the excitonic states of individual chlorosomes from Chlorobaculum tepidum. Biophys J 2014; 106:1921-7. [PMID: 24806924 DOI: 10.1016/j.bpj.2014.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 11/16/2022] Open
Abstract
Green-sulfur bacteria have evolved a unique light-harvesting apparatus, the chlorosome, by which it is perfectly adapted to thrive photosynthetically under extremely low light conditions. We have used single-particle, optical spectroscopy to study the structure-function relationship of chlorosomes each of which incorporates hundreds of thousands of self-assembled bacteriochlorophyll (BChl) molecules. The electronically excited states of these molecular assemblies are described as Frenkel excitons whose photophysical properties depend crucially on the mutual arrangement of the pigments. The signature of these Frenkel excitons and its relation to the supramolecular organization of the chlorosome becomes accessible by optical spectroscopy. Because subtle spectral features get obscured by ensemble averaging, we have studied individual chlorosomes from wild-type Chlorobaculum tepidum by polarization-resolved fluorescence-excitation spectroscopy. This approach minimizes the inherent sample heterogeneity and allows us to reveal properties of the exciton states without ensemble averaging. The results are compared with predictions from computer simulations of various models of the supramolecular organization of the BChl monomers. We find that the photophysical properties of individual chlorosomes from wild-type Chlorobaculum tepidum are consistent with a (multiwall) helical arrangement of syn-anti stacked BChl molecules in cylinders and/or spirals of different size.
Collapse
Affiliation(s)
- Marc Jendrny
- Experimental Physics IV and Bayreuth Institute of Macromolecular Research (BIMF), Universität Bayreuth, Universitätsstr. 30, Bayreuth, Germany
| | - Thijs J Aartsma
- Leiden Institute of Physics, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute of Macromolecular Research (BIMF), Universität Bayreuth, Universitätsstr. 30, Bayreuth, Germany.
| |
Collapse
|
19
|
|
20
|
Luo SC, Khin Y, Huang SJ, Yang Y, Hou TY, Cheng YC, Chen HM, Chin YY, Chen CT, Lin HJ, Tang JKH, Chan JCC. Probing the Spatial Organization of Bacteriochlorophyll c by Solid-State Nuclear Magnetic Resonance. Biochemistry 2014; 53:5515-25. [DOI: 10.1021/bi500755r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yadana Khin
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | - Yanshen Yang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | | | | | - Yi-Ying Chin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Joseph Kuo-Hsiang Tang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | |
Collapse
|
21
|
Harada J, Mizoguchi T, Nomura K, Tamiaki H. Isolation and structural determination of C8-vinyl-bacteriochlorophyll d from the bciA and bchU double mutant of the green sulfur bacterium Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2014; 121:13-23. [PMID: 24789521 DOI: 10.1007/s11120-014-0007-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
The mutant lacking enzymes BciA and BchU, that catalyzed reduction of the C8-vinyl group and methylation at the C20 position of bacteriochlorophyll (BChl) c, respectively, in the green sulfur bacterium Chlorobaculum tepidum, were constructed. This mutant accumulated C8-vinyl-BChl d derivatives, and a molecular structure of the major pigment was fully characterized by its NMR, mass, and circular dichroism spectra, as well as by chemical modification: (3(1) R)-8-vinyl-12-ethyl-(R[V,E])BChl d was confirmed as a new BChl d species in the cells. In vitro chlorosome-like self-aggregates of this pigment were prepared in an aqueous micellar solution, and formed more rapidly than those of (3(1) R)-8,12-diethyl-(R[E,E])BChl d isolated from the green sulfur bacterium Chlorobaculum parvum NCIB8327d synthesizing BChl d homologs. Their red-shifted Q y absorption bands were almost the same at 761 nm, and the value was larger than those of in vitro self-aggregates of R[E,E]BChl c (737 nm) and R[V,E]BChl c (726 nm), while the monomeric states of the former gave Q y bands at shorter wavelengths than those of the latter. Red shifts by self-aggregation of the two BChl d species were estimated to be 110 nm and much larger than those by BChls c (75 nm for [E,E] and 64 nm for [V,E]).
Collapse
Affiliation(s)
- Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan,
| | | | | | | |
Collapse
|
22
|
Orf GS, Blankenship RE. Chlorosome antenna complexes from green photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2013; 116:315-31. [PMID: 23761131 DOI: 10.1007/s11120-013-9869-3] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 05/18/2023]
Abstract
Chlorosomes are the distinguishing light-harvesting antenna complexes that are found in green photosynthetic bacteria. They contain bacteriochlorophyll (BChl) c, d, e in natural organisms, and recently through mutation, BChl f, as their principal light-harvesting pigments. In chlorosomes, these pigments self-assemble into large supramolecular structures that are enclosed inside a lipid monolayer to form an ellipsoid. The pigment assembly is dictated mostly by pigment-pigment interactions as opposed to protein-pigment interactions. On the bottom face of the chlorosome, the CsmA protein aggregates into a paracrystalline baseplate with BChl a, and serves as the interface to the next energy acceptor in the system. The exceptional light-harvesting ability at very low light conditions of chlorosomes has made them an attractive subject of study for both basic and applied science. This review, incorporating recent advancements, considers several important aspects of chlorosomes: pigment biosynthesis, organization of pigments and proteins, spectroscopic properties, and applications to bio-hybrid and bio-inspired devices.
Collapse
Affiliation(s)
- Gregory S Orf
- Departments of Chemistry and Biology, Washington University in St. Louis, Campus Box 1137, One Brookings Drive, St. Louis, MO, 63130, USA
| | | |
Collapse
|
23
|
Alia A, Buda F, de Groot HJ, Matysik J. Solid-State NMR of Nanomachines Involved in Photosynthetic Energy Conversion. Annu Rev Biophys 2013; 42:675-99. [DOI: 10.1146/annurev-biophys-083012-130415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magic-angle spinning NMR, often in combination with photo-CIDNP, is applied to determine how photosynthetic antennae and reaction centers are activated in the ground state to perform their biological function upon excitation by light. Molecular modeling resolves molecular mechanisms by way of computational integration of NMR data with other structure-function analyses. By taking evolutionary historical contingency into account, a better biophysical understanding is achieved. Chlorophyll cofactors and proteins go through self-assembly trajectories that are engineered during evolution and lead to highly homogeneous protein complexes optimized for exciton or charge transfer. Histidine-cofactor interactions allow biological nanomachines to lower energy barriers for light harvesting and charge separation in photosynthetic energy conversion. In contrast, in primordial chlorophyll antenna aggregates, excessive heterogeneity is paired with much less specific characteristics, and both exciton and charge-transfer character are encoded in the ground state.
Collapse
Affiliation(s)
- A. Alia
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Francesco Buda
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Huub J.M. de Groot
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| | - Jörg Matysik
- Solid State NMR, Leiden Institute of Chemistry, Leiden University, Leiden 2300 RB, The Netherlands;, , ,
| |
Collapse
|
24
|
Orf GS, Tank M, Vogl K, Niedzwiedzki DM, Bryant DA, Blankenship RE. Spectroscopic insights into the decreased efficiency of chlorosomes containing bacteriochlorophyll f. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:493-501. [DOI: 10.1016/j.bbabio.2013.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/24/2022]
|
25
|
Li H, Frigaard NU, Bryant DA. [2Fe-2S] Proteins in Chlorosomes: CsmI and CsmJ Participate in Light-Dependent Control of Energy Transfer in Chlorosomes of Chlorobaculum tepidum. Biochemistry 2013; 52:1321-30. [DOI: 10.1021/bi301454g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Li
- Department of Biochemistry and
Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Niels-Ulrik Frigaard
- Department of Biochemistry and
Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Donald A. Bryant
- Department of Biochemistry and
Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry and
Biochemistry, Montana State University,
Bozeman, Montana 59717, United States
| |
Collapse
|
26
|
A seventh bacterial chlorophyll driving a large light-harvesting antenna. Sci Rep 2012; 2:671. [PMID: 22993696 PMCID: PMC3445912 DOI: 10.1038/srep00671] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/03/2012] [Indexed: 11/21/2022] Open
Abstract
The discovery of new chlorophyllous pigments would provide greater understanding of the mechanisms and evolution of photosynthesis. Bacteriochlorophyll f has never been observed in nature, although this name was proposed ~40 years ago based on structurally related compounds. We constructed a bacteriochlorophyll f–accumulating mutant of the green sulfur bacterium Chlorobaculum limnaeum, which originally produced bacteriochlorophyll e, by knocking out the bchU gene encoding C-20 methyltransferase based on natural transformation. This novel pigment self-aggregates in an in vivo light-harvesting antenna, the chlorosome, and exhibits a Qy peak of 705 nm, more blue-shifted than any other chlorosome reported so far; the peak overlaps the maximum (~700 nm) of the solar photon flux spectrum. Bacteriochlorophyll f chlorosomes can transfer light energy from core aggregated pigments to another bacteriochlorophyll in the chlorosomal envelope across an energy gap of ~100 nm, and is thus a promising material for development of new bioenergy applications.
Collapse
|
27
|
Vogl K, Tank M, Orf GS, Blankenship RE, Bryant DA. Bacteriochlorophyll f: properties of chlorosomes containing the "forbidden chlorophyll". Front Microbiol 2012; 3:298. [PMID: 22908012 PMCID: PMC3415949 DOI: 10.3389/fmicb.2012.00298] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 07/25/2012] [Indexed: 11/13/2022] Open
Abstract
The chlorosomes of green sulfur bacteria (GSB) are mainly assembled from one of three types of bacteriochlorophylls (BChls), BChls c, d, and e. By analogy to the relationship between BChl c and BChl d (20-desmethyl-BChl c), a fourth type of BChl, BChl f (20-desmethyl-BChl e), should exist but has not yet been observed in nature. The bchU gene (bacteriochlorophyllide C-20 methyltransferase) of the brown-colored green sulfur bacterium Chlorobaculum limnaeum was inactivated by conjugative transfer from Eshcerichia coli and homologous recombination of a suicide plasmid carrying a portion of the bchU. The resulting bchU mutant was greenish brown in color and synthesized BChl f(F). The chlorosomes of the bchU mutant had similar size and polypeptide composition as those of the wild type (WT), but the Q(y) absorption band of the BChl f aggregates was blue-shifted 16 nm (705 nm vs. 721 nm for the WT). Fluorescence spectroscopy showed that energy transfer to the baseplate was much less efficient in chlorosomes containing BChl f than in WT chlorosomes containing BChl e. When cells were grown at high irradiance with tungsten or fluorescent light, the WT and bchU mutant had identical growth rates. However, the WT grew about 40% faster than the bchU mutant at low irradiance (10 μmol photons m(-2) s(-1)). Less efficient energy transfer from BChl f aggregates to BChl a in the baseplate, the much slower growth of the strain producing BChl f relative to the WT, and competition from other phototrophs, may explain why BChl f is not observed naturally.
Collapse
Affiliation(s)
- Kajetan Vogl
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park PA, USA
| | | | | | | | | |
Collapse
|
28
|
Liu Z, Klatt CG, Ludwig M, Rusch DB, Jensen SI, Kühl M, Ward DM, Bryant DA. 'Candidatus Thermochlorobacter aerophilum:' an aerobic chlorophotoheterotrophic member of the phylum Chlorobi defined by metagenomics and metatranscriptomics. ISME JOURNAL 2012; 6:1869-82. [PMID: 22456447 DOI: 10.1038/ismej.2012.24] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An uncultured member of the phylum Chlorobi, provisionally named 'Candidatus Thermochlorobacter aerophilum', occurs in the microbial mats of alkaline siliceous hot springs at the Yellowstone National Park. 'Ca. T. aerophilum' was investigated through metagenomic and metatranscriptomic approaches. 'Ca. T. aerophilum' is a member of a novel, family-level lineage of Chlorobi, a chlorophototroph that synthesizes type-1 reaction centers and chlorosomes similar to cultivated relatives among the green sulfur bacteria, but is otherwise very different physiologically. 'Ca. T. aerophilum' is proposed to be an aerobic photoheterotroph that cannot oxidize sulfur compounds, cannot fix N(2), and does not fix CO(2) autotrophically. Metagenomic analyses suggest that 'Ca. T. aerophilum' depends on other mat organisms for fixed carbon and nitrogen, several amino acids, and other important nutrients. The failure to detect bchU suggests that 'Ca. T. aerophilum' synthesizes bacteriochlorophyll (BChl) d, and thus it occupies a different ecological niche than other chlorosome-containing chlorophototrophs in the mat. Transcription profiling throughout a diel cycle revealed distinctive gene expression patterns. Although 'Ca. T. aerophilum' probably photoassimilates organic carbon sources and synthesizes most of its cell materials during the day, it mainly transcribes genes for BChl synthesis during late afternoon and early morning, and it synthesizes and assembles its photosynthetic apparatus during the night.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
A heterogeneous tag-attachment to the homodimeric type 1 photosynthetic reaction center core protein in the green sulfur bacterium Chlorobaculum tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:803-12. [DOI: 10.1016/j.bbabio.2011.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 01/26/2023]
|
31
|
Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 2011; 12:334. [PMID: 21714912 PMCID: PMC3150298 DOI: 10.1186/1471-2164-12-334] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022] Open
Abstract
Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. Conclusions The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology and Department of Chemistry, Campus Box 1137, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Klatt CG, Wood JM, Rusch DB, Bateson MM, Hamamura N, Heidelberg JF, Grossman AR, Bhaya D, Cohan FM, Kühl M, Bryant DA, Ward DM. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME JOURNAL 2011; 5:1262-78. [PMID: 21697961 DOI: 10.1038/ismej.2011.73] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phototrophic microbial mat communities from 60°C and 65°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic populations and permitted the discovery and characterization of undescribed but predominant community members and their physiological potential. Linkage of phylogenetic marker genes and functional genes showed novel chlorophototrophic bacteria belonging to uncharacterized lineages within the order Chlorobiales and within the Kingdom Chloroflexi. The latter is the first chlorophototrophic member of Kingdom Chloroflexi that lies outside the monophyletic group of chlorophototrophs of the Order Chloroflexales. Direct comparison of unassembled metagenomic sequences to genomes of representative isolates showed extensive genetic diversity, genomic rearrangements and novel physiological potential in native populations as compared with genomic references. Synechococcus spp. metagenomic sequences showed a high degree of synteny with the reference genomes of Synechococcus spp. strains A and B', but synteny declined with decreasing sequence relatedness to these references. There was evidence of horizontal gene transfer among native populations, but the frequency of these events was inversely proportional to phylogenetic relatedness.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Liu Z, Bryant DA. Identification of a gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J Biol Chem 2011; 286:22393-402. [PMID: 21550979 DOI: 10.1074/jbc.m111.249433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriochlorophylls (BChls) c, d, and e are the major chlorophylls in chlorosomes, which are the largest and one of the most efficient antennae produced by chlorophototrophic organisms. In the biosynthesis of these three BChls, a C-13(2)-methylcarboxyl group found in all other chlorophylls (Chls) must be removed. This reaction is postulated to be the first committed step in the synthesis of these BChls. Analyses of gene neighborhoods of (B)Chl biosynthesis genes and distribution patterns in organisms producing chlorosomes helped to identify a gene (bciC) that appeared to be a good candidate to produce the enzyme involved in this biochemical reaction. To confirm that this was the case, a deletion mutant of an open reading frame orthologous to bciC, CT1077, was constructed in Chlorobaculum tepidum, a genetically tractible green sulfur bacterium. The CT1077 deletion mutant was unable to synthesize BChl c but still synthesized BChl a and Chl a. The deletion mutant accumulated large amounts of various (bacterio)pheophorbides, all of which still had C-13(2)-methylcarboxyl groups. A C. tepidum strain in which CT1077 was replaced by an orthologous gene, Cabther_B0081 [corrected] from "Candidatus Chloracidobacterium thermophilum" was constructed. Although the product of Cabther_B0081 [corrected] was only 28% identical to the product of CT1077, this strain synthesized BChl c, BChl a, and Chl a in amounts similar to wild-type C. tepidum cells. To indicate their roles in the first committed step of BChl c, d, and e biosynthesis, open reading frames CT1077 and Cabther_B0081 [corrected] have been redesignated bciC. The potential mechanism by which BciC removes the C-13(2)-methylcarboxyl moiety of chlorophyllide a is discussed.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
34
|
Tamiaki H, Komada J, Kunieda M, Fukai K, Yoshitomi T, Harada J, Mizoguchi T. In vitro synthesis and characterization of bacteriochlorophyll-f and its absence in bacteriochlorophyll-e producing organisms. PHOTOSYNTHESIS RESEARCH 2011; 107:133-138. [PMID: 21161597 DOI: 10.1007/s11120-010-9603-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/01/2010] [Indexed: 05/30/2023]
Abstract
Bacteriochlorophyll(BChl)-f which has not yet been found in natural phototrophs was prepared by chemically modifying chlorophyll-b. The retention time of reverse-phase high-performance liquid chromatography of the synthetic monomeric BChl-f as well as its visible absorption and fluorescence emission spectra in a solution were identified and compared with other naturally occurring chlorophyll pigments obtained from the main light-harvesting antenna systems of green sulfur bacteria, BChls-c/d/e. Based on the above data, BChl-f was below the level of detection in three strains of green photosynthetic bacteria producing BChl-e.
Collapse
Affiliation(s)
- Hitoshi Tamiaki
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ng C, DeMaere MZ, Williams TJ, Lauro FM, Raftery M, Gibson JAE, Andrews-Pfannkoch C, Lewis M, Hoffman JM, Thomas T, Cavicchioli R. Metaproteogenomic analysis of a dominant green sulfur bacterium from Ace Lake, Antarctica. ISME JOURNAL 2010; 4:1002-19. [PMID: 20237513 DOI: 10.1038/ismej.2010.28] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Green sulfur bacteria (GSB) (Chlorobiaceae) are primary producers that are important in global carbon and sulfur cycling in natural environments. An almost complete genome sequence for a single, dominant GSB species ('C-Ace') was assembled from shotgun sequence data of an environmental sample taken from the O(2)-H(2)S interface of the water column of Ace Lake, Antarctica. Approximately 34 Mb of DNA sequence data were assembled into nine scaffolds totaling 1.79 Mb, representing approximately 19-fold coverage for the C-Ace composite genome. A high level ( approximately 31%) of metaproteomic coverage was achieved using matched biomass. The metaproteogenomic approach provided unique insight into the protein complement required for dominating the microbial community under cold, nutrient-limited, oxygen-limited and extremely varied annual light conditions. C-Ace shows physiological traits that promote its ability to compete very effectively with other GSB and gain dominance (for example, specific bacteriochlorophylls, mechanisms of cold adaptation) as well as a syntrophic relationship with sulfate-reducing bacteria that provides a mechanism for the exchange of sulfur compounds. As a result we are able to propose an explanation of the active biological processes promoted by cold-adapted GSB and the adaptive strategies they use to thrive under the severe physiochemical conditions prevailing in polar environments.
Collapse
Affiliation(s)
- Charmaine Ng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Marschall E, Jogler M, Hessge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol 2010; 12:1348-62. [PMID: 20236170 DOI: 10.1111/j.1462-2920.2010.02178.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Black Sea chemocline represents the largest extant habitat of anoxygenic phototrophic bacteria and harbours a monospecific population of Chlorobium phylotype BS-1. High-sensitivity measurements of underwater irradiance and sulfide revealed that the optical properties of the overlying water column were similar across the Black Sea basin, whereas the vertical profiles of sulfide varied strongly between sampling sites and caused a dome-shaped three-dimensional distribution of the green sulfur bacteria. In the centres of the western and eastern basins the population of BS-1 reached upward to depths of 80 and 95 m, respectively, but were detected only at 145 m depth close to the shelf. Using highly concentrated chemocline samples from the centres of the western and eastern basins, the cells were found to be capable of anoxygenic photosynthesis under in situ light conditions and exhibited a photosynthesis-irradiance curve similar to low-light-adapted laboratory cultures of Chlorobium BS-1. Application of a highly specific RT-qPCR method which targets the internal transcribed spacer (ITS) region of the rrn operon of BS-1 demonstrated that only cells at the central station are physiologically active in contrast to those at the Black Sea periphery. Based on the detection of ITS-DNA sequences in the flocculent surface layer of deep-sea sediments across the Black Sea, the population of BS-1 has occupied the major part of the basin for the last decade. The continued presence of intact but non-growing BS-1 cells at the periphery of the Black Sea indicates that the cells can survive long-distant transport and exhibit unusually low maintenance energy requirements. According to laboratory measurements, Chlorobium BS-1 has a maintenance energy requirement of approximately 1.6-4.9.10(-15) kJ cell(-1) day(-1) which is the lowest value determined for any bacterial culture so far. Chlorobium BS-1 thus is particularly well adapted to survival under the extreme low-light conditions of the Black Sea, and can be used as a laboratory model to elucidate general cellular mechanisms of long-term starvation survival. Because of its adaptation to extreme low-light marine environments, Chlorobium BS-1 also represents a suitable indicator for palaeoceanography studies of deep photic zone anoxia in ancient oceans.
Collapse
Affiliation(s)
- Evelyn Marschall
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
37
|
Namsaraev ZB. Application of extinction coefficients for quantification of chlorophylls and bacteriochlorophylls. Microbiology (Reading) 2009. [DOI: 10.1134/s0026261709060174] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Gomez Maqueo Chew A, Frigaard NU, Bryant DA. Mutational analysis of three bchH paralogs in (bacterio-)chlorophyll biosynthesis in Chlorobaculum tepidum. PHOTOSYNTHESIS RESEARCH 2009; 101:21-34. [PMID: 19568953 DOI: 10.1007/s11120-009-9460-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Accepted: 06/10/2009] [Indexed: 05/28/2023]
Abstract
The first committed step in the biosynthesis of (bacterio-)chlorophyll is the insertion of Mg2+ into protoporphyrin IX by Mg-chelatase. In all known (B)Chl-synthesizing organisms, Mg-chelatase is encoded by three genes that are homologous to bchH, bchD, and bchI of Rhodobacter spp. The genomes of all sequenced strains of green sulfur bacteria (Chlorobi) encode multiple bchH paralogs, and in the genome of Chlorobaculum tepidum, there are three bchH paralogs, denoted CT1295 (bchT), CT1955 (bchS), and CT1957 (bchH). Cba. tepidum mutants lacking one or two of these paralogs were constructed and characterized. All of the mutants lacking only one of these BchH homologs, as well as bchS bchT and bchH bchT double mutants, which can only produce BchH or BchS, respectively, were viable. However, attempts to construct a bchH bchS double mutant, in which only BchT was functional, were consistently unsuccessful. This result suggested that BchT alone is unable to support the minimal (B)Chl synthesis requirements of cells required for viability. The pigment compositions of the various mutant strains varied significantly. The BChl c content of the bchS mutant was only approximately 10% of that of the wild type, and this mutant excreted large amounts of protoporphyrin IX into the growth medium. The observed differences in BChl c production of the mutant strains were consistent with the hypothesis that the three BchH homologs function in end product regulation and/or substrate channeling of intermediates in the BChl c biosynthetic pathway.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, S-235 Frear Building, PA 16802, University Park, USA
| | | | | |
Collapse
|
39
|
Isorenieratene biosynthesis in green sulfur bacteria requires the cooperative actions of two carotenoid cyclases. J Bacteriol 2008; 190:6384-91. [PMID: 18676669 DOI: 10.1128/jb.00758-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cyclization of lycopene to gamma- or beta-carotene is a major branch point in the biosynthesis of carotenoids in photosynthetic bacteria. Four families of carotenoid cyclases are known, and each family includes both mono- and dicyclases, which catalyze the formation of gamma- and beta-carotene, respectively. Green sulfur bacteria (GSB) synthesize aromatic carotenoids, of which the most commonly occurring types are the monocyclic chlorobactene and the dicyclic isorenieratene. Recently, the cruA gene, encoding a conserved hypothetical protein found in the genomes of all GSB and some cyanobacteria, was identified as a lycopene cyclase. Further genomic analyses have found that all available fully sequenced genomes of GSB encode an ortholog of cruA. Additionally, the genomes of all isorenieratene-producing species of GSB encode a cruA paralog, now named cruB. The cruA gene from the chlorobactene-producing GSB species Chlorobaculum tepidum and both cruA and cruB from the brown-colored, isorenieratene-producing GSB species Chlorobium phaeobacteroides strain DSM 266(T) were heterologously expressed in lycopene- and neurosporene-producing strains of Escherichia coli, and the cruB gene of Chlorobium clathratiforme strain DSM 5477(T) was also heterologously expressed in C. tepidum by inserting the gene at the bchU locus. The results show that CruA is probably a lycopene monocyclase in all GSB and that CruB is a gamma-carotene cyclase in isorenieratene-producing species. Consequently, the branch point for the synthesis of mono- and dicyclic carotenoids in GSB seems to be the modification of gamma-carotene, rather than the cyclization of lycopene as occurs in cyanobacteria.
Collapse
|
40
|
Masuda T, Fujita Y. Regulation and evolution of chlorophyll metabolism. Photochem Photobiol Sci 2008; 7:1131-49. [PMID: 18846277 DOI: 10.1039/b807210h] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chlorophylls are the most abundant tetrapyrrole molecules essential for photosynthesis in photosynthetic organisms. After many years of intensive research, most of the genes encoding the enzymes for the pathway have been identified, and recently the underlying molecular mechanisms have been elucidated. These studies revealed that the regulation of chlorophyll metabolism includes all levels of control to allow a balanced metabolic flow in response to external and endogenous factors and to ensure adaptation to varying needs of chlorophyll during plant development. Furthermore, identification of biosynthetic genes from various organisms and genetic analysis of functions of identified genes enables us to predict the evolutionary scenario of chlorophyll metabolism. In this review, based on recent findings, we discuss the regulation and evolution of chlorophyll metabolism.
Collapse
Affiliation(s)
- Tatsuru Masuda
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Tokyo, 153-8902, Japan.
| | | |
Collapse
|
41
|
Ito H, Yokono M, Tanaka R, Tanaka A. Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803. J Biol Chem 2008; 283:9002-11. [PMID: 18230620 DOI: 10.1074/jbc.m708369200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vast majority of oxygenic photosynthetic organisms use monovinyl chlorophyll for their photosynthetic reactions. For the biosynthesis of this type of chlorophyll, the reduction of the 8-vinyl group that is located on the B-ring of the macrocycle is essential. Previously, we identified the gene encoding 8-vinyl reductase responsible for this reaction in higher plants and termed it DVR. Among the sequenced genomes of cyanobacteria, only several Synechococcus species contain DVR homologues. Therefore, it has been hypothesized that many other cyanobacteria producing monovinyl chlorophyll should contain a vinyl reductase that is unrelated to the higher plant DVR. To identify the cyanobacterial gene that is responsible for monovinyl chlorophyll synthesis, we developed a bioinformatics tool, correlation coefficient calculation tool, which calculates the correlation coefficient between the distributions of a certain phenotype and genes among a group of organisms. The program indicated that the distribution of a gene encoding a putative dehydrogenase protein is best correlated with the distribution of the DVR-less cyanobacteria. We subsequently knocked out the corresponding gene (Slr1923) in Synechocystis sp. PCC6803 and characterized the mutant. The knock-out mutant lost its ability to synthesize monovinyl chlorophyll and accumulated 3,8-divinyl chlorophyll instead. We concluded that Slr1923 encodes the vinyl reductase or a subunit essential for monovinyl chlorophyll synthesis. The function and evolution of 8-vinyl reductase genes are discussed.
Collapse
Affiliation(s)
- Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, Sapporo 060-0819, Japan.
| | | | | | | |
Collapse
|
42
|
|
43
|
Chew AGM, Bryant DA. Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity. Annu Rev Microbiol 2007; 61:113-29. [PMID: 17506685 DOI: 10.1146/annurev.micro.61.080706.093242] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The use of photochemical reaction centers to convert light energy into chemical energy, chlorophototrophy, occurs in organisms belonging to only five eubacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, and Firmicutes. All chlorophototrophs synthesize two types of pigments: (a) chlorophylls and bacteriochlorophylls, which function in both light harvesting and uniquely in photochemistry; and (b) carotenoids, which function primarily as photoprotective pigments but can also participate in light harvesting. Although hundreds of carotenoids have been identified, only 12 types of chlorophylls (Chl a, b, d; divinyl-Chl a and b; and 8(1)-hydroxy-Chl a) and bacteriochlorophylls (BChl a, b, c, d, e, and g) are currently known to occur in bacteria. This review summarizes recent progress in the identification of genes and enzymes in the biosynthetic pathways leading to Chls and BChls, the essential tetrapyrrole cofactors of photosynthesis, and addresses the mechanisms for generating functional diversity for solar energy capture and conversion in chlorophototrophs.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
44
|
Gomez Maqueo Chew A, Frigaard NU, Bryant DA. Bacteriochlorophyllide c C-8(2) and C-12(1) methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 2007; 189:6176-84. [PMID: 17586634 PMCID: PMC1951906 DOI: 10.1128/jb.00519-07] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteriochlorophyll (BChl) c is the major photosynthetic pigment in the green sulfur bacterium Chlorobaculum tepidum, in which it forms protein-independent aggregates that function in light harvesting. BChls c, d, and e are found only in chlorosome-producing bacteria and are unique among chlorophylls because of methylations that occur at the C-8(2) and C-12(1) carbons. Two genes required for these methylation reactions were identified and designated bchQ (CT1777) and bchR (CT1320). BchQ and BchR are members of the radical S-adenosylmethionine (SAM) protein superfamily; each has sequence motifs to ligate a [4Fe-4S] cluster, and we propose that they catalyze the methyl group transfers. bchQ, bchR, and bchQ bchR mutants of C. tepidum were constructed and characterized. The bchQ mutant produced BChl c that was not methylated at C-8(2), the bchR mutant produced BChl c that was not methylated at C-12(1), and the double mutant produced [8-ethyl, 12-methyl]-BChl c that lacked methylation at both the C-8(2) and C-12(1) positions. Compared to the wild type, the Qy absorption bands for BChl c in the mutant cells were narrower and blue shifted to various extents. All three mutants grew slower and had a lower cellular BChl c content than the wild type, an effect that was especially pronounced at low light intensities. These observations show that the C-8(2) and C-12(1) methylations of BChl c play important roles in the adaptation of C. tepidum to low light intensity. The data additionally suggest that these methylations also directly or indirectly affect the regulation of the BChl c biosynthetic pathway.
Collapse
Affiliation(s)
- Aline Gomez Maqueo Chew
- Department of Biochemistry and Molecular Biology, S-235 Frear Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
45
|
Wada K, Harada J, Yaeda Y, Tamiaki H, Oh-Oka H, Fukuyama K. Crystal structures of CbiL, a methyltransferase involved in anaerobic vitamin B12 biosynthesis, and CbiL in complex with S-adenosylhomocysteine − implications for the reaction mechanism. FEBS J 2006; 274:563-73. [PMID: 17229157 DOI: 10.1111/j.1742-4658.2006.05611.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During anaerobic cobalamin (vitamin B12) biosynthesis, CbiL catalyzes methylation at the C-20 position of a cyclic tetrapyrrole ring using S-adenosylmethionine as a methyl group source. This methylation is a key modification for the ring contraction process, by which a porphyrin-type tetrapyrrole ring is converted to a corrin ring through elimination of the modified C-20 and direct bonding of C-1 to C-19. We have determined the crystal structures of Chlorobium tepidum CbiL and CbiL in complex with S-adenosylhomocysteine (the S-demethyl form of S-adenosylmethionine). CbiL forms a dimer in the crystal, and each subunit consists of N-terminal and C-terminal domains. S-Adenosylhomocysteine binds to a cleft between the two domains, where it is specifically recognized by extensive hydrogen bonding and van der Waals interactions. The orientation of the cobalt-factor II substrate was modeled by simulation, and the predicted model suggests that the hydroxy group of Tyr226 is located in close proximity to the C-20 atom as well as the C-1 and C-19 atoms of the tetrapyrrole ring. These configurations allow us to propose a catalytic mechanism: the conserved Tyr226 residue in CbiL catalyzes the direct transfer of a methyl group from S-adenosylmethionine to the substrate through an S(N)2-like mechanism. Furthermore, the structural model of CbiL binding to its substrate suggests the axial residue coordinated to the central cobalt of cobalt-factor II.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, Maresca JA, Bryant DA, Sogin ML, Pace NR. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol 2006; 72:3685-95. [PMID: 16672518 PMCID: PMC1472358 DOI: 10.1128/aem.72.5.3685-3695.2006] [Citation(s) in RCA: 296] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We applied nucleic acid-based molecular methods, combined with estimates of biomass (ATP), pigments, and microelectrode measurements of chemical gradients, to map microbial diversity vertically on a millimeter scale in a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico. To identify the constituents of the mat, small-subunit rRNA genes were amplified by PCR from community genomic DNA extracted from layers, cloned, and sequenced. Bacteria dominated the mat and displayed unexpected and unprecedented diversity. The majority (1,336) of the 1,586 bacterial 16S rRNA sequences generated were unique, representing 752 species (> or =97% rRNA sequence identity) in 42 of the main bacterial phyla, including 15 novel candidate phyla. The diversity of the mat samples differentiated according to the chemical milieu defined by concentrations of O(2) and H(2)S. Bacteria of the phylum Chloroflexi formed the majority of the biomass by percentage of bulk rRNA and of clones in rRNA gene libraries. This result contradicts the general belief that cyanobacteria dominate these communities. Although cyanobacteria constituted a large fraction of the biomass in the upper few millimeters (>80% of the total rRNA and photosynthetic pigments), Chloroflexi sequences were conspicuous throughout the mat. Filamentous Chloroflexi bacteria were identified by fluorescence in situ hybridization within the polysaccharide sheaths of the prominent cyanobacterium Microcoleus chthonoplastes, in addition to free living in the mat. The biological complexity of the mat far exceeds that observed in other polysaccharide-rich microbial ecosystems, such as the human and mouse distal guts, and suggests that positive feedbacks exist between chemical complexity and biological diversity. The sequences determined in this study have been submitted to the GenBank database and assigned accession numbers DQ 329539 to DQ 331020, and DQ 397339 to DQ 397511.
Collapse
Affiliation(s)
- Ruth E Ley
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wada K, Yamaguchi H, Harada J, Niimi K, Osumi S, Saga Y, Oh-Oka H, Tamiaki H, Fukuyama K. Crystal structures of BchU, a methyltransferase involved in bacteriochlorophyll c biosynthesis, and its complex with S-adenosylhomocysteine: implications for reaction mechanism. J Mol Biol 2006; 360:839-49. [PMID: 16797589 DOI: 10.1016/j.jmb.2006.05.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 05/21/2006] [Accepted: 05/23/2006] [Indexed: 11/25/2022]
Abstract
BchU plays a role in bacteriochlorophyll c biosynthesis by catalyzing methylation at the C-20 position of cyclic tetrapyrrole chlorin using S-adenosylmethionine (SAM) as a methyl source. This methylation causes red-shifts of the electronic absorption spectrum of the light-harvesting pigment, allowing green photosynthetic bacteria to adapt to low-light environments. We have determined the crystal structures of BchU and its complex with S-adenosylhomocysteine (SAH). BchU forms a dimer and each subunit consists of two domains, an N-terminal domain and a C-terminal domain. Dimerization occurs through interactions between the N-terminal domains and the residues responsible for the catalytic reaction are in the C-terminal domain. The binding site of SAH is located in a large cavity between the two domains, where SAH is specifically recognized by many hydrogen bonds and a salt-bridge. The electron density map of BchU in complex with an analog of bacteriochlorophyll c located its central metal near the SAH-binding site, but the tetrapyrrole ring was invisible, suggesting that binding of the ring to BchU is loose and/or occupancy of the ring is low. It is likely that His290 acts as a ligand for the central metal of the substrate. The orientation of the substrate was predicted by simulation, and allows us to propose a mechanism for the BchU directed methylation: the strictly conserved Tyr246 residue acts catalytically in the direct transfer of the methyl group from SAM to the substrate through an S(N)2-like mechanism.
Collapse
Affiliation(s)
- Kei Wada
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nomata J, Mizoguchi T, Tamiaki H, Fujita Y. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 2006; 281:15021-8. [PMID: 16571720 DOI: 10.1074/jbc.m601750200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most photosynthetic organisms, the chlorin ring structure of chlorophyll a is formed by the reduction of the porphyrin D-ring by the dark-operative nitrogenase-like enzyme, protochlorophyllide reductase (DPOR). Subsequently, the chlorin B-ring is reduced in bacteriochlorophyll biosynthesis to form a bacteriochlorin ring structure. Phenotypic analysis of mutants lacking one of three genes, bchX, bchY, or bchZ, which show significant sequence similarity to the structural genes of nitrogenase, suggests that a second nitrogenase-like enzyme is involved in the chlorin B-ring reduction. However, there is no biochemical evidence for this. Here, we report the reconstitution of chlorophyllide a reductase (COR) with purified proteins. Two Rhodobacter capsulatus strains that overexpressed Strep-tagged BchX and BchY were isolated. Strep-tagged BchX was purified as a single polypeptide, and BchZ was co-purified with Strep-tagged BchY. When BchX and BchY-BchZ components were incubated with chlorophyllide a, ATP, and dithionite under anaerobic conditions, chlorophyllide a was converted to a new pigment with a Qy band of longer wavelength at 734 nm (P734) in 80% acetone. The formation of P734 was dependent on ATP and dithionite. High performance liquid chromatography and mass spectroscopic analysis indicated that P734 is 3-vinyl bacteriochlorophyllide a, which is formed by the B-ring reduction of chlorophyllide a. These results demonstrate that the B-ring of chlorin is reduced by a second nitrogenase-like enzyme and that the sequential actions of two nitrogenase-like enzymes, DPOR and COR, convert porphyrin to bacteriochlorin. The evolutionary implications of nitrogenase-like enzymes to determine the ring structure of (bacterio)chlorophyll pigments are discussed.
Collapse
Affiliation(s)
- Jiro Nomata
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
49
|
Frigaard NU, Bryant DA. Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria. MICROBIOLOGY MONOGRAPHS 2006. [DOI: 10.1007/7171_021] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
50
|
Harada J, Saga Y, Oh-oka H, Tamiaki H. Different sensitivities to oxygen between two strains of the photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 with bacteriochlorophyll c and d. PHOTOSYNTHESIS RESEARCH 2005; 86:137-43. [PMID: 16172933 DOI: 10.1007/s11120-005-5669-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 04/18/2005] [Indexed: 05/04/2023]
Abstract
Two sub-strains of the anoxygenic photosynthetic green sulfur bacterium Chlorobium vibrioforme NCIB 8327 were derived from the same clone and could be discriminated only by their possession of either bacteriochlorophyll (BChl) c or d as the major pigment in the peripheral light-harvesting antenna system, chlorosome (Saga Y et al. (2003) Anal Sci 19: 1575-1579). In the presence of a proper amount of oxygen in the initial culture medium, the BChl d strain showed longer retardation on its growth initiation than the BChl c strain, indicating that the latter was advantageous for survival under aerobic light conditions which produced reactive oxygen species in vivo. The result would be ascribable to the difference of the midpoint potentials between two kinds of chlorosomes formed by self-aggregates of BChl c and d as measured by their fluorescence quenching.
Collapse
Affiliation(s)
- Jiro Harada
- Department of Bioscience and Biotechnology, Faculty of Science and Engineering, Ritsumeikan University, 525-8577, Shiga, Japan
| | | | | | | |
Collapse
|