1
|
Salah Ud-Din AIM, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci 2017; 74:3293-3303. [PMID: 28409190 PMCID: PMC11107704 DOI: 10.1007/s00018-017-2514-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 03/06/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chemotaxis is the directed motility by means of which microbes sense chemical cues and relocate towards more favorable environments. Methyl-accepting chemotaxis proteins (MCPs) are the most common receptors in bacteria and archaea. They are arranged as trimers of dimers that, in turn, form hexagonal arrays in the cytoplasmic membrane or in the cytoplasm. Several different classes of MCPs have been identified according to their ligand binding region and membrane topology. MCPs have been further classified based on the length and sequence conservation of their cytoplasmic domains. Clusters of membrane-embedded MCPs often localize to the poles of the cell, whereas cytoplasmic MCPs can be targeted to the poles or distributed throughout the cell body. MCPs play an important role in cell survival, pathogenesis, and biodegradation. Bacterial adaptation to diverse environmental conditions promotes diversity among the MCPs. This review summarizes structure, classification, and structure-activity relationship of the known MCP receptors, with a brief overview of the signal transduction mechanisms in bacteria and archaea.
Collapse
Affiliation(s)
- Abu Iftiaf Md Salah Ud-Din
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Anna Roujeinikova
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Garcia D, Watts KJ, Johnson MS, Taylor BL. Delineating PAS-HAMP interaction surfaces and signalling-associated changes in the aerotaxis receptor Aer. Mol Microbiol 2016; 100:156-72. [PMID: 26713609 DOI: 10.1111/mmi.13308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2015] [Indexed: 11/27/2022]
Abstract
The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer-PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N-terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase-off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS-HAMP surfaces overlapped with a cluster of PAS kinase-on lesions and with cysteine substitutions that crosslinked the PAS β-scaffold to the HAMP AS-2 helix. A refined Aer PAS-HAMP interaction model is presented. Compared to the kinase-off state, the kinase-on state increased the accessibility of HAMP residues (apparently relaxing PAS-HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static-dynamic model in which oxidized Aer-PAS interacts directly with HAMP AS-2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase-off output. When PAS-FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase-on output.
Collapse
Affiliation(s)
- Darysbel Garcia
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Kylie J Watts
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Mark S Johnson
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Barry L Taylor
- Division of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, USA
| |
Collapse
|
3
|
Airola MV, Huh D, Sukomon N, Widom J, Sircar R, Borbat PP, Freed JH, Watts KJ, Crane BR. Architecture of the soluble receptor Aer2 indicates an in-line mechanism for PAS and HAMP domain signaling. J Mol Biol 2013; 425:886-901. [PMID: 23274111 PMCID: PMC3577987 DOI: 10.1016/j.jmb.2012.12.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 01/24/2023]
Abstract
Bacterial receptors typically contain modular architectures with distinct functional domains that combine to send signals in response to stimuli. Although the properties of individual components have been investigated in many contexts, there is little information about how diverse sets of modules work together in full-length receptors. Here, we investigate the architecture of Aer2, a soluble gas-sensing receptor that has emerged as a model for PAS (Per-Arnt-Sim) and poly-HAMP (histidine kinase-adenylyl cyclase-methyl-accepting chemotaxis protein-phosphatase) domain signaling. The crystal structure of the heme-binding PAS domain in the ferric, ligand-free form, in comparison to the previously determined cyanide-bound state, identifies conformational changes induced by ligand binding that are likely essential for the signaling mechanism. Heme-pocket alternations share some similarities with the heme-based PAS sensors FixL and EcDOS but propagate to the Iβ strand in a manner predicted to alter PAS-PAS associations and the downstream HAMP junction within full-length Aer2. Small-angle X-ray scattering of PAS and poly-HAMP domain fragments of increasing complexity allow unambiguous domain assignments and reveal a linear quaternary structure. The Aer2 PAS dimeric crystal structure fits well within ab initio small-angle X-ray scattering molecular envelopes, and pulsed dipolar ESR measurements of inter-PAS distances confirm the crystallographic PAS arrangement within Aer2. Spectroscopic and pull-down assays fail to detect direct interactions between the PAS and HAMP domains. Overall, the Aer2 signaling mechanism differs from the Escherichia coli Aer paradigm, where side-on PAS-HAMP contacts are key. We propose an in-line model for Aer2 signaling, where ligand binding induces alterations in PAS domain structure and subunit association that is relayed through the poly-HAMP junction to downstream domains.
Collapse
Affiliation(s)
- Michael V. Airola
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Doowon Huh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- Center for Advanced ESR Studies, Cornell University, Ithaca, NY 14853, USA
| | - Kylie J. Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Different conformations of the kinase-on and kinase-off signaling states in the Aer HAMP domain. J Bacteriol 2011; 193:4095-103. [PMID: 21665965 DOI: 10.1128/jb.01069-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
HAMP domains are sensory transduction modules that connect input and output domains in diverse signaling proteins from archaea, bacteria, and lower eukaryotes. Here, we employed in vivo disulfide cross-linking to explore the structure of the HAMP domain in the Escherichia coli aerotaxis receptor Aer. Using an Aer HAMP model based on the structure of Archaeoglobus fulgidus Af1503-HAMP, the closest residue pairs at the interface of the HAMP AS-1 and AS-2' helices were determined and then replaced with cysteines and cross-linked in vivo. Except for a unique discontinuity in AS-2, the data suggest that the Aer HAMP domain forms a parallel four-helix bundle that is similar to the structure of Af1503. The HAMP discontinuity was associated with a segment of AS-2 that was recently shown to interact with the Aer-PAS sensing domain. The four-helix HAMP bundle and its discontinuity were maintained in both the kinase-on and kinase-off states of Aer, although differences in the rates of disulfide formation also indicated the existence of different HAMP conformations in the kinase-on and kinase-off states. In particular, the kinase-on state was accompanied by significantly increased disulfide formation rates at the distal end of the HAMP four-helix bundle. This indicates that HAMP signaling may be associated with a tilting of the AS-1 and AS-2' helices, which may be the signal that is transmitted to the kinase control region of Aer.
Collapse
|
5
|
Watts KJ, Taylor BL, Johnson MS. PAS/poly-HAMP signalling in Aer-2, a soluble haem-based sensor. Mol Microbiol 2010; 79:686-99. [PMID: 21255112 DOI: 10.1111/j.1365-2958.2010.07477.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poly-HAMP domains are widespread in bacterial chemoreceptors, but previous studies have focused on receptors with single HAMP domains. The Pseudomonas aeruginosa chemoreceptor, Aer-2, has an unusual domain architecture consisting of a PAS-sensing domain sandwiched between three N-terminal and two C-terminal HAMP domains, followed by a conserved kinase control module. The structure of the N-terminal HAMP domains was recently solved, making Aer-2 the first protein with resolved poly-HAMP structure. The role of Aer-2 in P. aeruginosa is unclear, but here we show that Aer-2 can interact with the chemotaxis system of Escherichia coli to mediate repellent responses to oxygen, carbon monoxide and nitric oxide. Using this model system to investigate signalling and poly-HAMP function, we determined that the Aer-2 PAS domain binds penta-co-ordinated b-type haem and that reversible signalling requires four of the five HAMP domains. Deleting HAMP 2 and/or 3 resulted in a kinase-off phenotype, whereas deleting HAMP 4 and/or 5 resulted in a kinase-on phenotype. Overall, these data support a model in which ligand-bound Aer-2 PAS and HAMP 2 and 3 act together to relieve inhibition of the kinase control module by HAMP 4 and 5, resulting in the kinase-on state of the Aer-2 receptor.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | |
Collapse
|
6
|
Conserved residues in the HAMP domain define a new family of proposed bipartite energy taxis receptors. J Bacteriol 2008; 191:375-87. [PMID: 18952801 DOI: 10.1128/jb.00578-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
HAMP domains, found in many bacterial signal transduction proteins, generally transmit an intramolecular signal between an extracellular sensory domain and an intracellular signaling domain. Studies of HAMP domains in proteins where both the input and output signals occur intracellularly are limited to those of the Aer energy taxis receptor of Escherichia coli, which has both a HAMP domain and a sensory PAS domain. Campylobacter jejuni has an energy taxis system consisting of the domains of Aer divided between two proteins, CetA (HAMP domain containing) and CetB (PAS domain containing). In this study, we found that the CetA HAMP domain differs significantly from that of Aer in the predicted secondary structure. Using similarity searches, we identified 55 pairs of HAMP/PAS proteins encoded by adjacent genes in a diverse group of microorganisms. We propose that these HAMP/PAS pairs form a new family of bipartite energy taxis receptors. Within these proteins, we identified nine residues in the HAMP domain and proximal signaling domain that are highly conserved, at least three of which are required for CetA function. Additionally, we demonstrated that CetA contributes to the invasion of human epithelial cells by C. jejuni, while CetB does not. This finding supports the hypothesis that members of HAMP/PAS pairs possess the capacity to act independently of each other in cellular traits other than energy taxis.
Collapse
|
7
|
Mutational analysis of the connector segment in the HAMP domain of Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 2008; 190:6676-85. [PMID: 18621896 DOI: 10.1128/jb.00750-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HAMP domains are approximately 50-residue motifs, found in many bacterial signaling proteins, that consist of two amphiphilic helices joined by a nonhelical connector segment. The HAMP domain of Tsr, the serine chemoreceptor of Escherichia coli, receives transmembrane input signals from the periplasmic serine binding domain and in turn modulates output signals from the Tsr kinase control domain to elicit chemotactic responses. We created random amino acid replacements at each of the 14 connector residues of Tsr-HAMP to identify those that are critical for Tsr function. In all, we surveyed 179 connector missense mutants and identified three critical residues (G235, L237, and I241) at which most replacements destroyed Tsr function and another important residue (G245) at which most replacements impaired Tsr function. The region surrounding G245 tolerated 1-residue deletions and insertions of up to 10 glycines, suggesting a role as a relatively nonspecific, flexible linker. The critical connector residues are consistent with a structural model of the Tsr-HAMP domain based on the solution structure of an isolated thermophile HAMP domain (M. Hulko, F. Berndt, M. Gruber, J. U. Linder, V. Truffault, A. Schultz, J. Martin, J. E. Schultz, A. N. Lupas, and M. Coles, Cell 126:929-940, 2006) in which G235 defines a critical turn at the C terminus of the first helix and L237 and I241 pack against the helices, perhaps to stabilize alternative HAMP signaling conformations. Most I241 lesions locked Tsr signal output in the kinase-on mode, implying that this residue is responsible mainly for stabilizing the kinase-off signaling state. In contrast, lesions at L237 resulted in a variety of aberrant output patterns, suggesting a role in toggling output between signaling states.
Collapse
|
8
|
Saito JA, Wan X, Lee KS, Hou S, Alam M. Globin-coupled sensors and protoglobins share a common signaling mechanism. FEBS Lett 2008; 582:1840-6. [PMID: 18486614 DOI: 10.1016/j.febslet.2008.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 02/08/2023]
|
9
|
Structure-function relationships in the HAMP and proximal signaling domains of the aerotaxis receptor Aer. J Bacteriol 2008; 190:2118-27. [PMID: 18203838 DOI: 10.1128/jb.01858-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aer, the Escherichia coli aerotaxis receptor, faces the cytoplasm, where the PAS (Per-ARNT-Sim)-flavin adenine dinucleotide (FAD) domain senses redox changes in the electron transport system or cytoplasm. PAS-FAD interacts with a HAMP (histidine kinase, adenylyl cyclase, methyl-accepting protein, and phosphatase) domain to form an input-output module for Aer signaling. In this study, the structure of the Aer HAMP and proximal signaling domains was probed to elucidate structure-function relationships important for signaling. Aer residues 210 to 290 were individually replaced with cysteine and then cross-linked in vivo. The results confirmed that the Aer HAMP domain is composed of two alpha-helices separated by a structured loop. The proximal signaling domain consisted of two alpha-helices separated by a short undetermined structure. The Af1503 HAMP domain from Archaeoglobus fulgidus was recently shown to be a four-helix bundle. To test whether the Af1503 HAMP domain is a prototype for the Aer HAMP domain, the latter was modeled using coordinates from Af1503. Several findings supported the hypothesis that Aer has a four-helix HAMP structure: (i) cross-linking independently identified the same residues at the dimer interface that were predicted by the model, (ii) the rate of cross-linking for residue pairs was inversely proportional to the beta-carbon distances measured on the model, and (iii) clockwise lesions that were not contiguous in the linear Aer sequence were clustered in one region in the folded HAMP model, defining a potential site of PAS-HAMP interaction during signaling. In silico modeling of mutant Aer proteins indicated that the four-helix HAMP structure was important for Aer stability or maturation. The significance of the HAMP and proximal signaling domain structure for signal transduction is discussed.
Collapse
|
10
|
Abstract
Aer, the Escherichia coli aerotaxis (oxygen-sensing) receptor, is representative of a small class of receptors that face the cytoplasm in bacteria. Instead of sensing oxygen directly, Aer detects redox changes in the electron transport system or cytoplasm when the bacteria enter or leave a hypoxic microniche. As a result, Aer sensing also enables bacteria to avoid environments where carbon deficiency, unfavourable reduction potential or other insults would limit energy production. An FAD-binding PAS domain is the sensor for Aer and a HAMP domain interacts with the PAS domain to form an input-output module for signal transduction. By analogy to the first solution structure of an isolated HAMP domain from Archaeoglobus, Aer HAMP is proposed to fold into a four-helix bundle that rotates between a signal-on and signal-off conformation. Aer is the first protein in which a PAS-HAMP input-output module has been investigated. The structure and signal transduction mechanism of Aer is providing important insights into signalling by PAS and HAMP domains.
Collapse
Affiliation(s)
- Barry L Taylor
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.
| |
Collapse
|
11
|
Kishii R, Falzon L, Yoshida T, Kobayashi H, Inouye M. Structural and Functional Studies of the HAMP Domain of EnvZ, an Osmosensing Transmembrane Histidine Kinase in Escherichia coli. J Biol Chem 2007; 282:26401-8. [PMID: 17635923 DOI: 10.1074/jbc.m701342200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HAMP domain plays an essential role in signal transduction not only in histidine kinase but also in a number of other signal-transducing receptor proteins. Here we expressed the EnvZ HAMP domain (Arg(180)-Thr(235)) with the R218K mutation (termed L(RK)) or with L(RK) connected with domain A (Arg(180)-Arg(289)) (termed LA(RK)) of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli, by fusing it with protein S. The L(RK) and LA(RK) proteins were purified after removing protein S. The CD analysis of the isolated L protein revealed that it consists of a random structure or is unstructured. This suggests that the EnvZ HAMP domain by itself is unable to form a stable structure and that this structural fragility may be important for its role in signal transduction. Interestingly the substitution of Ala(193) in the EnvZ HAMP domain with valine or leucine in Tez1A1, a chimeric protein of Tar and EnvZ, caused a constitutive OmpC phenotype. The CD analysis of LA(RK)(A193L) revealed that this mutated HAMP domain possesses considerable secondary structures and that the thermostability of this entire LA(RK)(A193L) became substantially lower than that of LA(RK) or just domain A, indicating that the structure of the HAMP domain with the A193L mutation affects the stability of downstream domain A. This results in cooperative thermodenaturation of domain A with the mutated HAMP domain. These results are discussed in light of the recently solved NMR structure of the HAMP domain from a thermophilic bacterium (Hulko, M., Berndt, F., Gruber, M., Linder, J. U., Truffault, V., Schultz, A., Martin, J., Schultz, J. E., Lupas, A. N., and Coles, M. (2006) Cell 126, 929-940).
Collapse
Affiliation(s)
- Ryuta Kishii
- Discovery Research Laboratories, Kyorin Pharmaceutical Co., Ltd., Shimotsuga, Tochigi 329-0114, Japan
| | | | | | | | | |
Collapse
|
12
|
Amin DN, Taylor BL, Johnson MS. Organization of the aerotaxis receptor aer in the membrane of Escherichia coli. J Bacteriol 2007; 189:7206-12. [PMID: 17693513 PMCID: PMC2168431 DOI: 10.1128/jb.00871-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Aer receptor guides Escherichia coli to specific oxygen and energy-generating niches. The input sensor in Aer is a flavin adenine dinucleotide-binding PAS domain, which is separated from a HAMP/signaling output domain by two membrane-spanning segments that flank a short (four-amino-acid) periplasmic loop. In this study, we determined the overall membrane organization of Aer by introducing combinations of residues that allowed us to differentiate intradimeric collisions from interdimeric collisions. Collisions between proximal residues in the membrane anchor were exclusively intra- or interdimeric but, with one exception, not both. Cross-linking profiles were consistent, with a rigid rather than flexible periplasmic loop and a tilted TM2 helix that crossed TM2' at residue V197C, near the center of the lipid bilayer. The periplasmic loop formed a stable neighborhood that (i) included a maximum of three Aer dimers, (ii) did not swap neighbors over time, and (iii) appeared to be constrained by interactions in the cytosolic signaling domain.
Collapse
Affiliation(s)
- Divya N Amin
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
13
|
Taylor BL, Watts KJ, Johnson MS. Oxygen and Redox Sensing by Two‐Component Systems That Regulate Behavioral Responses: Behavioral Assays and Structural Studies of Aer Using In Vivo Disulfide Cross‐Linking. Methods Enzymol 2007; 422:190-232. [PMID: 17628141 DOI: 10.1016/s0076-6879(06)22010-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A remarkable increase in the number of annotated aerotaxis (oxygen-seeking) and redox taxis sensors can be attributed to recent advances in bacterial genomics. However, in silico predictions should be supported by behavioral assays and genetic analyses that confirm an aerotaxis or redox taxis function. This chapter presents a collection of procedures that have been highly successful in characterizing aerotaxis and redox taxis in Escherichia coli. The methods are described in enough detail to enable investigators of other species to adapt the procedures for their use. A gas flow cell is used to quantitate the temporal responses of bacteria to a step increase or decrease in oxygen partial pressure or redox potential. Bacterial behavior in spatial gradients is analyzed using optically flat capillaries and soft agar plates (succinate agar or tryptone agar). We describe two approaches to estimate the preferred partial pressure of oxygen that attracts a bacterial species; this concentration is important for understanding microbial ecology. At the molecular level, we describe procedures used to determine the structure and topology of Aer, a membrane receptor for aerotaxis. Cysteine-scanning mutagenesis and in vivo disulfide cross-linking procedures utilize the oxidant Cu(II)-(1,10-phenanthroline)(3) and bifunctional sulfhydryl-reactive probes. Finally, we describe methods used to determine the boundaries of transmembrane segments of receptors such as Aer. These include 5-iodoacetamidofluorescein, 4-acetamido-4-disulfonic acid, disodium salt (AMS), and methoxy polyethylene glycol maleimide, a 5-kDa molecular mass probe that alters the mobility of Aer on SDS-PAGE.
Collapse
Affiliation(s)
- Barry L Taylor
- Division of Cellular Biology and Molecular Genetics, Loma Linda University, Loma Linda, California, USA
| | | | | |
Collapse
|
14
|
Ames P, Parkinson JS. Phenotypic Suppression Methods for Analyzing Intra‐ and Inter‐Molecular Signaling Interactions of Chemoreceptors. Methods Enzymol 2007; 423:436-57. [PMID: 17609145 DOI: 10.1016/s0076-6879(07)23021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The receptors that mediate chemotactic behaviors in E. coli and other motile bacteria and archaea are exquisite molecular machines. They detect minute concentration changes in the organism's chemical environment, integrate multiple stimulus inputs, and generate a highly amplified output signal that modulates the cell's locomotor pattern. Genetic dissection and suppression analyses have played an important role in elucidating the molecular mechanisms that underlie chemoreceptor signaling. This chapter discusses three examples of phenotypic suppression analyses of receptor signaling defects. (i) Balancing suppression can occur in mutant receptors that have biased output signals and involves second-site mutations that create an offsetting bias change. Such suppressors can arise in many parts of the receptor and need not involve directly interacting parts of the molecule. (ii) Conformational suppression within a mutant receptor molecule occurs through a mutation that directly compensates for the initial structural defect. This form of suppression should be highly dependent on the nature of the structural alterations caused by the original mutation and its suppressor, but in practice may be difficult to distinguish from balancing suppression without high-resolution structural information about the mutant and pseudorevertant proteins. (iii) Conformational suppression between receptor molecules involves correction of a functional defect in one receptor by a mutational change in a heterologous receptor with which it normally interacts. The suppression patterns exhibit allele-specificity with respect to the compensatory residue positions and amino acid side chains, a hallmark of stereospecific protein-protein interactions.
Collapse
Affiliation(s)
- Peter Ames
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
15
|
Edwards JC, Johnson MS, Taylor BL. Differentiation between electron transport sensing and proton motive force sensing by the Aer and Tsr receptors for aerotaxis. Mol Microbiol 2006; 62:823-37. [PMID: 16995896 PMCID: PMC1858650 DOI: 10.1111/j.1365-2958.2006.05411.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aerotaxis (oxygen-seeking) behaviour in Escherichia coli is a response to changes in the electron transport system and not oxygen per se. Because changes in proton motive force (PMF) are coupled to respiratory electron transport, it is difficult to differentiate between PMF, electron transport or redox, all primary candidates for the signal sensed by the aerotaxis receptors, Aer and Tsr. We constructed electron transport mutants that produced different respiratory H+/e- stoichiometries. These strains expressed binary combinations of one NADH dehydrogenase and one quinol oxidase. We then introduced either an aer or tsr mutation into each mutant to create two sets of electron transport mutants. In vivo H+/e- ratios for strains grown in glycerol medium ranged from 1.46+/-0.18-3.04+/-0.47, but rates of respiration and growth were similar. The PMF jump in response to oxygen was proportional to the H+/e- ratio in each set of mutants (r2=0.986-0.996). The length of Tsr-mediated aerotaxis responses increased with the PMF jump (r2=0.988), but Aer-mediated responses did not correlate with either PMF changes (r2=0.297) or the rate of electron transport (r2=0.066). Aer-mediated responses were linked to NADH dehydrogenase I, although there was no absolute requirement. The data indicate that Tsr responds to changes in PMF, but strong Aer responses to oxygen are associated with redox changes in NADH dehydrogenase I.
Collapse
Affiliation(s)
- Jessica C Edwards
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
16
|
Burón-Barral MDC, Gosink KK, Parkinson JS. Loss- and gain-of-function mutations in the F1-HAMP region of the Escherichia coli aerotaxis transducer Aer. J Bacteriol 2006; 188:3477-86. [PMID: 16672601 PMCID: PMC1482857 DOI: 10.1128/jb.188.10.3477-3486.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants.
Collapse
|
17
|
Gosink KK, Burón-Barral MDC, Parkinson JS. Signaling interactions between the aerotaxis transducer Aer and heterologous chemoreceptors in Escherichia coli. J Bacteriol 2006; 188:3487-93. [PMID: 16672602 PMCID: PMC1482851 DOI: 10.1128/jb.188.10.3487-3493.2006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aer, a low-abundance signal transducer in Escherichia coli, mediates robust aerotactic behavior, possibly through interactions with methyl-accepting chemotaxis proteins (MCP). We obtained evidence for interactions between Aer and the high-abundance aspartate (Tar) and serine (Tsr) receptors. Aer molecules bearing a cysteine reporter diagnostic for trimer-of-dimer formation yielded cross-linking products upon treatment with a trifunctional maleimide reagent. Aer also formed mixed cross-linking products with a similarly marked Tar reporter. An Aer trimer contact mutation known to abolish trimer formation by MCPs eliminated Aer trimer and mixed trimer formation. Trimer contact alterations known to cause epistatic behavior in MCPs also produced epistatic properties in Aer. Amino acid replacements in the Tar trimer contact region suppressed an epistatic Aer signaling defect, consistent with compensatory conformational changes between directly interacting proteins. In cells lacking MCPs, Aer function required high-level expression, comparable to the aggregate number of receptors in a wild-type cell. Aer proteins with clockwise (CW)-biased signal output cannot function under these conditions but do so in the presence of MCPs, presumably through formation of mixed signaling teams. The Tar signaling domain was sufficient for functional rescue. Moreover, CW-biased lesions did not impair aerotactic signaling in a hybrid Aer-Tar transducer capable of adjusting its steady-state signal output via methylation-dependent sensory adaptation. Thus, MCPs most likely assist mutant Aer proteins to signal productively by forming collaborative signaling teams. Aer evidently evolved to operate collaboratively with high-abundance receptors but can also function without MCP assistance, provided that it can establish a suitable prestimulus swimming pattern.
Collapse
|
18
|
Croxen MA, Sisson G, Melano R, Hoffman PS. The Helicobacter pylori chemotaxis receptor TlpB (HP0103) is required for pH taxis and for colonization of the gastric mucosa. J Bacteriol 2006; 188:2656-65. [PMID: 16547053 PMCID: PMC1428400 DOI: 10.1128/jb.188.7.2656-2665.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The location of Helicobacter pylori in the gastric mucosa of mammals is defined by natural pH gradients within the gastric mucus, which are more alkaline proximal to the mucosal epithelial cells and more acidic toward the lumen. We have used a microscope slide-based pH gradient assay and video data collection system to document pH-tactic behavior. In response to hydrochloric acid (HCl), H. pylori changes its swimming pattern from straight-line random swimming to arcing or circular patterns that move the motile population away from the strong acid. Bacteria in more-alkaline regions did not swim toward the acid, suggesting the pH taxis is a form of negative chemotaxis. To identify the chemoreceptor(s) responsible for the transduction of pH-tactic signals, a vector-free allelic replacement strategy was used to construct mutations in each of the four annotated chemoreceptor genes (tlpA, tlpB, tlpC, and tlpD) in H. pylori strain SS1 and a motile variant of strain KE26695. All deletion mutants were motile and displayed normal chemotaxis in brucella soft agar, but only tlpB mutants were defective for pH taxis. tlpD mutants exhibited more tumbling and arcing swimming, while tlpC mutants were hypermotile and responsive to acid. While tlpA, tlpC, and tlpD mutants colonized mice to near wild-type levels, tlpB mutants were defective for colonization of highly permissive C57BL/6 interleukin-12 (IL-12) (p40-/-)-deficient mice. Complementation of the tlpB mutant (tlpB expressed from the rdxA locus) restored pH taxis and infectivity for mice. pH taxis, like motility and urease activity, is essential for colonization and persistence in the gastric mucosa, and thus TlpB function might represent a novel target in the development of therapeutics that blind tactic behavior.
Collapse
Affiliation(s)
- Matthew A Croxen
- Department of Microbiology, Medicine, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
19
|
Abstract
The PAS and HAMP domain superfamilies are signal transduction modules found in all kingdoms of life. The Aer receptor, which contains both domains, initiates rapid behavioural responses to oxygen (aerotaxis) and other electron acceptors, guiding Escherichia coli to niches where it can generate optimal cellular energy. We used intragenic complementation to investigate the signal transduction pathway from the Aer PAS domain to the signalling domain. These studies showed that the HAMP domain of one monomer in the Aer dimer stabilized FAD binding to the PAS domain of the cognate monomer. In contrast, the signal transduction pathway was intra-subunit, involving the PAS and signalling domains from the same monomer. The minimal requirements for signalling were investigated in heterodimers containing a full-length and truncated monomer. Either the PAS or signalling domains could be deleted from the non-signalling subunit of the heterodimer, but removing 16 residues from the C-terminus of the signalling subunit abolished aerotaxis. Although both HAMP domains were required for aerotaxis, signalling was not disrupted by missense mutations in the HAMP domain from the signalling subunit. Possible models for Aer signal transduction are compared.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
20
|
Watts KJ, Sommer K, Fry SL, Johnson MS, Taylor BL. Function of the N-terminal cap of the PAS domain in signaling by the aerotaxis receptor Aer. J Bacteriol 2006; 188:2154-62. [PMID: 16513745 PMCID: PMC1428145 DOI: 10.1128/jb.188.6.2154-2162.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aer, the Escherichia coli receptor for behavioral responses to oxygen (aerotaxis), energy, and redox potential, contains a PAS sensory-input domain. Within the PAS superfamily, the N-terminal segment (N-cap) is poorly conserved and its role is not well understood. We investigated the role of the N-cap (residues 1 to 19) in the Aer PAS domain by missense and truncation mutagenesis. Aer-PAS N-cap truncations and an Aer-M21P substitution resulted in low cellular levels of the mutant proteins, suggesting that the N-terminal region was important for stabilizing the structure of the PAS domain. The junction of the N-cap and PAS core was critical for signaling in Aer. Mutations and truncations in the sequence encoding residues 15 to 21 introduced a range of phenotypes, including defects in FAD binding, constant tumbling motility, and an inverse response in which E. coli cells migrated away from oxygen concentrations to which they are normally attracted. The proximity of two N-cap regions in an Aer dimer was assessed in vivo by oxidatively cross-linking serial cysteine substitutions. Cross-linking of several cysteine replacements at 23 degrees C was attenuated at 10 degrees C, indicating contact was not at a stable dimer interface but required lateral mobility. We observed large multimers of Aer when we combined cross-linking of N-cap residues with a cysteine replacement that cross-links exclusively at the Aer dimer interface. This suggests that the PAS N-cap faces outwards in a dimer and that PAS-PAS contacts can occur between adjacent dimers.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
21
|
Amin DN, Taylor BL, Johnson MS. Topology and boundaries of the aerotaxis receptor Aer in the membrane of Escherichia coli. J Bacteriol 2006; 188:894-901. [PMID: 16428392 PMCID: PMC1347347 DOI: 10.1128/jb.188.3.894-901.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Accepted: 11/10/2005] [Indexed: 01/29/2023] Open
Abstract
Escherichia coli chemoreceptors are type I membrane receptors that have a periplasmic sensing domain, a cytosolic signaling domain, and two transmembrane segments. The aerotaxis receptor, Aer, is different in that both its sensing and signaling regions are proposed to be cytosolic. This receptor has a 38-residue hydrophobic segment that is thought to form a membrane anchor. Most transmembrane prediction programs predict a single transmembrane-spanning segment, but such a topology is inconsistent with recent studies indicating that there is direct communication between the membrane flanking PAS and HAMP domains. We studied the overall topology and membrane boundaries of the Aer membrane anchor by a cysteine-scanning approach. The proximity of 48 cognate cysteine replacements in Aer dimers was determined in vivo by measuring the rate and extent of disulfide cross-linking after adding the oxidant copper phenanthroline, both at room temperature and to decrease lateral diffusion in the membrane, at 4 degrees C. Membrane boundaries were identified in membrane vesicles using 5-iodoacetamidofluorescein and methoxy polyethylene glycol 5000 (mPEG). To map periplasmic residues, accessible cysteines were blocked in whole cells by pretreatment with 4-acetamido-4'-maleimidylstilbene-2, 2' disulfonic acid before the cells were lysed in the presence of mPEG. The data were consistent with two membrane-spanning segments, separated by a short periplasmic loop. Although the membrane anchor contains a central proline residue that reaches the periplasm, its position was permissive to several amino acid and peptide replacements.
Collapse
Affiliation(s)
- Divya N Amin
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | |
Collapse
|
22
|
Ma Q, Roy F, Herrmann S, Taylor BL, Johnson MS. The Aer protein of Escherichia coli forms a homodimer independent of the signaling domain and flavin adenine dinucleotide binding. J Bacteriol 2004; 186:7456-9. [PMID: 15489458 PMCID: PMC523205 DOI: 10.1128/jb.186.21.7456-7459.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo cross-linking between native cysteines in the Aer receptor of Escherichia coli showed dimer formation at the membrane anchor and in the putative HAMP domain. Dimers also formed in mutants that did not bind flavin adenine dinucleotide and in truncated peptides without a signaling domain and part of the HAMP domain.
Collapse
Affiliation(s)
- Qinhong Ma
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | |
Collapse
|
23
|
Watts KJ, Ma Q, Johnson MS, Taylor BL. Interactions between the PAS and HAMP domains of the Escherichia coli aerotaxis receptor Aer. J Bacteriol 2004; 186:7440-9. [PMID: 15489456 PMCID: PMC523216 DOI: 10.1128/jb.186.21.7440-7449.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 07/27/2004] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.
Collapse
Affiliation(s)
- Kylie J Watts
- Division of Microbiology and Molecular Genetics, Loma Linda University, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|