1
|
An ambruticin-sensing complex modulates Myxococcus xanthus development and mediates myxobacterial interspecies communication. Nat Commun 2020; 11:5563. [PMID: 33149152 PMCID: PMC7643160 DOI: 10.1038/s41467-020-19384-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Starvation induces cell aggregation in the soil bacterium Myxococcus xanthus, followed by formation of fruiting bodies packed with myxospores. Sporulation in the absence of fruiting bodies can be artificially induced by high concentrations of glycerol through unclear mechanisms. Here, we show that a compound (ambruticin VS-3) produced by a different myxobacterium, Sorangium cellulosum, affects the development of M. xanthus in a similar manner. Both glycerol (at millimolar levels) and ambruticin VS-3 (at nanomolar concentrations) inhibit M. xanthus fruiting body formation under starvation, and induce sporulation in the presence of nutrients. The response is mediated in M. xanthus by three hybrid histidine kinases (AskA, AskB, AskC) that form complexes interacting with two major developmental regulators (MrpC, FruA). In addition, AskB binds directly to the mrpC promoter in vitro. Thus, our work indicates that the AskABC-dependent regulatory pathway mediates the responses to ambruticin VS-3 and glycerol. We hypothesize that production of ambruticin VS-3 may allow S. sorangium to outcompete M. xanthus under both starvation and growth conditions in soil. Starvation induces cell aggregation and formation of spore-containing fruiting bodies in the bacterium Myxococcus xanthus. Here, the authors show that a different myxobacterial species produces a compound that inhibits the development of fruiting bodies in M. xanthus, by affecting the function of histidine kinases and major regulators.
Collapse
|
2
|
Wright TA, Jiang L, Park JJ, Anderson WA, Chen G, Hallberg ZF, Nan B, Hammond MC. Second messengers and divergent HD-GYP phosphodiesterases regulate 3',3'-cGAMP signaling. Mol Microbiol 2019; 113:222-236. [PMID: 31665539 DOI: 10.1111/mmi.14412] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
3',3'-cyclic GMP-AMP (cGAMP) is the third cyclic dinucleotide (CDN) to be discovered in bacteria. No activators of cGAMP signaling have yet been identified, and the signaling pathways for cGAMP have been inferred to display a narrow distribution based upon the characterized synthases, DncV and Hypr GGDEFs. Here, we report that the ubiquitous second messenger cyclic AMP (cAMP) is an activator of the Hypr GGDEF enzyme GacB from Myxococcus xanthus. Furthermore, we show that GacB is inhibited directly by cyclic di-GMP, which provides evidence for cross-regulation between different CDN pathways. Finally, we reveal that the HD-GYP enzyme PmxA is a cGAMP-specific phosphodiesterase (GAP) that promotes resistance to osmotic stress in M. xanthus. A signature amino acid change in PmxA was found to reprogram substrate specificity and was applied to predict the presence of non-canonical HD-GYP phosphodiesterases in many bacterial species, including phyla previously not known to utilize cGAMP signaling.
Collapse
Affiliation(s)
- Todd A Wright
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, 84112, USA
| | - Lucy Jiang
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - James J Park
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Wyatt A Anderson
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.,Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ge Chen
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Zachary F Hallberg
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Ming C Hammond
- Department of Chemistry and Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
3
|
Duangurai T, Indrawattana N, Pumirat P. Burkholderia pseudomallei Adaptation for Survival in Stressful Conditions. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3039106. [PMID: 29992136 PMCID: PMC5994319 DOI: 10.1155/2018/3039106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium that causes melioidosis, which can be fatal in humans. Melioidosis is prevalent in the tropical regions of Southeast Asia and Northern Australia. Ecological data have shown that this bacterium can survive as a free-living organism in environmental niches, such as soil and water, as well as a parasite living in host organisms, such as ameba, plants, fungi, and animals. This review provides an overview of the survival and adaptation of B. pseudomallei to stressful conditions induced by hostile environmental factors, such as salinity, oxidation, and iron levels. The adaptation of B. pseudomallei in host cells is also reviewed. The adaptive survival mechanisms of this pathogen mainly involve modulation of gene and protein expression, which could cause alterations in the bacteria's cell membrane, metabolism, and virulence. Understanding the adaptations of this organism to environmental factors provides important insights into the survival and pathogenesis of B. pseudomallei, which may lead to the development of novel strategies for the control, prevention, and treatment of melioidosis in the future.
Collapse
Affiliation(s)
- Taksaon Duangurai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
4
|
Biochemical and functional characterization of SpdA, a 2', 3'cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti. BMC Microbiol 2013; 13:268. [PMID: 24279347 PMCID: PMC4222275 DOI: 10.1186/1471-2180-13-268] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/11/2013] [Indexed: 01/10/2023] Open
Abstract
Background 3′, 5′cAMP signaling in Sinorhizobium meliloti was recently shown to contribute to the autoregulation of legume infection. In planta, three adenylate cyclases CyaD1, CyaD2 and CyaK, synthesizing 3′, 5′cAMP, together with the Crp-like transcriptional regulator Clr and smc02178, a gene of unknown function, are involved in controlling plant infection. Results Here we report on the characterization of a gene (smc02179, spdA) at the cyaD1 locus that we predicted to encode a class III cytoplasmic phosphodiesterase. First, we have shown that spdA had a similar pattern of expression as smc02178 in planta but did not require clr nor 3′, 5′cAMP for expression. Second, biochemical characterization of the purified SpdA protein showed that, contrary to expectation, it had no detectable activity against 3′, 5′cAMP and, instead, high activity against the positional isomers 2′, 3′cAMP and 2′, 3′cGMP. Third, we provide direct experimental evidence that the purified Clr protein was able to bind both 2′, 3′cAMP and 3′, 5′cAMP in vitro at high concentration. We further showed that Clr is a 3′, 5′cAMP-dependent DNA-binding protein and identified a DNA-binding motif to which Clr binds. In contrast, 2′, 3′cAMP was unable to promote Clr specific-binding to DNA and activate smc02178 target gene expression ex planta. Fourth, we have shown a negative impact of exogenous 2′, 3′cAMP on 3′, 5′cAMP-mediated signaling in vivo. A spdA null mutant was also partially affected in 3′, 5′cAMP signaling. Conclusions SpdA is a nodule-expressed 2′, 3′ specific phosphodiesterase whose biological function remains elusive. Circumstantial evidence suggests that SpdA may contribute insulating 3′, 5′cAMP-based signaling from 2′, 3′ cyclic nucleotides of metabolic origin.
Collapse
|
5
|
Enzymatic and functional analysis of a protein phosphatase, Pph3, from Myxococcus xanthus. J Bacteriol 2011; 193:2657-61. [PMID: 21398555 DOI: 10.1128/jb.01357-10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A protein phosphatase, designated Pph3, from Myxococcus xanthus showed the enzymatic characteristics of PP2C-type serine/threonine protein phosphatases, which are metal ion-dependent, okadaic acid-insensitive protein phosphatases. The pph3 mutant under starvation conditions formed immature fruiting bodies and reduced sporulation.
Collapse
|
6
|
Enzymatic and mutational analyses of a class II 3',5'-cyclic nucleotide phosphodiesterase, PdeE, from Myxococcus xanthus. J Bacteriol 2011; 193:2053-7. [PMID: 21317337 DOI: 10.1128/jb.01250-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus PdeE, an enzyme homologous to class II 3',5'-cyclic nucleotide phosphodiesterases, hydrolyzed cyclic AMP (cAMP) and cGMP with K(m) values of 12 μM and 25 μM, respectively. A pdeE mutant exhibited delays in fruiting body and spore formation compared with the wild type when cultured on starvation medium.
Collapse
|
7
|
Pumirat P, Cuccui J, Stabler RA, Stevens JM, Muangsombut V, Singsuksawat E, Stevens MP, Wren BW, Korbsrisate S. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol 2010; 10:171. [PMID: 20540813 PMCID: PMC2896371 DOI: 10.1186/1471-2180-10-171] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 06/14/2010] [Indexed: 11/28/2022] Open
Abstract
Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kimura Y, Kakemizu A, Matsubara Y, Takegawa K. Interaction between a Ser/Thr protein kinase, SpkA, and a cAMP-dependent protein kinase regulatory subunit homolog, CbpB, from Myxococcus xanthus. J GEN APPL MICROBIOL 2010; 55:499-502. [PMID: 20118614 DOI: 10.2323/jgam.55.499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yoshio Kimura
- Department of Applied Biological Science, Kagawa University, Kagawa, Japan.
| | | | | | | |
Collapse
|
9
|
Glycine betaine biosynthesized from glycine provides an osmolyte for cell growth and spore germination during osmotic stress in Myxococcus xanthus. J Bacteriol 2009; 192:1467-70. [PMID: 20023011 DOI: 10.1128/jb.01118-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycine sarcosine methyltransferase (Gsm) and sarcosine dimethylglycine methyltransferase (Sdm) catalyze glycine betaine synthesis from glycine. Disruption of the M. xanthus gsmA (MXAN 7068) or sdmA (MXAN 3190) gene, encoding Gsm or Sdm homologue proteins, respectively, generated mutants that exhibited a longer lag period of growth and delayed spore germination under osmostress.
Collapse
|
10
|
The Prokaryotic Origin and Evolution of Eukaryotic Chemosignaling Systems. ACTA ACUST UNITED AC 2009; 39:793-804. [DOI: 10.1007/s11055-009-9190-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Indexed: 10/20/2022]
|
11
|
Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 2009; 85:1061-8. [PMID: 19568747 DOI: 10.1007/s00253-009-2066-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/12/2009] [Accepted: 05/28/2009] [Indexed: 11/30/2022]
Abstract
Genome analysis of C. glutamicum ATCC 13032 has showed one putative adenylate cyclase gene, cyaB (cg0375) which encodes membrane protein belonging to class III adenylate cyclases. To characterize the function of cyaB, a deletion mutant was constructed, and the mutant showed decreased level of intracellular cyclic AMP compared to that of wild-type. Interestingly, the cyaB mutant displayed growth defect on acetate medium, and this effect was reversed by complementation with cyaB gene. Similarly, it showed growth defect on glucose-acetate mixture minimal medium, and the utilization of glucose was retarded in the presence of acetate. The deletion mutant retained the activity of glyoxylate bypass enzymes. Additionally, the mutant could grow on ethanol but not on propionate medium. The data obtained from this study suggests that adenylate cyclase plays an essential role in the acetate metabolism of C. glutamicum, even though detailed regulatory mechanisms involving cAMP are not yet clearly defined. The observation that glyoxylate bypass enzymes are derepressed in cyaB mutant indicates the involvement of cAMP in the repression of aceB and aceA.
Collapse
|
12
|
Kimura Y, Kakemizu A, Matsubara Y, Takegawa K. Enzymatic characteristics of a Ser/Thr protein kinase, SpkA, from Myxococcus xanthus. J Biosci Bioeng 2009; 107:10-5. [PMID: 19147102 DOI: 10.1016/j.jbiosc.2008.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 08/26/2008] [Indexed: 11/26/2022]
Abstract
Two Ser/Thr protein kinases, SpkA and SpkB, selected from Myxococcus xanthus based on amino acid sequence similarities with the catalytic subunits of cAMP-dependent protein kinases (PKA) were synthesized using a cell-free protein synthesis system. In various protein kinase assays, purified StkA and StkB showed their highest protein kinase activities in a PKA assay using the selective PKA substrate Kemptide and in a protein kinase C (PKC) assay using the selective PKC substrate neurogranin((28-43)), respectively. SpkA had apparent K(m) values of 45 microM and 37 microM for Kemptide and ATP, respectively. Phosphorylation of Kemptide was inhibited by a specific PKA inhibitor peptide, PKI(5-24), and the IC(50) and K(i) values for inhibition of the SpkA activity were 117 nM and 36 nM, respectively.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan.
| | | | | | | |
Collapse
|
13
|
Enzymatic characteristics of two novelMyxococcus xanthusenzymes, PdeA and PdeB, displaying 3′,5′- and 2′,3′-cAMP phosphodiesterase, and phosphatase activities. FEBS Lett 2008; 583:443-8. [DOI: 10.1016/j.febslet.2008.12.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
|
14
|
|
15
|
Shpakov AO, Pertseva MN. Chapter 4 Signaling Systems of Lower Eukaryotes and Their Evolution. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 269:151-282. [DOI: 10.1016/s1937-6448(08)01004-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Matsunaga J, Medeiros MA, Sanchez Y, Werneid KF, Ko AI. Osmotic regulation of expression of two extracellular matrix-binding proteins and a haemolysin of Leptospira interrogans: differential effects on LigA and Sph2 extracellular release. MICROBIOLOGY-SGM 2007; 153:3390-3398. [PMID: 17906138 DOI: 10.1099/mic.0.2007/007948-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The life cycle of the pathogen Leptospira interrogans involves stages outside and inside the host. Entry of L. interrogans from moist environments into the host is likely to be accompanied by the induction of genes encoding virulence determinants and the concomitant repression of genes encoding products required for survival outside of the host. The expression of the adhesin LigA, the haemolysin Sph2 (Lk73.5) and the outer-membrane lipoprotein LipL36 of pathogenic Leptospira species have been reported to be regulated by mammalian host signals. A previous study demonstrated that raising the osmolarity of the leptospiral growth medium to physiological levels encountered in the host by addition of various salts enhanced the levels of cell-associated LigA and LigB and extracellular LigA. In this study, we systematically examined the effects of osmotic upshift with ionic and non-ionic solutes on expression of the known mammalian host-regulated leptospiral genes. The levels of cell-associated LigA, LigB and Sph2 increased at physiological osmolarity, whereas LipL36 levels decreased, corresponding to changes in specific transcript levels. These changes in expression occurred irrespective of whether sodium chloride or sucrose was used as the solute. The increase of cellular LigA, LigB and Sph2 protein levels occurred within hours of adding sodium chloride. Extracellular Sph2 levels increased when either sodium chloride or sucrose was added to achieve physiological osmolarity. In contrast, enhanced levels of extracellular LigA were observed only with an increase in ionic strength. These results indicate that the mechanisms for release of LigA and Sph2 differ during host infection. Thus, osmolarity not only affects leptospiral gene expression by affecting transcript levels of putative virulence determinants but also affects the release of such proteins into the surroundings.
Collapse
Affiliation(s)
- James Matsunaga
- UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
- VA Greater Los Angeles Healthcare System, Research Service, Los Angeles, CA 90073, USA
| | - Marco A Medeiros
- Biomanguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, Brazil
| | - Yolanda Sanchez
- VA Greater Los Angeles Healthcare System, Research Service, Los Angeles, CA 90073, USA
| | - Kristian F Werneid
- VA Greater Los Angeles Healthcare System, Research Service, Los Angeles, CA 90073, USA
| | - Albert I Ko
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Salvador, Brazil
- Division of International Medicine and Infectious Diseases, Weill Medical College of Cornell University, New York, NY 10021, USA
| |
Collapse
|
17
|
Dittrich D, Keller C, Ehlers S, Schultz JE, Sander P. Characterization of a Mycobacterium tuberculosis mutant deficient in pH-sensing adenylate cyclase Rv1264. Int J Med Microbiol 2006; 296:563-6. [PMID: 17005450 DOI: 10.1016/j.ijmm.2006.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 06/30/2006] [Accepted: 07/13/2006] [Indexed: 10/24/2022] Open
Abstract
Mycobacterium tuberculosis open reading frame Rv1264 encodes an adenylate cyclase that exhibits its highest enzymatic activity at an acidic pH of 6.0. This is the pH M. tuberculosis encounters in the phagosome. Consequently Rv1264 has been suggested to sense the phagosomal milieu resulting in adaption of M. tuberculosis to its intracellular niche. A targeted knock-out mutant deficient in Rv1264, however, exhibits wild-type virulence.
Collapse
Affiliation(s)
- Dorothea Dittrich
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Bonner PJ, Shimkets LJ. Cohesion-defective mutants of Myxococcus xanthus. J Bacteriol 2006; 188:4585-8. [PMID: 16740967 PMCID: PMC1482973 DOI: 10.1128/jb.00237-06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 03/23/2006] [Indexed: 11/20/2022] Open
Abstract
Cohesion of Myxococcus xanthus cells involves interaction of a cell surface cohesin with a component of the extracellular matrix. In this work, two previously isolated cohesion-defective (fbd) mutants were characterized. The fbdA and fbdB genes do not encode the cohesins but are necessary for their production. Both mutants produce type IV pili, suggesting that PilA is not a major cohesin.
Collapse
Affiliation(s)
- Pamela J Bonner
- Department of Microbiology, 527 Biological Sciences Building, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
19
|
Kimura Y, Nakatuma H, Sato N, Ohtani M. Contribution of the cyclic nucleotide phosphodiesterases PdeA and PdeB to adaptation of Myxococcus xanthus cells to osmotic or high-temperature stress. J Bacteriol 2006; 188:823-8. [PMID: 16385075 PMCID: PMC1347295 DOI: 10.1128/jb.188.2.823-828.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tBLASTn search of the Myxococcus xanthus genome database at The Institute for Genomic Research (TIGR) identified three genes (pdeA, pdeB, and pdeC) that encode proteins homologous to 3',5'-cyclic nucleotide phosphodiesterase. pdeA, pdeB, and pdeC mutants, constructed by replacing a part of the gene with the kanamycin or tetracycline resistance gene, showed normal growth, development, and germination under nonstress conditions. However, the spores of mutants, especially the pdeA and pdeB mutants, placed under osmotic stress germinated earlier than the wild-type spores. The phenotype was the opposite of that of the receptor-type adenylyl cyclase (cyaA or cyaB) mutant. Also, pdeA and pdeB mutants were found to have impaired growth under the condition of high-temperature stress. Intracellular cyclic AMP (cAMP) levels of pdeA or pdeB mutant cells under these stressful conditions were about 1.3-fold to 2.0-fold higher than those of wild-type cells. These results suggest that PdeA and PdeB may be involved in osmotic adaptation during spore germination and temperature adaptation during vegetative growth through the regulation of cAMP levels.
Collapse
Affiliation(s)
- Yoshio Kimura
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa, Japan 761-0795.
| | | | | | | |
Collapse
|