1
|
Mawla GD, Kamal SM, Cao LY, Purhonen P, Hebert H, Sauer RT, Baker TA, Römling U. The membrane-cytoplasmic linker defines activity of FtsH proteases in Pseudomonas aeruginosa clone C. J Biol Chem 2024; 300:105622. [PMID: 38176647 PMCID: PMC10850787 DOI: 10.1016/j.jbc.2023.105622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Pandemic Pseudomonas aeruginosa clone C strains encode two inner-membrane associated ATP-dependent FtsH proteases. PaftsH1 is located on the core genome and supports cell growth and intrinsic antibiotic resistance, whereas PaftsH2, a xenolog acquired through horizontal gene transfer from a distantly related species, is unable to functionally replace PaftsH1. We show that purified PaFtsH2 degrades fewer substrates than PaFtsH1. Replacing the 31-amino acid-extended linker region of PaFtsH2 spanning from the C-terminal end of the transmembrane helix-2 to the first seven highly divergent residues of the cytosolic AAA+ ATPase module with the corresponding region of PaFtsH1 improves hybrid-enzyme substrate processing in vitro and enables PaFtsH2 to substitute for PaFtsH1 in vivo. Electron microscopy indicates that the identity of this linker sequence influences FtsH flexibility. We find membrane-cytoplasmic (MC) linker regions of PaFtsH1 characteristically glycine-rich compared to those from FtsH2. Consequently, introducing three glycines into the membrane-proximal end of PaFtsH2's MC linker is sufficient to elevate its activity in vitro and in vivo. Our findings establish that the efficiency of substrate processing by the two PaFtsH isoforms depends on MC linker identity and suggest that greater linker flexibility and/or length allows FtsH to degrade a wider spectrum of substrates. As PaFtsH2 homologs occur across bacterial phyla, we hypothesize that FtsH2 is a latent enzyme but may recognize specific substrates or is activated in specific contexts or biological niches. The identity of such linkers might thus play a more determinative role in the functionality of and physiological impact by FtsH proteases than previously thought.
Collapse
Affiliation(s)
- Gina D Mawla
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Shady M Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden
| | - Lian-Ying Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden
| | - Pasi Purhonen
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge; Sweden
| | - Hans Hebert
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Huddinge; Sweden
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm; Sweden.
| |
Collapse
|
2
|
Gayán E, Wang Z, Salvador M, Gänzle MG, Aertsen A. Dynamics of high hydrostatic pressure resistance development in RpoS-deficient Escherichia coli. Food Res Int 2023; 164:112280. [PMID: 36737893 DOI: 10.1016/j.foodres.2022.112280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
High hydrostatic pressure (HHP) treatment is one of the most widely accepted non-thermal food processing methods, but HHP-resistance development in pathogenic or spoilage bacteria might compromise the safety and stability of HHP-treated foods. Charting the possible routes and mechanisms of HHP resistance development in foodborne bacteria is therefore essential to anticipate or prevent the appearance of resistant variants. While upregulation of the RpoS-governed general stress response is a well-established route for increased HHP resistance in Escherichia coli, previous work revealed that mutations causing attenuated cAMP/CRP activity or aggregation-prone TnaA variants can evolve to overcome the HHP-hypersensitivity of an E. coli ΔrpoS mutant. In this study, further directed evolution and genetic analysis approaches allowed us to demonstrate that both kinds of mutants tend to co-emerge and compete with each other in E. coli ΔrpoS populations evolving towards HHP resistance, because of the higher HHP resistance of cAMP/CRP mutants and the faster growth rate of the TnaA mutants. Moreover, closer scrutiny of evolving populations revealed RpoS, cAMP/CRP and TnaA independent routes of HHP resistance development, based on downregulation of YegW or RppH activity.
Collapse
Affiliation(s)
- Elisa Gayán
- Department of Microbial and Molecular Systems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001 Leuven, Belgium
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Abram Aertsen
- Department of Microbial and Molecular Systems, KU Leuven, Faculty of Bioscience Engineering, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| |
Collapse
|
3
|
Xu W, Gao W, Bu Q, Li Y. Degradation Mechanism of AAA+ Proteases and Regulation of Streptomyces Metabolism. Biomolecules 2022; 12:biom12121848. [PMID: 36551276 PMCID: PMC9775585 DOI: 10.3390/biom12121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Hundreds of proteins work together in microorganisms to coordinate and control normal activity in cells. Their degradation is not only the last step in the cell's lifespan but also the starting point for its recycling. In recent years, protein degradation has been extensively studied in both eukaryotic and prokaryotic organisms. Understanding the degradation process is essential for revealing the complex regulatory network in microorganisms, as well as further artificial reconstructions and applications. This review will discuss several studies on protein quality-control family members Lon, FtsH, ClpP, the proteasome in Streptomyces, and a few classical model organisms, mainly focusing on their structure, recognition mechanisms, and metabolic influences.
Collapse
Affiliation(s)
- Weifeng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Wenli Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Qingting Bu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
| | - Yongquan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou 310058, China
- Correspondence:
| |
Collapse
|
4
|
Morehouse JP, Baker TA, Sauer RT. FtsH degrades dihydrofolate reductase by recognizing a partially folded species. Protein Sci 2022; 31:e4410. [PMID: 36630366 PMCID: PMC9601784 DOI: 10.1002/pro.4410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 01/14/2023]
Abstract
AAA+ proteolytic machines play essential roles in maintaining and rebalancing the cellular proteome in response to stress, developmental cues, and environmental changes. Of the five AAA+ proteases in Escherichia coli, FtsH is unique in its attachment to the inner membrane and its function in degrading both membrane and cytosolic proteins. E. coli dihydrofolate reductase (DHFR) is a stable and biophysically well-characterized protein, which a previous study found resisted FtsH degradation despite the presence of an ssrA degron. By contrast, we find that FtsH degrades DHFR fused to a long peptide linker and ssrA tag. Surprisingly, we also find that FtsH degrades DHFR with shorter linkers and ssrA tag, and without any linker or tag. Thus, FtsH must be able to recognize a sequence element or elements within DHFR. We find that FtsH degradation of DHFR is noncanonical in the sense that it does not rely upon recognition of an unstructured polypeptide at or near the N-terminus or C-terminus of the substrate. Results using peptide-array experiments, mutant DHFR proteins, and fusion proteins suggest that FtsH recognizes an internal sequence in a species of DHFR that is partially unfolded. Overall, our findings provide insight into substrate recognition by FtsH and indicate that its degradation capacity is broader than previously reported.
Collapse
Affiliation(s)
- Juhee P. Morehouse
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Tania A. Baker
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Robert T. Sauer
- Department of BiologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Ma X, Ma L, Huo YX. Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends Biotechnol 2021; 40:735-751. [PMID: 34895933 DOI: 10.1016/j.tibtech.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An ideal microbial cell factory (MCF) should deliver maximal resources to production, which conflicts with the microbe's native growth-oriented resource allocation strategy and can therefore lead to early termination of the high-yield period. Reallocating resources from growth to production has become a critical factor in constructing robust MCFs. Instead of strengthening specific biosynthetic pathways, emerging endeavors are focused on rearranging the gene regulatory network to fundamentally reprogram the resource allocation pattern. Combining this idea with transcriptional regulation within the hierarchical regulatory network, this review discusses recent engineering strategies targeting the transcription machinery, module networks, regulatory edges, and bottom network layer. This global view will help to construct a production-oriented phenotype that fully harnesses the potential of MCFs.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China.
| |
Collapse
|
6
|
Lon Protease Removes Excess Signal Recognition Particle Protein in Escherichia coli. J Bacteriol 2020; 202:JB.00161-20. [PMID: 32366590 DOI: 10.1128/jb.00161-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Correct targeting of membrane proteins is essential for membrane integrity, cell physiology, and viability. Cotranslational targeting depends on the universally conserved signal recognition particle (SRP), which is a ribonucleoprotein complex comprised of the protein component Ffh and the 4.5S RNA in Escherichia coli About 25 years ago it was reported that Ffh is an unstable protein, but the underlying mechanism has never been explored. Here, we show that Lon is the primary protease responsible for adjusting the cellular Ffh level. When overproduced, Ffh is particularly prone to degradation during transition from exponential to stationary growth and the cellular Ffh amount is lowest in stationary phase. The Ffh protein consists of two domains, the NG domain, responsible for GTP hydrolysis and docking to the membrane receptor FtsY, and the RNA-binding M domain. We find that the NG domain alone is stable, whereas the isolated M domain is degraded. Consistent with the importance of Lon in this process, the M domain confers synthetic lethality to the lon mutant. The Ffh homolog from the model plant Arabidopsis thaliana, which forms a protein-protein complex rather than a protein-RNA complex, is stable, suggesting that the RNA-binding ability residing in the M domain of E. coli Ffh is important for proteolysis. Our results support a model in which excess Ffh not bound to 4.5S RNA is subjected to proteolysis until an appropriate Ffh concentration is reached. The differential proteolysis adjusts Ffh levels to the cellular demand and maintains cotranslational protein transport and membrane integrity.IMPORTANCE Since one-third of all bacterial proteins reside outside the cytoplasm, protein targeting to the appropriate address is an essential process. Cotranslational targeting to the membrane relies on the signal recognition particle (SRP), which is a protein-RNA complex in bacteria. We report that the protein component Ffh is a substrate of the Lon protease. Regulated proteolysis of Ffh provides a simple mechanism to adjust the concentration of the essential protein to the cellular demand. This is important because elevated or depleted SRP levels negatively impact protein targeting and bacterial fitness.
Collapse
|
7
|
Yura T, Miyazaki R, Fujiwara K, Ito K, Chiba S, Mori H, Akiyama Y. Heat shock transcription factor σ<sup>32</sup> defective in membrane transport can be suppressed by transposon insertion into genes encoding a restriction enzyme subunit or a putative autotransporter in <i>Escherichia coli</i>. Genes Genet Syst 2018; 93:229-235. [DOI: 10.1266/ggs.18-00040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University
| | - Ryoji Miyazaki
- Institute for Frontier Life and Medical Sciences, Kyoto University
| | | | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University
| | | | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University
| | | |
Collapse
|
8
|
Mitsui H, Minamisawa K. Expression of Two RpoH Sigma Factors in Sinorhizobium meliloti upon Heat Shock. Microbes Environ 2017; 32:394-397. [PMID: 29199214 PMCID: PMC5745026 DOI: 10.1264/jsme2.me17087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The plant symbiotic α-proteobacterium Sinorhizobium meliloti has two RpoH-type sigma factors, RpoH1 and RpoH2. The former induces the synthesis of heat shock proteins and optimizes interactions with the host. Using a Western blot analysis, we examined time course changes in the intracellular contents of these factors upon a temperature upshift. The RpoH1 level was relatively high and constant, suggesting that its regulatory role in the heat shock response is attained through the activation of the pre-existing RpoH1 protein. In contrast, the RpoH2 level was initially undetectable, and gradually increased. These differential patterns reflect the functional diversification of these factors.
Collapse
|
9
|
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 2017; 41:549-574. [PMID: 28402413 DOI: 10.1093/femsre/fux015] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
Bittner LM, Arends J, Narberhaus F. When, how and why? Regulated proteolysis by the essential FtsH protease in Escherichia coli. Biol Chem 2017; 398:625-635. [PMID: 28085670 DOI: 10.1515/hsz-2016-0302] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/09/2017] [Indexed: 11/15/2022]
Abstract
Cellular proteomes are dynamic and adjusted to permanently changing conditions by ATP-fueled proteolytic machineries. Among the five AAA+ proteases in Escherichia coli FtsH is the only essential and membrane-anchored metalloprotease. FtsH is a homohexamer that uses its ATPase domain to unfold and translocate substrates that are subsequently degraded without the need of ATP in the proteolytic chamber of the protease domain. FtsH eliminates misfolded proteins in the context of general quality control and properly folded proteins for regulatory reasons. Recent trapping approaches have revealed a number of novel FtsH substrates. This review summarizes the substrate diversity of FtsH and presents details on the surprisingly diverse recognition principles of three well-characterized substrates: LpxC, the key enzyme of lipopolysaccharide biosynthesis; RpoH, the alternative heat-shock sigma factor and YfgM, a bifunctional membrane protein implicated in periplasmic chaperone functions and cytoplasmic stress adaptation.
Collapse
Affiliation(s)
- Lisa-Marie Bittner
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| | - Jan Arends
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, Universitätsstr. 150, NDEF 06/783, D-44801 Bochum
| |
Collapse
|
11
|
Arends J, Thomanek N, Kuhlmann K, Marcus K, Narberhaus F. In vivo trapping of FtsH substrates by label-free quantitative proteomics. Proteomics 2016; 16:3161-3172. [DOI: 10.1002/pmic.201600316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Arends
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| | - Nikolas Thomanek
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katja Kuhlmann
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Katrin Marcus
- Ruhr-Universität Bochum; Medizinisches Proteom-Center; Bochum Germany
| | - Franz Narberhaus
- Ruhr-Universität Bochum; Lehrstuhl Biologie der Mikroorganismen; Bochum Germany
| |
Collapse
|
12
|
A Novel SRP Recognition Sequence in the Homeostatic Control Region of Heat Shock Transcription Factor σ32. Sci Rep 2016; 6:24147. [PMID: 27052372 PMCID: PMC4823717 DOI: 10.1038/srep24147] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/21/2016] [Indexed: 12/29/2022] Open
Abstract
Heat shock response (HSR) generally plays a major role in sustaining protein homeostasis. In Escherichia coli, the activity and amount of the dedicated transcription factor σ32 transiently increase upon heat shock. The initial induction is followed by chaperone-mediated negative feedback to inactivate and degrade σ32. Previous work reported that signal recognition particle (SRP)-dependent targeting of σ32 to the membrane is essential for feedback control, though how SRP recognizes σ32 remained unknown. Extensive photo- and disulfide cross-linking studies in vivo now reveal that the highly conserved regulatory region of σ32 that lacks a consecutive hydrophobic stretch interacts with the signal peptide-binding site of Ffh (the protein subunit of SRP). Importantly, the σ32–Ffh interaction observed was significantly affected by mutations in this region that compromise the feedback regulation, but not by deleting the DnaK/DnaJ chaperones. Homeostatic regulation of HSR thus requires a novel type of SRP recognition mechanism.
Collapse
|
13
|
Müller A, Eller J, Albrecht F, Prochnow P, Kuhlmann K, Bandow JE, Slusarenko AJ, Leichert LIO. Allicin Induces Thiol Stress in Bacteria through S-Allylmercapto Modification of Protein Cysteines. J Biol Chem 2016; 291:11477-90. [PMID: 27008862 PMCID: PMC4882420 DOI: 10.1074/jbc.m115.702308] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/18/2022] Open
Abstract
Allicin (diallyl thiosulfinate) from garlic is a highly potent natural antimicrobial substance. It inhibits growth of a variety of microorganisms, among them antibiotic-resistant strains. However, the precise mode of action of allicin is unknown. Here, we show that growth inhibition of Escherichia coli during allicin exposure coincides with a depletion of the glutathione pool and S-allylmercapto modification of proteins, resulting in overall decreased total sulfhydryl levels. This is accompanied by the induction of the oxidative and heat stress response. We identified and quantified the allicin-induced modification S-allylmercaptocysteine for a set of cytoplasmic proteins by using a combination of label-free mass spectrometry and differential isotope-coded affinity tag labeling of reduced and oxidized thiol residues. Activity of isocitrate lyase AceA, an S-allylmercapto-modified candidate protein, is largely inhibited by allicin treatment in vivo. Allicin-induced protein modifications trigger protein aggregation, which largely stabilizes RpoH and thereby induces the heat stress response. At sublethal concentrations, the heat stress response is crucial to overcome allicin stress. Our results indicate that the mode of action of allicin is a combination of a decrease of glutathione levels, unfolding stress, and inactivation of crucial metabolic enzymes through S-allylmercapto modification of cysteines.
Collapse
Affiliation(s)
- Alexandra Müller
- From the Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry
| | - Jakob Eller
- From the Institute of Biochemistry and Pathobiochemistry-Microbial Biochemistry
| | - Frank Albrecht
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52056 Aachen, Germany
| | | | - Katja Kuhlmann
- Medizinisches Proteom-Center, Ruhr University Bochum, 44780 Bochum, Germany and
| | | | - Alan John Slusarenko
- Department of Plant Physiology, Rheinisch-Westfälische Technische Hochschule Aachen University, 52056 Aachen, Germany
| | | |
Collapse
|
14
|
Bittner LM, Westphal K, Narberhaus F. Conditional Proteolysis of the Membrane Protein YfgM by the FtsH Protease Depends on a Novel N-terminal Degron. J Biol Chem 2015; 290:19367-78. [PMID: 26092727 DOI: 10.1074/jbc.m115.648550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
Regulated proteolysis efficiently and rapidly adapts the bacterial proteome to changing environmental conditions. Many protease substrates contain recognition motifs, so-called degrons, that direct them to the appropriate protease. Here we describe an entirely new degron identified in the cytoplasmic N-terminal end of the membrane-anchored protein YfgM of Escherichia coli. YfgM is stable during exponential growth and degraded in stationary phase by the essential FtsH protease. The alarmone (p)ppGpp, but not the previously described YfgM interactors RcsB and PpiD, influence YfgM degradation. By scanning mutagenesis, we define individual amino acids responsible for turnover of YfgM and find that the degron does not at all comply with the known N-end rule pathway. The YfgM degron is a distinct module that facilitates FtsH-mediated degradation when fused to the N terminus of another monotopic membrane protein but not to that of a cytoplasmic protein. Several lines of evidence suggest that stress-induced degradation of YfgM relieves the response regulator RcsB and thereby permits cellular protection by the Rcs phosphorelay system. On the basis of these and other results in the literature, we propose a model for how the membrane-spanning YfgM protein serves as connector between the stress responses in the periplasm and cytoplasm.
Collapse
Affiliation(s)
| | - Kai Westphal
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- From Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
15
|
Abstract
Microorganisms live in fluctuating environments, requiring stress response pathways to resist environmental insults and stress. These pathways dynamically monitor cellular status, and mediate adaptive changes by remodeling the proteome, largely accomplished by remodeling transcriptional networks and protein degradation. The complementarity of fast, specific proteolytic degradation and slower, broad transcriptomic changes gives cells the mechanistic repertoire to dynamically adjust cellular processes and optimize response behavior. Together, this enables cells to minimize the 'cost' of the response while maximizing the ability to survive environmental stress. Here we highlight recent progress in our understanding of transcriptional networks and proteolysis that illustrates the design principles used by bacteria to generate the complex behaviors required to resist stress.
Collapse
|
16
|
Lim B, Miyazaki R, Neher S, Siegele DA, Ito K, Walter P, Akiyama Y, Yura T, Gross CA. Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E. coli. PLoS Biol 2013; 11:e1001735. [PMID: 24358019 PMCID: PMC3866087 DOI: 10.1371/journal.pbio.1001735] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
The bacterial heat shock transcription factor, σ32, maintains proper protein homeostasis only after it is targeted to the inner membrane by the signal recognition particle (SRP), thereby enabling integration of protein folding information from both the cytoplasm and cell membrane. All cells must adapt to rapidly changing conditions. The heat shock response (HSR) is an intracellular signaling pathway that maintains proteostasis (protein folding homeostasis), a process critical for survival in all organisms exposed to heat stress or other conditions that alter the folding of the proteome. Yet despite decades of study, the circuitry described for responding to altered protein status in the best-studied bacterium, E. coli, does not faithfully recapitulate the range of cellular responses in response to this stress. Here, we report the discovery of the missing link. Surprisingly, we found that σ32, the central transcription factor driving the HSR, must be localized to the membrane rather than dispersed in the cytoplasm as previously assumed. Genetic analyses indicate that σ32 localization results from a protein targeting reaction facilitated by the signal recognition particle (SRP) and its receptor (SR), which together comprise a conserved protein targeting machine and mediate the cotranslational targeting of inner membrane proteins to the membrane. SRP interacts with σ32 directly and transports it to the inner membrane. Our results show that σ32 must be membrane-associated to be properly regulated in response to the protein folding status in the cell, explaining how the HSR integrates information from both the cytoplasm and bacterial cell membrane. All cells have to adjust to frequent changes in their environmental conditions. The heat shock response is a signaling pathway critical for survival of all organisms exposed to elevated temperatures. Under such conditions, the heat shock response maintains enzymes and other proteins in a properly folded state. The mechanisms for sensing temperature and the subsequent induction of the appropriate transcriptional response have been extensively studied. Prior to this work, however, the circuitry described in the best studied bacterium E. coli could not fully explain the range of cellular responses that are observed following heat shock. We report the discovery of this missing link. Surprisingly, we find that σ32, a transcription factor that induces gene expression during heat shock, needs to be localized to the membrane, rather than being active as a soluble cytoplasmic protein as previously thought. We show that, equally surprisingly, σ32 is targeted to the membrane by the signal recognition particle (SRP) and its receptor (SR). SRP and SR constitute a conserved protein targeting machine that normally only operates on membrane and periplasmic proteins that contain identifiable signal sequences. Intriguingly, σ32 does not have any canonical signal sequence for export or membrane-integration. Our results indicate that membrane-associated σ32, not soluble cytoplasmic σ32, is the preferred target of regulatory control in response to heat shock. Our new model thus explains how protein folding status from both the cytoplasm and bacterial cell membrane can be integrated to control the heat shock response.
Collapse
Affiliation(s)
- Bentley Lim
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
| | - Ryoji Miyazaki
- Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Saskia Neher
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Deborah A. Siegele
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Peter Walter
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, California United States of America
| | - Yoshinori Akiyama
- Institute for Virus Research, Kyoto University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Takashi Yura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| | - Carol A. Gross
- Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, California, United States of America
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California, United States
- * E-mail: (Y.A.); (T.Y.); (C.A.G.)
| |
Collapse
|
17
|
Nonnative disulfide bond formation activates the σ32-dependent heat shock response in Escherichia coli. J Bacteriol 2013; 195:2807-16. [PMID: 23585533 DOI: 10.1128/jb.00127-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of nonnative disulfide bonds in the cytoplasm, so-called disulfide stress, is an integral component of oxidative stress. Quantification of the extent of disulfide bond formation in the cytoplasm of Escherichia coli revealed that disulfide stress is associated with oxidative stress caused by hydrogen peroxide, paraquat, and cadmium. To separate the impact of disulfide bond formation from unrelated effects of these oxidative stressors in subsequent experiments, we worked with two complementary approaches. We triggered disulfide stress either chemically by diamide treatment of cells or genetically in a mutant strain lacking the major disulfide-reducing systems TrxB and Gor. Studying the proteomic response of E. coli exposed to disulfide stress, we found that intracellular disulfide bond formation is a particularly strong inducer of the heat shock response. Real-time quantitative PCR experiments showed that disulfide stress induces the heat shock response in E. coli σ(32) dependently. However, unlike heat shock treatment, which induces these genes transiently, transcripts of σ(32)-dependent genes accumulated over time in disulfide stress-treated cells. Analyzing the stability of σ(32), we found that this constant induction can be attributed to an increase of the half-life of σ(32) upon disulfide stress. This is concomitant with aggregation of E. coli proteins treated with diamide. We conclude that oxidative stress triggers the heat shock response in E. coli σ(32) dependently. The component of oxidative stress responsible for the induction of heat shock genes is disulfide stress. Nonnative disulfide bond formation in the cytoplasm causes protein unfolding. This stabilizes σ(32) by preventing its DnaK- and FtsH-dependent degradation.
Collapse
|
18
|
Abstract
FtsH, a member of the AAA (ATPases associated with a variety of cellular activities) family of proteins, is an ATP-dependent protease of ∼71 kDa anchored to the inner membrane. It plays crucial roles in a variety of cellular processes. It is responsible for the degradation of both membrane and cytoplasmic substrate proteins. Substrate proteins are unfolded and translocated through the central pore of the ATPase domain into the proteolytic chamber, where the polypeptide chains are processively degraded into short peptides. FtsH is not only involved in the proteolytic elimination of unnecessary proteins, but also in the proteolytic regulation of a number of cellular functions. Its role in proteolytic regulation is achieved by one of two approaches, either the cellular levels of a regulatory protein are controlled by processive degradation of the entire protein, or the activity of a particular substrate protein is modified by processing. In the latter case, protein processing requires the presence of a stable domain within the substrate. Since FtsH does not have a robust unfolding activity, this stable domain is sufficient to abort processive degradation of the protein - resulting in release of a stable protein fragment.
Collapse
Affiliation(s)
- Takashi Okuno
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan,
| | | |
Collapse
|
19
|
Westphal K, Langklotz S, Thomanek N, Narberhaus F. A trapping approach reveals novel substrates and physiological functions of the essential protease FtsH in Escherichia coli. J Biol Chem 2012; 287:42962-71. [PMID: 23091052 DOI: 10.1074/jbc.m112.388470] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteolysis is a universal strategy to rapidly adjust the amount of regulatory and metabolic proteins to cellular demand. FtsH is the only membrane-anchored and essential ATP-dependent protease in Escherichia coli. Among the known functions of FtsH are the control of the heat shock response by proteolysis of the transcription factor RpoH (σ(32)) and its essential role in lipopolysaccharide biosynthesis by degradation of the two key enzymes LpxC and KdtA. Here, we identified new FtsH substrates by using a proteomic-based substrate trapping approach. An FtsH variant (FtsH(trap)) carrying a single amino acid exchange in the proteolytic center was expressed and purified in E. coli. FtsH(trap) is devoid of its proteolytic activity but fully retains ATPase activity allowing for unfolding and translocation of substrates into the inactivated proteolytic chamber. Proteins associated with FtsH(trap) and wild-type FtsH (FtsH(WT)) were purified, separated by two-dimensional PAGE, and subjected to mass spectrometry. Over-representation of LpxC in the FtsH(trap) preparation validated the trapping strategy. Four novel FtsH substrates were identified. The sulfur delivery protein IscS and the d-amino acid dehydrogenase DadA were degraded under all tested conditions. The formate dehydrogenase subunit FdoH and the yet uncharacterized YfgM protein were subject to growth condition-dependent regulated proteolysis. Several lines of evidence suggest that YfgM serves as negative regulator of the RcsB-dependent stress response pathway, which must be degraded under stress conditions. The proteins captured by FtsH(trap) revealed previously unknown biological functions of the physiologically most important AAA(+) protease in E. coli.
Collapse
Affiliation(s)
- Kai Westphal
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
20
|
Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods 2012; 58:325-34. [PMID: 22841567 DOI: 10.1016/j.ymeth.2012.07.018] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/29/2012] [Accepted: 07/13/2012] [Indexed: 10/28/2022] Open
Abstract
The bacterial two-hybrid system based on the reconstitution of adenylate cyclase in Escherichia coli (BACTH) was described 14years ago (Karimova, Pidoux, Ullmann, and Ladant, 1998, PNAS, 95:5752). For microbiologists, it is a practical and powerful alternative to the use of the widely spread yeast two-hybrid technology for testing protein-protein interactions. In this review, we aim at giving the reader clear and most importantly simple instructions that should break any reticence to try the technique. Yet, we also add recommendations in the use of the system, related to its specificities. Finally, we expose the advantages and disadvantages of the technique, and review its diverse applications in the literature, which should help in deciding if it is the appropriate method to choose for the case at hand.
Collapse
|
21
|
Suzuki H, Ikeda A, Tsuchimoto S, Adachi KI, Noguchi A, Fukumori Y, Kanemori M. Synergistic binding of DnaJ and DnaK chaperones to heat shock transcription factor σ32 ensures its characteristic high metabolic instability: implications for heat shock protein 70 (Hsp70)-Hsp40 mode of function. J Biol Chem 2012; 287:19275-83. [PMID: 22496372 DOI: 10.1074/jbc.m111.331470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli heat shock transcription factor σ(32) is rapidly degraded by ATP-dependent proteases, such as FtsH and ClpYQ. Although the DnaK chaperone system (DnaK, DnaJ, and GrpE) promotes σ(32) degradation in vivo, the precise mechanism that is involved remains unknown. Our previous results indicated that σ(32) mutants containing amino acid substitution in the N-terminal half of Region 2.1 are markedly stabilized in vivo. Here, we report the further characterization of these mutants by examining purified σ(32) mutants in vitro. Surprisingly, I54A σ(32), a very stable mutant, is more susceptible to ClpYQ and FtsH proteases than wild-type σ(32), indicating that the stability of σ(32) does not always reflect its susceptibility to proteases. Co-precipitation and gel filtration analyses show that purified σ(32) mutants exhibit a reduced affinity for DnaJ, leading to a marked decrease in forming a complex with DnaK in the presence of DnaJ and ATP. Other mutants with modestly increased stability (A50S σ(32) and K51E σ(32)) show an intermediate efficiency of complex formation with DnaK, suggesting that defects in binding to DnaK and DnaJ are well correlated with metabolic stability; effective interaction with DnaK promotes σ(32) degradation in vivo. We argue that the stable and effective interaction of heat shock protein 70 (Hsp70) with a substrate polypeptide may generally require the simultaneous binding of heat shock protein 40 (Hsp40) to distinct sites on the substrate.
Collapse
Affiliation(s)
- Hirotaka Suzuki
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Langklotz S, Baumann U, Narberhaus F. Structure and function of the bacterial AAA protease FtsH. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1823:40-8. [PMID: 21925212 DOI: 10.1016/j.bbamcr.2011.08.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 10/17/2022]
Abstract
Proteolysis of regulatory proteins or key enzymes of biosynthetic pathways is a universal mechanism to rapidly adjust the cellular proteome to particular environmental needs. Among the five energy-dependent AAA(+) proteases in Escherichia coli, FtsH is the only essential protease. Moreover, FtsH is unique owing to its anchoring to the inner membrane. This review describes the structural and functional properties of FtsH. With regard to its role in cellular quality control and regulatory circuits, cytoplasmic and membrane substrates of the FtsH protease are depicted and mechanisms of FtsH-dependent proteolysis are discussed.
Collapse
Affiliation(s)
- Sina Langklotz
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Germany
| | | | | |
Collapse
|
23
|
Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli. Appl Environ Microbiol 2011; 77:6622-9. [PMID: 21784905 DOI: 10.1128/aem.05469-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phasins (PhaP) are proteins normally associated with granules of poly(3-hydroxybutyrate) (PHB), a biodegradable polymer accumulated by many bacteria as a reserve molecule. These proteins enhance growth and polymer production in natural and recombinant PHB producers. It has been shown that the production of PHB causes stress in recombinant Escherichia coli, revealed by an increase in the concentrations of several heat stress proteins. In this work, quantitative reverse transcription (qRT)-PCR analysis was used to study the effect of PHB accumulation, and that of PhaP from Azotobacter sp. strain FA8, on the expression of stress-related genes in PHB-producing E. coli. While PHB accumulation was found to increase the transcription of dnaK and ibpA, the expression of these genes and of groES, groEL, rpoH, dps, and yfiD was reduced, when PhaP was coexpressed, to levels even lower than those detected in the non-PHB-accumulating control. These results demonstrated the protective role of PhaP in PHB-synthesizing E. coli and linked the effects of the protein to the expression of stress-related genes, especially ibpA. The effect of PhaP was also analyzed in non-PHB-synthesizing strains, showing that expression of this heterologous protein has an unexpected protective effect in E. coli, under both normal and stress conditions, resulting in increased growth and higher resistance to both heat shock and superoxide stress by paraquat. In addition, PhaP expression was shown to reduce RpoH protein levels during heat shock, probably by reducing or titrating the levels of misfolded proteins.
Collapse
|
24
|
Meyer AS, Baker TA. Proteolysis in the Escherichia coli heat shock response: a player at many levels. Curr Opin Microbiol 2011; 14:194-9. [PMID: 21353626 DOI: 10.1016/j.mib.2011.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 02/03/2011] [Indexed: 11/29/2022]
Abstract
Proteolysis is a fundamental process used by all forms of life to maintain homeostasis, as well as to remodel the proteome following environmental changes. Here, we explore recent advances in understanding the role of proteolysis during the heat shock response of Escherichia coli. Proteolysis both regulates and contributes directly to and the heat shock response at multiple different levels, from adjusting the levels of the master heat shock response regulator (σ(32)), to eliminating damaged cellular proteins, to altering the activity of chaperones that refold heat-denatured proteins. Recent results illustrate the complexity of the heat shock response and the pervasive role that proteolysis plays in both the cellular response to heat shock and the subsequent limiting of the response, as cells return to a more 'normal' physiological state.
Collapse
Affiliation(s)
- Anne S Meyer
- Department of Biology, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
25
|
Narberhaus F, Obrist M, Führer F, Langklotz S. Degradation of cytoplasmic substrates by FtsH, a membrane-anchored protease with many talents. Res Microbiol 2009; 160:652-9. [DOI: 10.1016/j.resmic.2009.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/17/2009] [Accepted: 08/17/2009] [Indexed: 12/01/2022]
|
26
|
Obrist M, Langklotz S, Milek S, Führer F, Narberhaus F. Region C of the Escherichia coli heat shock sigma factor RpoH (σ32) contains a turnover element for proteolysis by the FtsH protease. FEMS Microbiol Lett 2008; 290:199-208. [DOI: 10.1111/j.1574-6968.2008.01423.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
27
|
Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev 2008; 72:545-54. [PMID: 18772288 DOI: 10.1128/mmbr.00007-08] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The heat shock response (HSR) is a homeostatic response that maintains the proper protein-folding environment in the cell. This response is universal, and many of its components are well conserved from bacteria to humans. In this review, we focus on the regulation of one of the most well-characterized HSRs, that of Escherichia coli. We show that even for this simple model organism, we still do not fully understand the central component of heat shock regulation, a chaperone-mediated negative feedback loop. In addition, we review other components that contribute to the regulation of the HSR in E. coli and discuss how these additional components contribute to regulation. Finally, we discuss recent genomic experiments that reveal additional functional aspects of the HSR.
Collapse
|
28
|
Rodriguez F, Arsène-Ploetze F, Rist W, Rüdiger S, Schneider-Mergener J, Mayer MP, Bukau B. Molecular Basis for Regulation of the Heat Shock Transcription Factor σ32 by the DnaK and DnaJ Chaperones. Mol Cell 2008; 32:347-58. [DOI: 10.1016/j.molcel.2008.09.016] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 04/23/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
|
29
|
Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol 2008; 190:7117-22. [PMID: 18776015 DOI: 10.1128/jb.00871-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Escherichia coli, FtsH (HflB) is a membrane-bound, ATP-dependent metalloendoprotease belonging to the AAA family (ATPases associated with diverse cellular activities). FtsH has a limited spectrum of known substrates, including the transcriptional activator sigma32. FtsH is the only known E. coli protease that is essential, as it regulates the concentration of LpxC, which carries out the first committed step in the synthesis of lipid A. Here we identify a new FtsH substrate--3-deoxy-D-manno-octulosonate (KDO) transferase--which carries out the attachment of two KDO residues to the lipid A precursor (lipid IVA) to form the minimal essential structure of the lipopolysaccharide (LPS) (KDO2-lipid A). Thus, FtsH regulates the concentration of the lipid moiety of LPS (lipid A) as well as the sugar moiety (KDO-based core oligosaccharides), ensuring a balanced synthesis of LPS.
Collapse
|
30
|
Analysis of sigma32 mutants defective in chaperone-mediated feedback control reveals unexpected complexity of the heat shock response. Proc Natl Acad Sci U S A 2007; 104:17638-43. [PMID: 17968012 DOI: 10.1073/pnas.0708819104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein quality control is accomplished by inducing chaperones and proteases in response to an altered cellular folding state. In Escherichia coli, expression of chaperones and proteases is positively regulated by sigma32. Chaperone-mediated negative feedback control of sigma32 activity allows this transcription factor to sense the cellular folding state. We identified point mutations in sigma32 altered in feedback control. Surprisingly, such mutants are resistant to inhibition by both the DnaK/J and GroEL/S chaperones in vivo and also show dramatically increased stability. Further characterization of the most defective mutant revealed that it has almost normal binding to chaperones and RNA polymerase and is competent for chaperone-mediated inactivation in vitro. We suggest that the mutants identify a regulatory step downstream of chaperone binding that is required for both inactivation and degradation of sigma32.
Collapse
|
31
|
Führer F, Müller A, Baumann H, Langklotz S, Kutscher B, Narberhaus F. Sequence and Length Recognition of the C-terminal Turnover Element of LpxC, a Soluble Substrate of the Membrane-bound FtsH Protease. J Mol Biol 2007; 372:485-96. [PMID: 17651755 DOI: 10.1016/j.jmb.2007.06.083] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 06/06/2007] [Accepted: 06/26/2007] [Indexed: 11/17/2022]
Abstract
The membrane-anchored FtsH protease is essential in Escherichia coli as it adjusts the cellular amount of LpxC, the key enzyme in lipopolysaccharide (LPS) biosynthesis. Both accumulation and depletion of LpxC are toxic to E. coli. By continuous proteolysis of LpxC, FtsH maintains a low concentration of LpxC and, hence, the proper equilibrium between LPS and phospholipids. The C terminus of LpxC is required for turnover. By adding this tail to glutathione-S-transferase (GST) we show that it is necessary but not sufficient for FtsH-mediated degradation. A detailed mutational analysis revealed six non-polar residues in the C terminus of LpxC that are critical for degradation. Alteration of the C-terminal AVLA motif towards the SsrA-like sequence ALAA directed LpxC to other cellular proteases reinforcing the importance of the C-terminal tail for targeting to FtsH. Short C-terminal truncations stabilized LpxC. Most mutations in the C terminus of LpxC left its enzymatic activity intact as was shown by growth assays, microscopy and 2-keto-3-deoxyoctonate (KDO) determination. The critical length of the turnover element was defined by internal deletions. A C-terminal tail of about 20 amino acids length is required for proteolysis of LpxC by FtsH.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, NDEF 06/783, 44780, Bochum, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Obrist M, Milek S, Klauck E, Hengge R, Narberhaus F. Region 2.1 of the Escherichia coli heat-shock sigma factor RpoH (σ
32) is necessary but not sufficient for degradation by the FtsH protease. Microbiology (Reading) 2007; 153:2560-2571. [PMID: 17660420 DOI: 10.1099/mic.0.2007/007047-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular level of the Escherichia coli heat-shock sigma factor RpoH (sigma32) is negatively controlled by chaperone-mediated proteolysis through the essential metalloprotease FtsH. Point mutations in the highly conserved region 2.1 stabilize RpoH in vivo. To assess the importance of this turnover element, hybrid proteins were constructed between E. coli RpoH and Bradyrhizobium japonicum RpoH1, a stable RpoH protein that differs from region 2.1 of E. coli RpoH at several positions. Nine amino acids forming a putative alpha-helix were exchanged between the two proteins. Both hybrids were active sigma factors and showed intermediate protein stability. Introduction of RpoH region 2.1 into the general stress sigma factor RpoS, which is a substrate of the ClpXP protease, did not render RpoS susceptible to FtsH. Hence, region 2.1 alone is not sufficient to confer FtsH sensitivity to other proteins. Region 2.1 is not a major chaperone-binding site since DnaK and DnaJ bound efficiently to all RpoH variants. The in vivo stability of the mutated RpoH proteins correlated with their stability in a purified in vitro degradation system, suggesting that region 2.1 might be directly involved in the interaction with the FtsH protease.
Collapse
Affiliation(s)
- Markus Obrist
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
- Institute of Microbiology, ETH Zürich, Switzerland
| | - Sonja Milek
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
| | | | - Regine Hengge
- Institute of Microbiology, Free University Berlin, Germany
| | - Franz Narberhaus
- Institute of Microbial Biology, Ruhr University Bochum, D-44780 Bochum, Germany
- Institute of Microbiology, ETH Zürich, Switzerland
| |
Collapse
|
33
|
Green HA, Donohue TJ. Activity of Rhodobacter sphaeroides RpoHII, a second member of the heat shock sigma factor family. J Bacteriol 2006; 188:5712-21. [PMID: 16885439 PMCID: PMC1540091 DOI: 10.1128/jb.00405-06] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a second RpoH homolog, RpoH(II), in the alpha-proteobacterium Rhodobacter sphaeroides. Primary amino acid sequence comparisons demonstrate that R. sphaeroides RpoH(II) belongs to a phylogenetically distinct group with RpoH orthologs from alpha-proteobacteria that contain two rpoH genes. Like its previously identified paralog, RpoH(I), RpoH(II) is able to complement the temperature-sensitive phenotype of an Escherichia coli sigma(32) (rpoH) mutant. In addition, we show that recombinant RpoH(I) and RpoH(II) each transcribe two E. coli sigma(32)-dependent promoters (rpoD P(HS) and dnaK P1) when reconstituted with E. coli core RNA polymerase. We observed differences, however, in the ability of each sigma factor to recognize six R. sphaeroides promoters (cycA P1, groESL(1), rpoD P(HS), dnaK P1, hslO, and ecfE), all of which resemble the E. coli sigma(32) promoter consensus. While RpoH(I) reconstituted with R. sphaeroides core RNA polymerase transcribed all six promoters, RpoH(II) produced detectable transcripts from only four promoters (cycA P1, groESL(1), hslO, and ecfE). These results, in combination with previous work demonstrating that an RpoH(I) mutant mounts a typical heat shock response, suggest that while RpoH(I) and RpoH(II) have redundant roles in response to heat, they may also have roles in response to other environmental stresses.
Collapse
Affiliation(s)
- Heather A Green
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
34
|
Führer F, Langklotz S, Narberhaus F. The C-terminal end of LpxC is required for degradation by the FtsH protease. Mol Microbiol 2006; 59:1025-36. [PMID: 16420369 DOI: 10.1111/j.1365-2958.2005.04994.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipopolysaccharide (LPS) biosynthesis is essential in Gram negative bacteria. LpxC, the key enzyme in LPS formation, catalyses the limiting reaction and controls the ratio between LPS and phospholipids. As overproduction of LPS is toxic, the cellular amount of LpxC must be regulated carefully. The membrane-bound protease FtsH controls the level of LpxC via proteolysis making FtsH the only essential protease of Escherichia coli. We found that the chaperones DnaK and DnaJ co-purified with LpxC. However, degradation of LpxC was DnaK/J-independent in contrast to turnover of the heat shock sigma factor sigma32 (RpoH). The stability of LpxC in a bacterial one-hybrid system suggested that a terminus of LpxC might be important for degradation. Different LpxC truncations and extensions were constructed. Removal of at least five amino acids from the C-terminus abolished degradation by FtsH in vivo. While addition of two aspartic acids to LpxC did not alter its half-life, the exchange of the last two residues against aspartic acids resulted in stabilization. All stable LpxC enzymes were active in vivo as assayed by their high toxicity. Our data demonstrate that the C-terminus of LpxC contains a signal sequence necessary for FtsH-dependent degradation.
Collapse
Affiliation(s)
- Frank Führer
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany
| | | | | |
Collapse
|