1
|
Gu Y, Chen X, Liu L, Wang S, Yu X, Jia Z, Zhou X. Cr(VI)-bioremediation mechanism of a novel strain Bacillus paramycoides Cr6 with the powerful ability to remove Cr(VI) from contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131519. [PMID: 37207478 DOI: 10.1016/j.jhazmat.2023.131519] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/23/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
This research provided an excellent novel hexavalent chromium (Cr(VI))-removal bacterium, Bacillus paramycoides Cr6, and investigated its removal mechanism from the perspective of molecular biology. Cr6 could resist up to 2500 mg/L Cr(VI), and the removal rate of 2000 mg/L Cr(VI) reached 67.3% under the optimal culture conditions of 220 r/min, pH 8 and 31 ℃. When the initial concentration of Cr(VI) was 200 mg/L, Cr6 had a removal rate of 100% within 18 h. The differential transcriptome analysis identified two key structural genes named bcr005 and bcb765 of Cr6, which were upregulated by Cr(VI). Their functions were predicted and further confirmed by bioinformatic analyses and in vitro experiments. bcr005 encodes Cr(VI)-reductase BCR005, and bcb765 encodes Cr(VI)-binding protein BCB765. Real-time fluorescent quantitative PCRs were performed, and the data illustrated a parallel pathway (one is Cr(VI) reduction, and the other is Cr(VI) immobilisation) of Cr6 to remove Cr(VI), which relies on the synergistic expression of the genes bcr005 and bcb765 induced by different concentrations of Cr(VI). In summary, a deeper molecular mechanism of Cr(VI) microorganism removal was elaborated; Bacillus paramycoides Cr6 was an exceptional novel Cr(VI)-removed bacterial resource, while BCR005 and BCB765 were two new-found efficient enzymes that have potential practical applications for sustainable microbial remediation of Cr-contaminated water.
Collapse
Affiliation(s)
- Yawen Gu
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China
| | - Xiaoxia Chen
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China
| | - Liqiang Liu
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China
| | - Saifei Wang
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China
| | - Xinran Yu
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, No.46 of Youyi south street, Shijiazhuang 050081, Hebei Province, China
| | - Xiaohui Zhou
- College of Food Science and Biology, Hebei University of Science and Technology, No.26 of Yuxiang street, Shijiazhuang 050018, Hebei Province, China.
| |
Collapse
|
2
|
Inactivation of cysL Inhibits Biofilm Formation by Activating the Disulfide Stress Regulator Spx in Bacillus subtilis. J Bacteriol 2019; 201:JB.00712-18. [PMID: 30718304 DOI: 10.1128/jb.00712-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/27/2019] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis forms biofilms in response to internal and external stimuli. I previously showed that the cysL deletion mutant was defective in biofilm formation, but the reason for this remains unidentified. CysL is a transcriptional activator of the cysJI operon, which encodes sulfite reductase, an enzyme involved in cysteine biosynthesis. Decreased production of sulfite reductase led to biofilm formation defects in the ΔcysL mutant. The ΔcysL mutation was suppressed by disrupting cysH operon genes, whose products function upstream of sulfite reductase in the cysteine biosynthesis pathway, indicating that defects in cysteine biosynthesis were not a direct cause for the defective biofilm formation observed in the ΔcysL mutant. The cysH gene encodes phosphoadenosine phosphosulfate reductase, which requires a reduced form of thioredoxin (TrxA) as an electron donor. High expression of trxA inhibited biofilm formation in the ΔcysL mutant but not in the wild-type strain. Northern blot analysis showed that trxA transcription was induced in the ΔcysL mutant in a disulfide stress-induced regulator Spx-dependent manner. On the basis of these results, I propose that the ΔcysL mutation causes phosphoadenosine phosphosulfate reductase to consume large amounts of reduced thioredoxin, inducing disulfide stress and activating Spx. The spx mutation restored biofilm formation to the ΔcysL mutant. The ΔcysL mutation reduced expression of the eps operon, which is required for exopolysaccharide production. Moreover, overexpression of the eps operon restored biofilm formation to the ΔcysL mutant. Taken together, these results suggest that the ΔcysL mutation activates Spx, which then inhibits biofilm formation through repression of the eps operon.IMPORTANCE Bacillus subtilis has been studied as a model organism for biofilm formation. In this study, I explored why the cysL deletion mutant was defective in biofilm formation. I demonstrated that the ΔcysL mutation activated the disulfide stress response regulator Spx, which inhibits biofilm formation by repressing biofilm matrix genes. Homologs of Spx are highly conserved among Gram-positive bacteria with low G+C contents. In some pathogens, Spx is also reported to inhibit biofilm formation by repressing biofilm matrix genes, even though these genes and their regulation are quite different from those of B. subtilis Thus, the negative regulation of biofilm formation by Spx is likely to be well conserved across species and may be an appropriate target for control of biofilm formation.
Collapse
|
3
|
Gu H, Shi K, Liao Z, Qi H, Chen S, Wang H, Li S, Ma Y, Wang J. Time-resolved transcriptome analysis of Clostridium difficile R20291 response to cysteine. Microbiol Res 2018; 215:114-125. [PMID: 30172297 DOI: 10.1016/j.micres.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/21/2018] [Accepted: 07/07/2018] [Indexed: 01/05/2023]
Abstract
The incidence of Clostridium difficile infection has been steadily rising over the past decade. The increase in the rate of incidence is associated with the specific NAP1/BI/027 strains which are "hypervirulent" and have led to several large outbreaks since their emergence. However, the relation between these outbreaks and virulence regulation mechanisms remains unclear. It has been reported that the major virulence factor TcdA and TcdB in C. difficile could be repressed by cysteine. Here, we investigated the functional and virulence-associated regulation of C. difficile R20291 response to cysteine by using a time-resolved genome-wide transcriptome analysis. Dramatic changes of gene expression in C. difficile revealed functional processes related to transport, metabolism, and regulators in the presence of cysteine during different phases of growth. Flagellar and ribosomal genes were significantly down-regulated in long-term response to cysteine. Many NAP1/BI/027- specific genes were also modulated by cysteine. In addition, cdsB inactivation in C. difficile R20291 could remove the repression of toxin synthesis but could not remove the repression of butyrate production in the presence of cysteine. This suggests that toxin synthesis and butyrate production might have different regulatory controls in response to cysteine. Altogether, our research provides important insights into the regulatory mechanisms of C. difficile response to cysteine.
Collapse
Affiliation(s)
- Huawei Gu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kan Shi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhengping Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haonan Qi
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuyi Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Haiying Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Draft Genome Sequence of a Thermophilic Desulfurization Bacterium, Geobacillus thermoglucosidasius Strain W-2. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00793-16. [PMID: 27491977 PMCID: PMC4974329 DOI: 10.1128/genomea.00793-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Geobacillus thermoglucosidasius strain W-2 is a thermophilic bacterium isolated from a deep-subsurface oil reservoir in northern China, which is capable of degrading organosulfur compounds. Here, we report the draft genome sequence of G. thermoglucosidasius strain W-2, which may help to elucidate the genetic basis of biodegradation of organosulfur pollutants under heated conditions.
Collapse
|
5
|
Zheng B, Zhang F, Dong H, Chai L, Shu F, Yi S, Wang Z, Cui Q, Dong H, Zhang Z, Hou D, Yang J, She Y. Draft genome sequence of Paenibacillus sp. strain A2. Stand Genomic Sci 2016; 11:9. [PMID: 26819653 PMCID: PMC4728784 DOI: 10.1186/s40793-015-0125-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/22/2015] [Indexed: 11/19/2022] Open
Abstract
Paenibacillus sp. strain A2 is a Gram-negative rod-shaped bacterium isolated from a mixture of formation water and petroleum in Daqing oilfield, China. This facultative aerobic bacterium was found to have a broad capacity for metabolizing hydrocarbon and organosulfur compounds, which are the main reasons for the interest in sequencing its genome. Here we describe the features of Paenibacillus sp. strain A2, together with the genome sequence and its annotation. The 7,650,246 bp long genome (1 chromosome but no plasmid) exhibits a G+C content of 54.2 % and contains 7575 protein-coding and 49 RNA genes, including 3 rRNA genes. One putative alkane monooxygenase, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter and four putative sulfate transporters were found in the draft genome.
Collapse
Affiliation(s)
- Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Zhang
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Hao Dong
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Lujun Chai
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Fuchang Shu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Shaojin Yi
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Zhengliang Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Qingfeng Cui
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang, China
| | - Hanping Dong
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang, China
| | - Zhongzhi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - Dujie Hou
- Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Jinshui Yang
- College of Life Sciences, China Agricultural University, Beijing, China
| | - Yuehui She
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Schneider J, Mielich-Süss B, Böhme R, Lopez D. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. MICROBIOLOGY-SGM 2015; 161:1871-1887. [PMID: 26297017 DOI: 10.1099/mic.0.000137] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Scaffold proteins are ubiquitous chaperones that bind to proteins and facilitate the physical interaction of the components of signal transduction pathways or multi-enzymic complexes. In this study, we used a biochemical approach to dissect the molecular mechanism of a membrane-associated scaffold protein, FloT, a flotillin-homologue protein that is localized in functional membrane microdomains of the bacterium Bacillus subtilis. This study provides unambiguous evidence that FloT physically binds to and interacts with the membrane-bound sensor kinase KinC. This sensor kinase activates biofilm formation in B. subtilis in response to the presence of the self-produced signal surfactin. Furthermore, we have characterized the mechanism by which the interaction of FloT with KinC benefits the activity of KinC. Two separate and synergistic effects constitute this mechanism: first, the scaffold activity of FloT promotes more efficient self-interaction of KinC and facilitates dimerization into its active form. Second, the selective binding of FloT to KinC prevents the occurrence of unspecific aggregation between KinC and other proteins that may generate dead-end intermediates that could titrate the activity of KinC. Flotillin proteins appear to play an important role in prokaryotes in promoting effective binding of signalling proteins with their correct protein partners.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Benjamin Mielich-Süss
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Richard Böhme
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| | - Daniel Lopez
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
- National Center for Biotechnology (CNB), Spanish Research Council (CSIC), Madrid 28050, Spain
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
7
|
Schneider J, Klein T, Mielich-Süss B, Koch G, Franke C, Kuipers OP, Kovács ÁT, Sauer M, Lopez D. Spatio-temporal remodeling of functional membrane microdomains organizes the signaling networks of a bacterium. PLoS Genet 2015; 11:e1005140. [PMID: 25909364 PMCID: PMC4409396 DOI: 10.1371/journal.pgen.1005140] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
Lipid rafts are membrane microdomains specialized in the regulation of numerous cellular processes related to membrane organization, as diverse as signal transduction, protein sorting, membrane trafficking or pathogen invasion. It has been proposed that this functional diversity would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known. We recently discovered that bacterial membranes organize their signal transduction pathways in functional membrane microdomains (FMMs) that are structurally and functionally similar to the eukaryotic lipid rafts. In this report, we took advantage of the tractability of the prokaryotic model Bacillus subtilis to provide evidence for the coexistence of two distinct families of FMMs in bacterial membranes, displaying a distinctive distribution of proteins specialized in different biological processes. One family of microdomains harbors the scaffolding flotillin protein FloA that selectively tethers proteins specialized in regulating cell envelope turnover and primary metabolism. A second population of microdomains containing the two scaffolding flotillins, FloA and FloT, arises exclusively at later stages of cell growth and specializes in adaptation of cells to stationary phase. Importantly, the diversification of membrane microdomains does not occur arbitrarily. We discovered that bacterial cells control the spatio-temporal remodeling of microdomains by restricting the activation of FloT expression to stationary phase. This regulation ensures a sequential assembly of functionally specialized membrane microdomains to strategically organize signaling networks at the right time during the lifespan of a bacterium. Cellular membranes organize proteins related to signal transduction, protein sorting and membrane trafficking into the so-called lipid rafts. It has been proposed that the functional diversity of lipid rafts would require a heterogeneous population of raft domains with varying compositions. However, a mechanism for such diversification is not known due in part to the complexity that entails the manipulation of eukaryotic cells. The recent discovery that bacteria organize many cellular processes in membrane microdomains (FMMs), functionally similar to the eukaryotic lipid rafts, prompted us to explore FMMs diversity in the bacterial model Bacillus subtilis. We show that diversification of FMMs occurs in cells and gives rise to functionally distinct microdomains, which compartmentalize distinct signal transduction pathways and regulate the expression of different genetic programs. We discovered that FMMs diversification does not occur randomly. Cells sequentially regulate the specialization of the FMMs during cell growth to ensure an effective and diverse activation of signaling processes.
Collapse
Affiliation(s)
- Johannes Schneider
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Benjamin Mielich-Süss
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Gudrun Koch
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
| | - Christian Franke
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Oscar P. Kuipers
- Molecular Genetics Group,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Ákos T. Kovács
- Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University of Jena, Jena, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University of Würzburg, Würzburg, Germany
| | - Daniel Lopez
- Research Center for Infectious Diseases ZINF, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
8
|
She Y, Wu W, Hang C, Jiang X, Chai L, Yu G, Shu F, Wang Z, Su S, Xiang T, Zhang Z, Hou D, Zhang F, Zheng B. Genome sequence of Brevibacillus agri strain 5-2, isolated from the formation water of petroleum reservoir. Mar Genomics 2014; 18 Pt B:123-5. [PMID: 25194923 DOI: 10.1016/j.margen.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/23/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
Brevibacillus agri strain 5-2 was isolated from the formation water of a deep oil reservoir in Changqing Oilfield, China. This bacterium was found to have a capacity for degrading tetradecane, hexadecane and alkanesulfonate. To gain insights into its efficient metabolic pathway for degrading hydrocarbon and organosulfur compounds, here, we report the high quality draft genome of this strain. Two putative alkane 1-monooxygenases, one putative alkanesulfonate monooxygenase, one putative alkanesulfonate transporter, one putative sulfate permease and five putative sulfate transporters were identified in the draft genome. The genomic data of strain 5-2 may provide insights into the mechanism of microorganisms adapt to the petroleum reservoir after chemical flooding.
Collapse
Affiliation(s)
- Yuehui She
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Wenqiong Wu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Chunchun Hang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Xiawei Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Lujun Chai
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Gaoming Yu
- College of Petroleum Engineering, Yangtze University, Jingzhou, China
| | - Fuchang Shu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Zhengliang Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Sanbao Su
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Tingsheng Xiang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, China
| | - Zhongzhi Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, China
| | - DuJie Hou
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Fan Zhang
- The Key Laboratory of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism, School of Energy Resources, China University of Geosciences, Beijing, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China.
| |
Collapse
|
9
|
Santana MM, Gonzalez JM, Clara MI. Inferring pathways leading to organic-sulfur mineralization in the Bacillales. Crit Rev Microbiol 2014; 42:31-45. [PMID: 24506486 DOI: 10.3109/1040841x.2013.877869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microbial organic sulfur mineralization to sulfate in terrestrial systems is poorly understood. The process is often missing in published sulfur cycle models. Studies on microbial sulfur cycling have been mostly centered on transformations of inorganic sulfur, mainly on sulfate-reducing and inorganic sulfur-oxidizing bacteria. Nevertheless, organic sulfur constitutes most sulfur in soils. Recent reports demonstrate that the mobilization of organic-bound-sulfur as sulfate in terrestrial environments occurs preferentially under high temperatures and thermophilic Firmicutes bacteria play a major role in the process, carrying out dissimilative organic-sulfur oxidation. So far, the determinant metabolic reactions of such activity have not been evaluated. Here, in silico analysis was performed on the genomes of sulfate-producing thermophilic genera and mesophilic low-sulfate producers, revealing that highest sulfate production is related to the simultaneous presence of metabolic pathways leading to sulfite synthesis, similar to the ones found in mammalian cells. Those pathways include reverse transsulfuration reactions (tightly associated with methionine cycling), and the presence of aspartate aminotransferases (ATs) with the potential of 3-sulfinoalanine AT and cysteine AT activity, which ultimately leads to sulfite production. Sulfite is oxidized to sulfate by sulfite oxidase, this enzyme is determinant in sulfate synthesis, and it is absent in many mesophiles.
Collapse
|
10
|
Chan CM, Danchin A, Marlière P, Sekowska A. Paralogous metabolism: S-alkyl-cysteine degradation in Bacillus subtilis. Environ Microbiol 2013; 16:101-17. [PMID: 23944997 DOI: 10.1111/1462-2920.12210] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/10/2013] [Indexed: 11/29/2022]
Abstract
Metabolism is prone to produce analogs of essential building blocks in the cell (here named paralogous metabolism). The variants result from lack of absolute accuracy in enzyme-templated reactions as well as from molecular aging. If variants were left to accumulate, the earth would be covered by chemical waste. The way bacteria cope with this situation is essentially unexplored. To gain a comprehensive understanding of Bacillus subtilis sulphur paralogous metabolism, we used expression profiling with DNA arrays to investigate the changes in gene expression in the presence of S-methyl-cysteine (SMeC) and its close analog, methionine, as sole sulphur source. Altogether, more than 200 genes whose relative strength of induction was significantly different depending on the sulphur source used were identified. This allowed us to pinpoint operon ytmItcyJKLMNytmO_ytnIJ_rbfK_ytnLM as controlling the pathway cycling SMeC directly to cysteine, without requiring sulphur oxygenation. Combining genetic and physiological experiments, we deciphered the corresponding pathway that begins with protection of the metabolite by acetylation. Oxygenation of the methyl group then follows, and after deprotection (deacetylation), N-formyl cysteine is produced. This molecule is deformylated by the second deformylase present in B. subtilis DefB, yielding cysteine. This pathway appears to be present in plant-associated microbes.
Collapse
Affiliation(s)
- Che-Man Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | | | | |
Collapse
|
11
|
Van Hamme JD, Bottos EM, Bilbey NJ, Brewer SE. Genomic and proteomic characterization of Gordonia sp. NB4-1Y in relation to 6 : 2 fluorotelomer sulfonate biodegradation. Microbiology (Reading) 2013; 159:1618-1628. [DOI: 10.1099/mic.0.068932-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jonathan D. Van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Eric M. Bottos
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Nicholas J. Bilbey
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| | - Sharon E. Brewer
- Department of Chemical and Physical Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0C8
| |
Collapse
|
12
|
Yepes A, Schneider J, Mielich B, Koch G, García-Betancur JC, Ramamurthi KS, Vlamakis H, López D. The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol Microbiol 2012; 86:457-71. [PMID: 22882210 DOI: 10.1111/j.1365-2958.2012.08205.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2012] [Indexed: 11/30/2022]
Abstract
Biofilm formation in Bacillus subtilis requires the differentiation of a subpopulation of cells responsible for the production of the extracellular matrix that structures the biofilm. Differentiation of matrix-producing cells depends, among other factors, on the FloT and YqfA proteins. These proteins are present exclusively in functional membrane microdomains of B. subtilis and are homologous to the eukaryotic lipid raft-specific flotillin proteins. In the absence of FloT and YqfA, diverse proteins normally localized to the membrane microdomains of B. subtilis are not functional. Here we show that the absence of FloT and YqfA reduces the level of the septal-localized protease FtsH. The flotillin homologues FloT and YqfA are occasionally present at the midcell in exponentially growing cells and the absence of FloT and YqfA negatively affects FtsH concentration. Biochemical experiments indicate a direct interaction between FloT/YqfA and FtsH. Moreover, FtsH is essential for the differentiation of matrix producers and hence, biofilm formation. This molecular trigger of biofilm formation may therefore be used as a target for the design of new biofilm inhibitors. Accordingly, we show that the small protein SpoVM, known to bind to and inhibit FtsH activity, inhibits biofilm formation in B. subtilis and other distantly related bacteria.
Collapse
Affiliation(s)
- Ana Yepes
- Research Center for Infectious Diseases ZINF, Würzburg University, 97080, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Nannapaneni P, Hertwig F, Depke M, Hecker M, Mäder U, Völker U, Steil L, van Hijum SAFT. Defining the structure of the general stress regulon of Bacillus subtilis using targeted microarray analysis and random forest classification. MICROBIOLOGY-SGM 2011; 158:696-707. [PMID: 22174379 DOI: 10.1099/mic.0.055434-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structure of the SigB-dependent general stress regulon of Bacillus subtilis has previously been characterized by proteomics approaches as well as DNA array-based expression studies. However, comparing the SigB targets published in three previous major transcriptional profiling studies it is obvious that although each of them identified well above 100 target genes, only 67 were identified in all three studies. These substantial differences can likely be attributed to the different strains, growth conditions, microarray platforms and experimental setups used in the studies. In order to gain a better understanding of the structure of this important regulon, a targeted DNA microarray analysis covering most of the known SigB-inducing conditions was performed, and the changes in expression kinetics of 252 potential members of the SigB regulon and appropriate control genes were recorded. Transcriptional data for the B. subtilis wild-type strain 168 and its isogenic sigB mutant BSM29 were analysed using random forest, a machine learning algorithm, by incorporating the knowledge from previous studies. This analysis revealed a strictly SigB-dependent expression pattern for 166 genes following ethanol, butanol, osmotic and oxidative stress, low-temperature growth and heat shock, as well as limitation of oxygen or glucose. Kinetic analysis of the data for the wild-type strain identified 30 additional members of the SigB regulon, which were also subject to control by additional transcriptional regulators, thus displaying atypical SigB-independent induction patterns in the mutant strain under some of the conditions tested. For 19 of these 30 SigB regulon members, published reports support control by secondary regulators along with SigB. Thus, this microarray-based study assigns a total of 196 genes to the SigB-dependent general stress regulon of B. subtilis.
Collapse
Affiliation(s)
- Priyanka Nannapaneni
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Falk Hertwig
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Maren Depke
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Ulrike Mäder
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Uwe Völker
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Leif Steil
- Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Sacha A F T van Hijum
- NIZO Food Research, PO Box 20, 6710 BA Ede, The Netherlands.,Radboud University Nijmegen Medical Centre, Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, PO Box 9101, 6500 HB Nijmegen, The Netherlands.,Interfakultäres Institut für Genetik und Funktionelle Genomforschung, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
14
|
Ye BC, Zhang Y, Yu H, Yu WB, Liu BH, Yin BC, Yin CY, Li YY, Chu J, Zhang SL. Time-resolved transcriptome analysis of Bacillus subtilis responding to valine, glutamate, and glutamine. PLoS One 2009; 4:e7073. [PMID: 19763274 PMCID: PMC2743287 DOI: 10.1371/journal.pone.0007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022] Open
Abstract
Microorganisms can restructure their transcriptional output to adapt to environmental conditions by sensing endogenous metabolite pools. In this paper, an Agilent customized microarray representing 4,106 genes was used to study temporal transcript profiles of Bacillus subtilis in response to valine, glutamate and glutamine pulses over 24 h. A total of 673, 835, and 1135 amino-acid-regulated genes were identified having significantly changed expression at one or more time points in response to valine, glutamate, and glutamine, respectively, including genes involved in cell wall, cellular import, metabolism of amino-acids and nucleotides, transcriptional regulation, flagellar motility, chemotaxis, phage proteins, sporulation, and many genes of unknown function. Different amino acid treatments were compared in terms of both the global temporal profiles and the 5-minute quick regulations, and between-experiment differential genes were identified. The highlighted genes were analyzed based on diverse sources of gene functions using a variety of computational tools, including T-profiler analysis, and hierarchical clustering. The results revealed the common and distinct modes of action of these three amino acids, and should help to elucidate the specific signaling mechanism of each amino acid as an effector.
Collapse
Affiliation(s)
- Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Lamour V, Westblade LF, Campbell EA, Darst SA. Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complex. J Struct Biol 2009; 168:352-6. [PMID: 19580872 DOI: 10.1016/j.jsb.2009.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 11/30/2022]
Abstract
The Bacillus subtilis Spx protein is a global transcription factor that interacts with the C-terminal domain of the RNA polymerase alpha subunit (alphaCTD) and regulates transcription of genes involved in thiol-oxidative stress, sporulation, competence, and organosulfur metabolism. Here we determined the X-ray crystal structure of the Spx/alphaCTD complex from an entirely new crystal form than previously reported [Newberry, K.J., Nakano, S., Zuber, P., Brennan, R.G., 2005. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc. Natl. Acad. Sci. USA 102, 15839-15844]. Comparison of the previously reported sulfate-bound complex and our sulfate-free complex reveals subtle conformational changes that may be important for the role of Spx in regulating organosulfur metabolism.
Collapse
|
16
|
Rückert C, Milse J, Albersmeier A, Koch DJ, Pühler A, Kalinowski J. The dual transcriptional regulator CysR in Corynebacterium glutamicum ATCC 13032 controls a subset of genes of the McbR regulon in response to the availability of sulphide acceptor molecules. BMC Genomics 2008; 9:483. [PMID: 18854009 PMCID: PMC2580772 DOI: 10.1186/1471-2164-9-483] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/14/2008] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Regulation of sulphur metabolism in Corynebacterium glutamicum ATCC 13032 has been studied intensively in the last few years, due to its industrial as well as scientific importance. Previously, the gene cg0156 was shown to belong to the regulon of McbR, a global transcriptional repressor of sulphur metabolism in C. glutamicum. This gene encodes a putative ROK-type regulator, a paralogue of the activator of sulphonate utilisation, SsuR. Therefore, it is an interesting candidate for study to further the understanding of the regulation of sulphur metabolism in C. glutamicum. RESULTS Deletion of cg0156, now designated cysR, results in the inability of the mutant to utilise sulphate and aliphatic sulphonates. DNA microarray hybridisations revealed 49 genes with significantly increased and 48 with decreased transcript levels in presence of the native CysR compared to a cysR deletion mutant. Among the genes positively controlled by CysR were the gene cluster involved in sulphate reduction, fpr2 cysIXHDNYZ, and ssuR. Gel retardation experiments demonstrated that binding of CysR to DNA depends in vitro on the presence of either O-acetyl-L-serine or O-acetyl-L-homoserine. Mapping of the transcription start points of five transcription units helped to identify a 10 bp inverted repeat as the possible CysR binding site. Subsequent in vivo tests proved this motif to be necessary for CysR-dependent transcriptional regulation. CONCLUSION CysR acts as the functional analogue of the unrelated LysR-type regulator CysB from Escherichia coli, controlling sulphide production in response to acceptor availability. In both bacteria, gene duplication events seem to have taken place which resulted in the evolution of dedicated regulators for the control of sulphonate utilisation. The striking convergent evolution of network topology indicates the strong selective pressure to control the metabolism of the essential but often toxic sulphur-containing (bio-)molecules.
Collapse
Affiliation(s)
- Christian Rückert
- Institut für Systembiologie & Genomforschung, Universität Bielefeld, Universitätsstr. 25, D-33615 Bielefeld, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Reder A, Höper D, Weinberg C, Gerth U, Fraunholz M, Hecker M. The Spx paralogue MgsR (YqgZ) controls a subregulon within the general stress response ofBacillus subtilis. Mol Microbiol 2008; 69:1104-20. [DOI: 10.1111/j.1365-2958.2008.06332.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS. Comparative genome analysis of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB. J Bacteriol 2008; 190:3979-91. [PMID: 18359806 PMCID: PMC2395047 DOI: 10.1128/jb.01301-07] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 03/12/2008] [Indexed: 11/20/2022] Open
Abstract
The chromosome sequence of "Candidatus Phytoplasma australiense" (subgroup tuf-Australia I; rp-A), associated with dieback in papaya, Australian grapevine yellows in grapevine, and several other important plant diseases, was determined. The circular chromosome is represented by 879,324 nucleotides, a GC content of 27%, and 839 protein-coding genes. Five hundred two of these protein-coding genes were functionally assigned, while 337 genes were hypothetical proteins with unknown function. Potential mobile units (PMUs) containing clusters of DNA repeats comprised 12.1% of the genome. These PMUs encoded genes involved in DNA replication, repair, and recombination; nucleotide transport and metabolism; translation; and ribosomal structure. Elements with similarities to phage integrases found in these mobile units were difficult to classify, as they were similar to both insertion sequences and bacteriophages. Comparative analysis of "Ca. Phytoplasma australiense" with "Ca. Phytoplasma asteris" strains OY-M and AY-WB showed that the gene order was more conserved between the closely related "Ca. Phytoplasma asteris" strains than to "Ca. Phytoplasma australiense." Differences observed between "Ca. Phytoplasma australiense" and "Ca. Phytoplasma asteris" strains included the chromosome size (18,693 bp larger than OY-M), a larger number of genes with assigned function, and hypothetical proteins with unknown function.
Collapse
Affiliation(s)
- L T T Tran-Nguyen
- Charles Darwin University, School of Environmental and Life Sciences, Darwin, NT, 0909, Australia.
| | | | | | | | | |
Collapse
|
19
|
Hochgräfe F, Mostertz J, Pöther DC, Becher D, Helmann JD, Hecker M. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 2007; 282:25981-5. [PMID: 17611193 DOI: 10.1074/jbc.c700105200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Thiolation is crucial for protection and regulation of thiol-containing proteins during oxidative stress and is frequently achieved by the formation of mixed disulfides with glutathione. However, many Gram-positive bacteria including Bacillus subtilis lack the low molecular weight (LMW) thiol glutathione. Here we provide evidence that S-thiolation by the LMW thiol cysteine represents a general mechanism in B. subtilis. In vivo labeling of proteins with [(35)S]cysteine and nonreducing two-dimensional PAGE analyses revealed that a large subset of proteins previously identified as having redox-sensitive thiols are modified by cysteine in response to treatment with the thiol-specific oxidant diamide. By means of multidimensional shotgun proteomics, the sites of S-cysteinylation for six proteins could be identified, three of which are known to be S-glutathionylated in other organisms.
Collapse
Affiliation(s)
- Falko Hochgräfe
- Institute for Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Choi SY, Reyes D, Leelakriangsak M, Zuber P. The global regulator Spx functions in the control of organosulfur metabolism in Bacillus subtilis. J Bacteriol 2006; 188:5741-51. [PMID: 16885442 PMCID: PMC1540065 DOI: 10.1128/jb.00443-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spx is a global transcriptional regulator of the oxidative stress response in Bacillus subtilis. Its target is RNA polymerase, where it contacts the alpha subunit C-terminal domain. Recently, evidence was presented that Spx participates in sulfate-dependent control of organosulfur utilization operons, including the ytmI, yxeI, ssu, and yrrT operons. The yrrT operon includes the genes that function in cysteine synthesis from S-adenosylmethionine through intermediates S-adenosylhomocysteine, ribosylhomocysteine, homocysteine, and cystathionine. These operons are also negatively controlled by CymR, the repressor of cysteine biosynthesis operons. All of the operons are repressed in media containing cysteine or sulfate but are derepressed in medium containing the alternative sulfur source, methionine. Spx was found to negatively control the expression of these operons in sulfate medium, in part, by stimulating the expression of the cymR gene. In addition, microarray analysis, monitoring of yrrT-lacZ fusion expression, and in vitro transcription studies indicate that Spx directly activates yrrT operon expression during growth in medium containing methionine as sole sulfur source. These experiments have uncovered additional roles for Spx in the control of gene expression during unperturbed, steady-state growth.
Collapse
Affiliation(s)
- Soon-Yong Choi
- OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | | | |
Collapse
|
21
|
Kilbane JJ. Microbial biocatalyst developments to upgrade fossil fuels. Curr Opin Biotechnol 2006; 17:305-14. [PMID: 16678400 DOI: 10.1016/j.copbio.2006.04.005] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 03/25/2006] [Accepted: 04/26/2006] [Indexed: 11/26/2022]
Abstract
Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.
Collapse
|
22
|
Even S, Burguière P, Auger S, Soutourina O, Danchin A, Martin-Verstraete I. Global control of cysteine metabolism by CymR in Bacillus subtilis. J Bacteriol 2006; 188:2184-97. [PMID: 16513748 PMCID: PMC1428143 DOI: 10.1128/jb.188.6.2184-2197.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
YrzC has previously been identified as a repressor controlling ytmI expression via its regulation of YtlI activator synthesis in Bacillus subtilis. We identified YrzC as a master regulator of sulfur metabolism. Gene expression profiles of B. subtilis delta yrzC mutant and wild-type strains grown in minimal medium with sulfate as the sole sulfur source were compared. In the mutant, increased expression was observed for 24 genes previously identified as repressed in the presence of sulfate. Since several genes involved in the pathways leading to cysteine formation were found, we propose to rename YrzC CymR, for "cysteine metabolism repressor." A CymR-dependent binding to the promoter region of the ytlI, ssuB, tcyP, yrrT, yxeK, cysK, or ydbM gene was demonstrated using gel shift experiments. A potential CymR target site, TAAWNCN2ANTWNAN3ATMGGAATTW, was found in the promoter region of these genes. In a DNase footprint experiment, the protected region in the ytlI promoter region contained this consensus sequence. Partial deletion or introduction of point mutations in this sequence confirmed its involvement in ytlI, yrrT, and yxeK regulation. The addition of O-acetylserine in gel shift experiments prevented CymR-dependent binding to DNA for all of the targets characterized. Transcriptome analysis of a delta cymR mutant and the wild-type strain also brought out significant changes in the expression level of a large set of genes related to stress response or to transition toward anaerobiosis.
Collapse
Affiliation(s)
- Sergine Even
- Unité de Génétique des Génomes Bactériens, Institut Pasteur, URA CNRS 2171, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
23
|
Newberry KJ, Nakano S, Zuber P, Brennan RG. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci U S A 2005; 102:15839-44. [PMID: 16249335 PMCID: PMC1266077 DOI: 10.1073/pnas.0506592102] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 09/13/2005] [Indexed: 11/18/2022] Open
Abstract
Spx, a global transcription regulator in Bacillus subtilis, interacts with the C-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase to control gene expression under conditions of disulfide stress, which is sensed by disulfide bond formation between Spx residues C10 and C13. Here, we describe the crystal structure of the B. subtilis alphaCTD bound to oxidized Spx. Analysis of the complex reveals interactions between three regions of "anti-alpha" Spx and helix alpha1 and the "261" determinant of alphaCTD. The former contact could disrupt the interaction between alphaCTD and activator proteins or alter the DNA-bound conformation of alphaCTD, thereby repressing activator-stimulated transcription. Binding to the 261 determinant would prevent interaction between alphaCTD and region 4 of sigma(A). Intriguingly, the Spx disulfide bond is far from the alphaCTD-Spx interface, suggesting that Spx regulates transcription allosterically or through the redox-dependent creation or destruction of binding sites for additional components of the transcription machinery.
Collapse
Affiliation(s)
- Kate J Newberry
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | | | | | | |
Collapse
|
24
|
Guobin S, Huaiying Z, Weiquan C, Jianmin X, Huizhou L. Improvement of biodesulfurization rate by assembling nanosorbents on the surfaces of microbial cells. Biophys J 2005; 89:L58-60. [PMID: 16258046 PMCID: PMC1367006 DOI: 10.1529/biophysj.105.073718] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To improve biodesulfurization rate is a key to industrialize biodesulfurization technology. The biodesulfurization rate is partially affected by transfer rate of substrates from organic phase to microbial cell. In this study, gamma-Al2O3 nanosorbents, which had the ability to selectively adsorb dibenzothiophene (DBT) from organic phase, were assembled on the surfaces of Pseudomonas delafieldii R-8 cell, a desulfurization strain. gamma-Al2O3 nanosorbents have the ability to adsorb DBT from oil phase, and the rate of adsorption was far higher than that of biodesulfurization. Thus, DBT can be quickly transferred to the biocatalyst surface where nanosorbents were located, which quickened DBT transfer from organic phase to biocatalyst surface and resulted in the increase of biodesulfurization rate. The desulfurization rate of the cells assembled with nanosorbents was approximately twofold higher than that of original cells. The cells assembled with nanosorbents were observed by a transmission electron microscope.
Collapse
Affiliation(s)
- S Guobin
- Laboratory of Separation Science and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100080, China.
| | | | | | | | | |
Collapse
|