1
|
Vélez-González F, Marcos-Vilchis A, Vega-Baray B, Dreyfus G, Poggio S, Camarena L. Rotation of the Fla2 flagella of Cereibacter sphaeroides requires the periplasmic proteins MotK and MotE that interact with the flagellar stator protein MotB2. PLoS One 2024; 19:e0298028. [PMID: 38507361 PMCID: PMC10954123 DOI: 10.1371/journal.pone.0298028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/16/2024] [Indexed: 03/22/2024] Open
Abstract
The bacterial flagellum is a complex structure formed by more than 25 different proteins, this appendage comprises three conserved structures: the basal body, the hook and filament. The basal body, embedded in the cell envelope, is the most complex structure and houses the export apparatus and the motor. In situ images of the flagellar motor in different species have revealed a huge diversity of structures that surround the well-conserved periplasmic components of the basal body. The identity of the proteins that form these novel structures in many cases has been elucidated genetically and biochemically, but in others they remain to be identified or characterized. In this work, we report that in the alpha proteobacteria Cereibacter sphaeroides the novel protein MotK along with MotE are essential for flagellar rotation. We show evidence that these periplasmic proteins interact with each other and with MotB2. Moreover, these proteins localize to the flagellated pole and MotK localization is dependent on MotB2 and MotA2. These results together suggest that the role of MotK and MotE is to activate or recruit the flagellar stators to the flagellar structure.
Collapse
Affiliation(s)
- Fernanda Vélez-González
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arely Marcos-Vilchis
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Benjamín Vega-Baray
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Georges Dreyfus
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sebastian Poggio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Laura Camarena
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Abstract
Helicobacter pylori plays a causative role in gastric diseases. The pathogenicity of H. pylori depends on its ability to colonize the stomach guided by motility. FliY is a unique flagellar motor switch component coexisting with the classical FliG, FliM, and FliN switch proteins in some bacteria and has been shown to be essential for flagellation. However, the functional importance of FliY in H. pylori flagellar motor assembly is not well understood. Here, we applied cryo-electron tomography and subtomogram averaging to analyze the in situ structures of flagellar motors from wild-type strain, fliY-null mutant and complementation mutants expressing the N-terminal or C-terminal domain of FliY. Loss of full-length FliY or its C-terminal domain interrupted the formation of an intact C ring and soluble export apparatus, as well as the hook and flagellar filaments. Complementation with FliY C-terminal domain restored all these missing components of flagellar motor. Taken together, these results provide structural insights into the roles of FliY, especially its C-terminal domain in flagellar motor assembly in H. pylori. IMPORTANCEHelicobacter pylori is the major risk factor related with gastric diseases. Flagellar motor is one of the most important virulence factors in H. pylori. However, the assembly mechanism of H. pylori flagellar motor is not fully understood yet. Previous report mainly described the overall structures of flagellum but had not focused on its specific components. Here, we focus on H. pylori flagellar C-ring protein FliY. We directly visualize the flagellar structures of H. pylori wild-type and FliY N-/C-terminal complementary strains by cryo-electron tomography and subtomogram averaging. Our results show that deletion of FliY or its C-terminal domain causes the loss of C ring, whereas deletion of FliY N-terminal does not affect C-ring assembly and flagellar structures. Our results provide direct evidence that C-ring protein FliY, especially its C-terminal domain, plays an indispensable role in H. pylori motor assembly and flagellar formation. This study will deepen our understanding about H. pylori pathogenesis.
Collapse
|
3
|
The Escherichia coli QseB/QseC signaling is required for correct timing of replication initiation and cell motility. Gene 2020; 773:145374. [PMID: 33359126 DOI: 10.1016/j.gene.2020.145374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
The Escherichia coli QseB/QseC signaling regulates expressions of more than 50 genes encoding flagellar proteins and proteins associated with virulence. Here we found that absence of the QseB/QseC signaling led to an early initiation of chromosomal replication and higher concentration of DnaA which is initiator for replication. The upstream region of dnaA promoter contains three potential QseB binding sites and absence of these binding sites increased transcription of the dnaA gene in wild-type cells but not in the cells lacking the qseB/qseC genes, showing that the QseB/QseC signaling regulates dnaA expression through the QseB binding sites. Also increased cell motility but neither cell size nor growth rate in ΔqseBC and ΔqseB cells was observed and these effects were reversed by ectopic expression of QseBC. Further, it was found that QseB interacted with the DnaK chaperone and FtsZ cell division protein in vivo, and absence of DnaK or partial inactivation of FtsZ decreased cell motility. Thus, we conclude that the QseB/QseC signaling modulates timing of replication initiation by regulating expression of DnaA, coordinates cell motility with cell division through interacting with the DnaK and FtsZ protein.
Collapse
|
4
|
Khan S. The Architectural Dynamics of the Bacterial Flagellar Motor Switch. Biomolecules 2020; 10:E833. [PMID: 32486003 PMCID: PMC7355467 DOI: 10.3390/biom10060833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
The rotary bacterial flagellar motor is remarkable in biochemistry for its highly synchronized operation and amplification during switching of rotation sense. The motor is part of the flagellar basal body, a complex multi-protein assembly. Sensory and energy transduction depends on a core of six proteins that are adapted in different species to adjust torque and produce diverse switches. Motor response to chemotactic and environmental stimuli is driven by interactions of the core with small signal proteins. The initial protein interactions are propagated across a multi-subunit cytoplasmic ring to switch torque. Torque reversal triggers structural transitions in the flagellar filament to change motile behavior. Subtle variations in the core components invert or block switch operation. The mechanics of the flagellar switch have been studied with multiple approaches, from protein dynamics to single molecule and cell biophysics. The architecture, driven by recent advances in electron cryo-microscopy, is available for several species. Computational methods have correlated structure with genetic and biochemical databases. The design principles underlying the basis of switch ultra-sensitivity and its dependence on motor torque remain elusive, but tantalizing clues have emerged. This review aims to consolidate recent knowledge into a unified platform that can inspire new research strategies.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Abstract
Bacteria move by a variety of mechanisms, but the best understood types of motility are powered by flagella (72). Flagella are complex machines embedded in the cell envelope that rotate a long extracellular helical filament like a propeller to push cells through the environment. The flagellum is one of relatively few biological machines that experience continuous 360° rotation, and it is driven by one of the most powerful motors, relative to its size, on earth. The rotational force (torque) generated at the base of the flagellum is essential for motility, niche colonization, and pathogenesis. This review describes regulatory proteins that control motility at the level of torque generation.
Collapse
Affiliation(s)
- Sundharraman Subramanian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Biochemistry Graduate Program, Indiana University, Bloomington, Indiana 47405, USA
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
6
|
Organization of the Flagellar Switch Complex of Bacillus subtilis. J Bacteriol 2019; 201:JB.00626-18. [PMID: 30455280 DOI: 10.1128/jb.00626-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 01/12/2023] Open
Abstract
While the protein complex responsible for controlling the direction (clockwise [CW] or counterclockwise [CCW]) of flagellar rotation has been fairly well studied in Escherichia coli and Salmonella, less is known about the switch complex in Bacillus subtilis or other Gram-positive species. Two component proteins (FliG and FliM) are shared between E. coli and B. subtilis, but in place of the protein FliN found in E. coli, the B. subtilis complex contains the larger protein FliY. Notably, in B. subtilis the signaling protein CheY-phosphate induces a switch from CW to CCW rotation, opposite to its action in E. coli Here, we have examined the architecture and function of the switch complex in B. subtilis using targeted cross-linking, bacterial two-hybrid protein interaction experiments, and characterization of mutant phenotypes. In major respects, the B. subtilis switch complex appears to be organized similarly to that in E. coli The complex is organized around a ring built from the large middle domain of FliM; this ring supports an array of FliG subunits organized in a similar way to that of E. coli, with the FliG C-terminal domain functioning in the generation of torque via conserved charged residues. Key differences from E. coli involve the middle domain of FliY, which forms an additional, more outboard array, and the C-terminal domains of FliM and FliY, which are organized into both FliY homodimers and FliM heterodimers. Together, the results suggest that the CW and CCW conformational states are similar in the Gram-negative and Gram-positive switches but that CheY-phosphate drives oppositely directed movements in the two cases.IMPORTANCE Flagellar motility plays key roles in the survival of many bacteria and in the harmful action of many pathogens. Bacterial flagella rotate; the direction of flagellar rotation is controlled by a multisubunit protein complex termed the switch complex. This complex has been extensively studied in Gram-negative model species, but little is known about the complex in Bacillus subtilis or other Gram-positive species. Notably, the switch complex in Gram-positive species responds to its effector CheY-phosphate (CheY-P) by switching to CCW rotation, whereas in E. coli or Salmonella CheY-P acts in the opposite way, promoting CW rotation. In the work here, the architecture of the B. subtilis switch complex has been probed using cross-linking, protein interaction measurements, and mutational approaches. The results cast light on the organization of the complex and provide a framework for understanding the mechanism of flagellar direction control in B. subtilis and other Gram-positive species.
Collapse
|
7
|
Onoue Y, Takekawa N, Nishikino T, Kojima S, Homma M. The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor. Microbiologyopen 2018; 7:e00587. [PMID: 29573373 PMCID: PMC6079164 DOI: 10.1002/mbo3.587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 12/23/2022] Open
Abstract
Many bacteria rotate their flagella both counterclockwise (CCW) and clockwise (CW) to achieve swimming toward attractants or away from repellents. Highly conserved charged residues are important for that motility, which suggests that electrostatic interactions are crucial for the rotor-stator function. It remains unclear if those residues contribute equally to rotation in the CCW and CW directions. To address this uncertainty, in this study, we expressed chimeric rotors and stators from Vibrio alginolyticus and Escherichia coli in E. coli, and measured the rotational speed of each motor in both directions using a tethered-cell assay. In wild-type cells, the rotational speeds in both directions were equal, as demonstrated previously. Some charge-neutralizing residue replacements in the stator decreased the rotational speed in both directions to the same extent. However, mutations in two charged residues in the rotor decreased the rotational speed only in the CCW direction. Subsequent analysis and previous results suggest that these amino acid residues are involved in supporting the conformation of the rotor, which is important for proper torque generation in the CCW direction.
Collapse
Affiliation(s)
- Yasuhiro Onoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Norihiro Takekawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tatsuro Nishikino
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Kinoshita M, Namba K, Minamino T. Effect of a clockwise-locked deletion in FliG on the FliG ring structure of the bacterial flagellar motor. Genes Cells 2018; 23:241-247. [PMID: 29405551 DOI: 10.1111/gtc.12565] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 01/11/2018] [Indexed: 11/29/2022]
Abstract
FliG is a rotor protein of the bacterial flagellar motor. FliG consists of FliGN , FliGM and FliGC domains. Intermolecular FliGM -FliGC interactions promote FliG ring formation on the cytoplasmic face of the MS ring. A conformational change in HelixMC connecting FliGM and FliGC is responsible for the switching between the counterclockwise (CCW) and clockwise (CW) rotational states of the FliG ring. However, it remains unknown how it occurs. Here, we carried out in vivo disulfide cross-linking experiments to see the effect of a CW-locked deletion (∆PAA) in FliG on the FliG ring structure in Salmonella enterica. Higher-order oligomers were observed in the membrane fraction of the fliG(∆PAA + G166C/G194C) strain upon oxidation with iodine in a way similar to FliG(G166C/G194C), indicating that the PAA deletion does not inhibit domain-swap polymerization of FliG. FliG(∆PAA + E174C) formed a cross-linked homodimer whereas FliG(E174C) did not, indicating that Glu174 in HelixMC of one FliG protomer is located much closer to that of its neighboring subunit in the CW motor than in the CCW motor. We will discuss possible helical rearrangements of HelixMC that induce a structural remodeling of the FliG ring upon flagellar motor switching.
Collapse
Affiliation(s)
- Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Quantitative Biology Center, RIKEN, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
9
|
Nirody JA, Berry RM, Oster G. The Limiting Speed of the Bacterial Flagellar Motor. Biophys J 2017; 111:557-564. [PMID: 27508439 DOI: 10.1016/j.bpj.2016.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Recent experiments on the bacterial flagellar motor have shown that the structure of this nanomachine, which drives locomotion in a wide range of bacterial species, is more dynamic than previously believed. Specifically, the number of active torque-generating complexes (stators) was shown to vary across applied loads. This finding brings under scrutiny the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. In this study, we propose that, contrary to previous assumptions, the maximum speed of the motor increases as additional stators are recruited. This result arises from our assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence in chimeric motors, as well as with the requirement that a processive motor driving a large load via an elastic linkage must have a high duty ratio.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, California.
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, United Kingdom
| | - George Oster
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California
| |
Collapse
|
10
|
Kim EA, Panushka J, Meyer T, Carlisle R, Baker S, Ide N, Lynch M, Crane BR, Blair DF. Architecture of the Flagellar Switch Complex of Escherichia coli: Conformational Plasticity of FliG and Implications for Adaptive Remodeling. J Mol Biol 2017; 429:1305-1320. [PMID: 28259628 PMCID: PMC5494207 DOI: 10.1016/j.jmb.2017.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 12/29/2022]
Abstract
Structural models of the complex that regulates the direction of flagellar rotation assume either ~34 or ~25 copies of the protein FliG. Support for ~34 came from crosslinking experiments identifying an intersubunit contact most consistent with that number; support for ~25 came from the observation that flagella can assemble and rotate when FliG is genetically fused to FliF, for which the accepted number is ~25. Here, we have undertaken crosslinking and other experiments to address more fully the question of FliG number. The results indicate a copy number of ~25 for FliG. An interaction between the C-terminal and middle domains, which has been taken to support a model with ~34 copies, is also supported. To reconcile the interaction with a FliG number of ~25, we hypothesize conformational plasticity in an interdomain segment of FliG that allows some subunits to bridge gaps created by the number mismatch. This proposal is supported by mutant phenotypes and other results indicating that the normally helical segment adopts a more extended conformation in some subunits. The FliG amino-terminal domain is organized in a regular array with dimensions matching a ring in the upper part of the complex. The model predicts that FliG copy number should be tied to that of FliF, whereas FliM copy number can increase or decrease according to the number of FliG subunits that adopt the extended conformation. This has implications for the phenomenon of adaptive switch remodeling, in which the FliM copy number varies to adjust the bias of the switch.
Collapse
Affiliation(s)
- Eun A Kim
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joseph Panushka
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Trevor Meyer
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ryan Carlisle
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Samantha Baker
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicholas Ide
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - David F Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
11
|
Pandini A, Kleinjung J, Rasool S, Khan S. Coevolved Mutations Reveal Distinct Architectures for Two Core Proteins in the Bacterial Flagellar Motor. PLoS One 2015; 10:e0142407. [PMID: 26561852 PMCID: PMC4642947 DOI: 10.1371/journal.pone.0142407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/21/2015] [Indexed: 02/08/2023] Open
Abstract
Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) “torque” helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.
Collapse
Affiliation(s)
- Alessandro Pandini
- Department of Computer Science and Synthetic Biology Theme, Brunel University London, Uxbridge UB8 3PH, United Kingdom
| | - Jens Kleinjung
- Mathematical Biology, Francis Crick Institute, Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Shafqat Rasool
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well established that the passage of ions down a transmembrane gradient through the stator complex provides the energy for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify roles for two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, whereas steric forces comprise the actual "power stroke." Specifically, we propose that ion-induced conformational changes about a proline "hinge" residue in a stator α-helix are directly responsible for generating the power stroke. Our model predictions fit well with recent experiments on a single-stator motor. The proposed model provides a mechanical explanation for several fundamental properties of the flagellar motor, including torque-speed and speed-ion motive force relationships, backstepping, variation in step sizes, and the effects of key mutations in the stator.
Collapse
|
13
|
Sircar R, Borbat PP, Lynch MJ, Bhatnagar J, Beyersdorf MS, Halkides CJ, Freed JH, Crane BR. Assembly states of FliM and FliG within the flagellar switch complex. J Mol Biol 2014; 427:867-886. [PMID: 25536293 DOI: 10.1016/j.jmb.2014.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/11/2023]
Abstract
At the base of the bacterial flagella, a cytoplasmic rotor (the C-ring) generates torque and reverses rotation sense in response to stimuli. The bulk of the C-ring forms from many copies of the proteins FliG, FliM, and FliN, which together constitute the switch complex. To help resolve outstanding issues regarding C-ring architecture, we have investigated interactions between FliM and FliG from Thermotoga maritima with X-ray crystallography and pulsed dipolar ESR spectroscopy (PDS). A new crystal structure of an 11-unit FliG:FliM complex produces a large arc with a curvature consistent with the dimensions of the C-ring. Previously determined structures along with this new structure provided a basis to test switch complex assembly models. PDS combined with mutational studies and targeted cross-linking reveal that FliM and FliG interact through their middle domains to form both parallel and antiparallel arrangements in solution. Residue substitutions at predicted interfaces disrupt higher-order complexes that are primarily mediated by contacts between the C-terminal domain of FliG and the middle domain of a neighboring FliG molecule. Spin separations among multi-labeled components fit a self-consistent model that agree well with electron microscopy images of the C-ring. An activated form of the response regulator CheY destabilizes the parallel arrangement of FliM molecules to perturb FliG alignment in a process that may reflect the onset of rotation switching. These data suggest a model of C-ring assembly in which intermolecular contacts among FliG domains provide a template for FliM assembly and cooperative transitions.
Collapse
Affiliation(s)
- Ria Sircar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Lynch
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jaya Bhatnagar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Matthew S Beyersdorf
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Christopher J Halkides
- Department of Chemistry and Biochemistry, Unversity of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA; National Biomedical Center for Advanced ESR Technology, Cornell University, Ithaca, NY 14853, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
14
|
Gohara M, Kobayashi S, Abe-Yoshizumi R, Nonoyama N, Kojima S, Asami Y, Homma M. Biophysical characterization of the C-terminal region of FliG, an essential rotor component of the Na+-driven flagellar motor. J Biochem 2013; 155:83-9. [DOI: 10.1093/jb/mvt100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
15
|
ExbB cytoplasmic loop deletions cause immediate, proton motive force-independent growth arrest. J Bacteriol 2013; 195:4580-91. [PMID: 23913327 DOI: 10.1128/jb.00334-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The Escherichia coli TonB system consists of the cytoplasmic membrane proteins TonB, ExbB, and ExbD and multiple outer membrane active transporters for diverse iron siderophores and vitamin B12. The cytoplasmic membrane proteins harvest and transmit the proton motive force (PMF) to outer membrane transporters. This system, which spans the cell envelope, has only one component with a significant cytoplasmic presence, ExbB. Characterization of sequential 10-residue deletions in the ExbB cytoplasmic loop (residues 40 to 129; referred to as Δ10 proteins) revealed that it was required for all TonB-dependent activities, including interaction between the periplasmic domains of TonB and ExbD. Expression of eight out of nine of the Δ10 proteins at chromosomal levels led to immediate, but reversible, growth arrest. Arrest was not due to collapse of the PMF and did not require the presence of ExbD or TonB. All Δ10 proteins that caused growth arrest were dominant for that phenotype. However, several were not dominant for iron transport, indicating that growth arrest was an intrinsic property of the Δ10 variants, whether or not they could associate with wild-type ExbB proteins. The lack of dominance in iron transport also ruled out trivial explanations for growth arrest, such as high-level induction. Taken together, the data suggest that growth arrest reflected a changed interaction between the ExbB cytoplasmic loop and one or more unknown growth-regulatory proteins. Consistent with that, a large proportion of the ExbB cytoplasmic loop between transmembrane domain 1 (TMD1) and TMD2 is predicted to be disordered, suggesting the need for interaction with one or more cytoplasmic proteins to induce a final structure.
Collapse
|
16
|
Guttenplan SB, Kearns DB. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 2013; 37:849-71. [PMID: 23480406 DOI: 10.1111/1574-6976.12018] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 02/07/2013] [Indexed: 11/30/2022] Open
Abstract
Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form nonmotile multicellular aggregates called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria, and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here, we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are diluted to extinction through growth. Both short-term and long-term motility inhibition is likely important to stabilize cell aggregates and optimize resource investment. We emphasize the newly discovered flagellar functional regulators and speculate that others await discovery in the context of biofilm formation.
Collapse
|
17
|
Nanorotors and self-assembling macromolecular machines: The torque ring of the bacterial flagellar motor. Curr Opin Biotechnol 2012; 23:545-54. [DOI: 10.1016/j.copbio.2012.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/16/2012] [Indexed: 01/18/2023]
|
18
|
Multiple Conformations of the FliG C-Terminal Domain Provide Insight into Flagellar Motor Switching. Structure 2012; 20:315-25. [DOI: 10.1016/j.str.2011.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 01/01/2023]
|
19
|
A molecular mechanism of direction switching in the flagellar motor of Escherichia coli. Proc Natl Acad Sci U S A 2011; 108:17171-6. [PMID: 21969567 DOI: 10.1073/pnas.1110111108] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The direction of flagellar rotation is regulated by a rotor-mounted protein assembly, termed the "switch complex," formed from multiple copies of the proteins FliG, FliM, and FliN. The structures of major parts of these proteins are known, and the overall organization of proteins in the complex has been elucidated previously using a combination of protein-binding, mutational, and cross-linking approaches. In Escherichia coli, the switch from counterclockwise to clockwise rotation is triggered by the signaling protein phospho-CheY, which binds to the lower part of the switch complex and induces small movements of FliM and FliN subunits relative to each other. Direction switching also must produce movements in the upper part of the complex, particularly in the C-terminal domain of FliG (FliG(C)), which interacts with the stator to generate the torque for flagellar rotation. In the present study, protein movements in the middle and upper parts of the switch complex have been probed by means of targeted cross-linking and mutational analysis. Switching induces a tilting movement of the FliM domains that form the middle part of the switch and a consequent rotation of the affixed FliG(C) domains that reorients the stator interaction sites by about 90°. In a recently proposed hypothesis for the motor mechanism, such a reorientation of FliG(C) would reverse the direction of motor rotation.
Collapse
|
20
|
Adjusting the spokes of the flagellar motor with the DNA-binding protein H-NS. J Bacteriol 2011; 193:5914-22. [PMID: 21890701 DOI: 10.1128/jb.05458-11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H-NS protein of bacteria is a global regulator that stimulates transcription of flagellar genes and that also acts directly to modulate flagellar motor function. H-NS is known to bind FliG, a protein of the rotor that interacts with the stator and is directly involved in rotation of the motor. Here, we find that H-NS, well known for its ability to organize DNA, acts in the flagellar motor to organize protein subunits in the rotor. It binds to a middle domain of FliG that bridges the core parts of the rotor and parts nearer the edge that interact with the stator. In the absence of H-NS the organization of FliG subunits is disrupted, whereas overexpression of H-NS enhances FliG organization as monitored by targeted disulfide cross-linking, alters the disposition of a helix joining the middle and C-terminal domains of FliG, and enhances motor performance under conditions requiring a strengthened rotor-stator interface. The H-NS homolog StpA was also shown to bind FliG and to act similarly, though less effectively, in organizing FliG. The motility-enhancing effects of H-NS contrast with those of the recently characterized motility inhibitor YcgR. The present findings provide an integrated, structurally grounded framework for understanding the roughly opposing effects of these motility regulators.
Collapse
|
21
|
Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D. Architecture of the flagellar rotor. EMBO J 2011; 30:2962-71. [PMID: 21673656 DOI: 10.1038/emboj.2011.188] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 05/18/2011] [Indexed: 12/16/2022] Open
Abstract
Rotation and switching of the bacterial flagellum depends on a large rotor-mounted protein assembly composed of the proteins FliG, FliM and FliN, with FliG most directly involved in rotation. The crystal structure of a complex between the central domains of FliG and FliM, in conjunction with several biochemical and molecular-genetic experiments, reveals the arrangement of the FliG and FliM proteins in the rotor. A stoichiometric mismatch between FliG (26 subunits) and FliM (34 subunits) is explained in terms of two distinct positions for FliM: one where it binds the FliG central domain and another where it binds the FliG C-terminal domain. This architecture provides a structural framework for addressing the mechanisms of motor rotation and direction switching and for unifying the large body of data on motor performance. Recently proposed alternative models of rotor assembly, based on a subunit contact observed in crystals, are not supported by experiment.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
22
|
Minamino T, Imada K, Kinoshita M, Nakamura S, Morimoto YV, Namba K. Structural insight into the rotational switching mechanism of the bacterial flagellar motor. PLoS Biol 2011; 9:e1000616. [PMID: 21572987 PMCID: PMC3091841 DOI: 10.1371/journal.pbio.1000616] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 03/29/2011] [Indexed: 01/09/2023] Open
Abstract
Structural analysis of a clockwise-biased rotation mutant of the bacterial
flagellar rotor protein FliG provides a new model for the arrangement of FliG
subunits in the motor, and novel insights into rotation switching. The bacterial flagellar motor can rotate either clockwise (CW) or
counterclockwise (CCW). Three flagellar proteins, FliG, FliM, and FliN, are
required for rapid switching between the CW and CCW directions. Switching is
achieved by a conformational change in FliG induced by the binding of a
chemotaxis signaling protein, phospho-CheY, to FliM and FliN. FliG consists of
three domains, FliGN, FliGM, and FliGC, and
forms a ring on the cytoplasmic face of the MS ring of the flagellar basal body.
Crystal structures have been reported for the FliGMC domains of
Thermotoga maritima, which consist of the FliGM
and FliGC domains and a helix E that connects these two domains, and
full-length FliG of Aquifex aeolicus. However, the basis for
the switching mechanism is based only on previously obtained genetic data and is
hence rather indirect. We characterized a CW-biased mutant
(fliG(ΔPAA)) of Salmonella enterica by
direct observation of rotation of a single motor at high temporal and spatial
resolution. We also determined the crystal structure of the FliGMC
domains of an equivalent deletion mutant variant of T. maritima
(fliG(ΔPEV)). The FliG(ΔPAA) motor produced torque
at wild-type levels under a wide range of external load conditions. The
wild-type motors rotated exclusively in the CCW direction under our experimental
conditions, whereas the mutant motors rotated only in the CW direction. This
result suggests that wild-type FliG is more stable in the CCW state than in the
CW state, whereas FliG(ΔPAA) is more stable in the CW state than in the CCW
state. The structure of the TM-FliGMC(ΔPEV) revealed that
extremely CW-biased rotation was caused by a conformational change in helix E.
Although the arrangement of FliGC relative to FliGM in a
single molecule was different among the three crystals, a conserved
FliGM-FliGC unit was observed in all three of them. We
suggest that the conserved FliGM-FliGC unit is the basic
functional element in the rotor ring and that the PAA deletion induces a
conformational change in a hinge-loop between FliGM and helix E to
achieve the CW state of the FliG ring. We also propose a novel model for the
arrangement of FliG subunits within the motor. The model is in agreement with
the previous mutational and cross-linking experiments and explains the
cooperative switching mechanism of the flagellar motor. The bacterial flagellum is a rotating organelle that governs cell motility. At
the base of each flagellum is a motor powered by the electrochemical potential
difference of specific ions across the cytoplasmic membrane. In response to
environmental stimuli, rotation of the motor switches between counterclockwise
and clockwise, with a corresponding effect on the swimming direction of the
cell. Switching is triggered by the binding of the signaling protein
phospho-CheY to FliM and FliN, and achieved by conformational changes in the
rotor protein FliG. The actual switching mechanism, however, remains unclear. In
this study, we characterized a fliG mutant of
Salmonella that shows an extreme clockwise-biased rotation,
and determined the structure of a fragment of FliG (FliGMC) of the
equivalent mutant variant of Thermotoga maritima.
FliGMC is composed of two domains and covers the regions
essential for torque generation and FliM binding. We showed that the mutant
structure has a conformational change in the helix connecting the two domains,
leading to a domain orientation distinct from that of the wild-type FliG. On the
basis of this structure, we propose a new model for the arrangement of FliG
subunits in the rotor that is consistent with the previous mutational studies
and explains how cooperative switching occurs in the motor.
Collapse
Affiliation(s)
- Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka
University, Osaka, Japan
- PRESTO, JST, Saitama, Japan
| | - Katsumi Imada
- Graduate School of Frontier Biosciences, Osaka
University, Osaka, Japan
- Department of Macromolecular Science, Osaka
University, Osaka, Japan
- * E-mail: (KI); (KN)
| | - Miki Kinoshita
- Graduate School of Frontier Biosciences, Osaka
University, Osaka, Japan
| | - Shuichi Nakamura
- Graduate School of Frontier Biosciences, Osaka
University, Osaka, Japan
| | | | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka
University, Osaka, Japan
- * E-mail: (KI); (KN)
| |
Collapse
|
23
|
Comparative proteogenomic analysis of the Leptospira interrogans virulence-attenuated strain IPAV against the pathogenic strain 56601. Cell Res 2011; 21:1210-29. [PMID: 21423275 DOI: 10.1038/cr.2011.46] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The virulence-attenuated Leptospira interrogans serovar Lai strain IPAV was derived by prolonged laboratory passage from a highly virulent ancestral strain isolated in China. We studied the genetic variations of IPAV that render it avirulent via comparative analysis against the pathogenic L. interrogans serovar Lai strain 56601. The complete genome sequence of the IPAV strain was determined and used to compare with, and then rectify and reannotate the genome sequence of strain 56601. Aside from their highly similar genomic structure and gene order, a total of 33 insertions, 53 deletions and 301 single-nucleotide variations (SNVs) were detected throughout the genome of IPAV directly affecting 101 genes, either in their 5' upstream region or within their coding region. Among them, the majority of the 44 functional genes are involved in signal transduction, stress response, transmembrane transport and nitrogen metabolism. Comparative proteomic analysis based on quantitative liquid chromatography (LC)-MS/MS data revealed that among 1 627 selected pairs of orthologs, 174 genes in the IPAV strain were upregulated, with enrichment mainly in classes of energy production and lipid metabolism. In contrast, 228 genes in strain 56601 were upregulated, with the majority enriched in the categories of protein translation and DNA replication/repair. The combination of genomic and proteomic approaches illustrated that altered expression or mutations in critical genes, such as those encoding a Ser/Thr kinase, carbon-starvation protein CstA, glutamine synthetase, GTP-binding protein BipA, ribonucleotide-diphosphate reductase and phosphate transporter, and alterations in the translational profile of lipoproteins or outer membrane proteins are likely to account for the virulence attenuation in strain IPAV.
Collapse
|
24
|
Chemotaxis signaling protein CheY binds to the rotor protein FliN to control the direction of flagellar rotation in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:9370-5. [PMID: 20439729 DOI: 10.1073/pnas.1000935107] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The direction of rotation of the Escherichia coli flagellum is controlled by an assembly called the switch complex formed from multiple subunits of the proteins FliG, FliM, and FliN. Structurally, the switch complex corresponds to a drum-shaped feature at the bottom of the basal body, termed the C-ring. Stimulus-regulated reversals in flagellar motor rotation are the basis for directed movement such as chemotaxis. In E. coli, the motors turn counterclockwise (CCW) in their default state, allowing the several filaments on a cell to join together in a bundle and propel the cell smoothly forward. In response to the chemotaxis signaling molecule phospho-CheY (CheY(P)), the motors can switch to clockwise (CW) rotation, causing dissociation of the filament bundle and reorientation of the cell. CheY(P) has previously been shown to bind to a conserved segment near the N terminus of FliM. Here, we show that this interaction serves to capture CheY(P) and that the switch to CW rotation involves the subsequent interaction of CheY(P) with FliN. FliN is located at the bottom of the C-ring, in close association with the C-terminal domain of FliM (FliM(C)), and the switch to CW rotation has been shown to involve relative movement of FliN and FliM(C). Using a recently developed structural model for the FliN/FliM(C) array, and the CheY(P)-binding site here identified on FliN, we propose a mechanism by which CheY(P) binding could induce the conformational switch to CW rotation.
Collapse
|
25
|
Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a "backstop brake" mechanism. Mol Cell 2010; 38:128-39. [PMID: 20346719 DOI: 10.1016/j.molcel.2010.03.001] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 11/17/2022]
Abstract
We describe a mechanism of flagellar motor control by the bacterial signaling molecule c-di-GMP, which regulates several cellular behaviors. E. coli and Salmonella have multiple c-di-GMP cyclases and phosphodiesterases, yet absence of a specific phosphodiesterase YhjH impairs motility in both bacteria. yhjH mutants have elevated c-di-GMP levels and require YcgR, a c-di-GMP-binding protein, for motility inhibition. We demonstrate that YcgR interacts with the flagellar switch-complex proteins FliG and FliM, most strongly in the presence of c-di-GMP. This interaction reduces the efficiency of torque generation and induces CCW motor bias. We present a "backstop brake" model showing how both effects can result from disrupting the organization of the FliG C-terminal domain, which interacts with the stator protein MotA to generate torque. Inhibition of motility and chemotaxis may represent a strategy to prepare for sedentary existence by disfavoring migration away from a substrate on which a biofilm is to be formed.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
26
|
Sarkar MK, Paul K, Blair DF. Subunit organization and reversal-associated movements in the flagellar switch of Escherichia coli. J Biol Chem 2009; 285:675-84. [PMID: 19858188 DOI: 10.1074/jbc.m109.068676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bacterial flagella contain a rotor-mounted protein complex termed the switch complex that functions in flagellar assembly, rotation, and clockwise/counterclockwise direction control. In Escherichia coli and Salmonella, the switch complex contains the proteins FliG, FliM, and FliN and corresponds structurally with the C-ring in the flagellar basal body. Certain features of subunit organization in the switch complex have been deduced previously, but details of subunit organization in the lower part of the C-ring and the molecular movements responsible for motor switching remain unclear. In this study, we use cross-linking, binding, and mutational experiments to examine subunit organization in the bottom of the C-ring and to probe movements that occur upon switching. The results show that FliN tetramers alternate with FliM C-terminal domains to form the bottom of the C-ring in an arrangement that closely reproduces the major features observed in electron microscopic reconstructions. When motors were switched to clockwise rotation by a repellent stimulus, cross-link yields were altered in a pattern indicating relative movement of FliN and FliM(C). These results are discussed in the framework of a structurally grounded hypothesis for the switching mechanism.
Collapse
Affiliation(s)
- Mayukh K Sarkar
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
27
|
Peregrín-Alvarez JM, Xiong X, Su C, Parkinson J. The Modular Organization of Protein Interactions in Escherichia coli. PLoS Comput Biol 2009; 5:e1000523. [PMID: 19798435 PMCID: PMC2739439 DOI: 10.1371/journal.pcbi.1000523] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 08/27/2009] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli serves as an excellent model for the study of fundamental cellular processes such as metabolism, signalling and gene expression. Understanding the function and organization of proteins within these processes is an important step towards a 'systems' view of E. coli. Integrating experimental and computational interaction data, we present a reliable network of 3,989 functional interactions between 1,941 E. coli proteins ( approximately 45% of its proteome). These were combined with a recently generated set of 3,888 high-quality physical interactions between 918 proteins and clustered to reveal 316 discrete modules. In addition to known protein complexes (e.g., RNA and DNA polymerases), we identified modules that represent biochemical pathways (e.g., nitrate regulation and cell wall biosynthesis) as well as batteries of functionally and evolutionarily related processes. To aid the interpretation of modular relationships, several case examples are presented, including both well characterized and novel biochemical systems. Together these data provide a global view of the modular organization of the E. coli proteome and yield unique insights into structural and evolutionary relationships in bacterial networks.
Collapse
Affiliation(s)
- José M. Peregrín-Alvarez
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | - Xuejian Xiong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chong Su
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Chalmeau J, Dagkessamanskaia A, Le Grimellec C, Francois JM, Sternick J, Vieu C. Contribution to the elucidation of the structure of the bacterial flagellum nano-motor through AFM imaging of the M-Ring. Ultramicroscopy 2009; 109:845-53. [DOI: 10.1016/j.ultramic.2009.03.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Dyer CM, Vartanian AS, Zhou H, Dahlquist FW. A molecular mechanism of bacterial flagellar motor switching. J Mol Biol 2009; 388:71-84. [PMID: 19358329 DOI: 10.1016/j.jmb.2009.02.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The high-resolution structures of nearly all the proteins that comprise the bacterial flagellar motor switch complex have been solved; yet a clear picture of the switching mechanism has not emerged. Here, we used NMR to characterize the interaction modes and solution properties of a number of these proteins, including several soluble fragments of the flagellar motor proteins FliM and FliG, and the response-regulator CheY. We find that activated CheY, the switch signal, binds to a previously unidentified region of FliM, adjacent to the FliM-FliM interface. We also find that activated CheY and FliG bind with mutual exclusivity to this site on FliM, because their respective binding surfaces partially overlap. These data support a model of CheY-driven motor switching wherein the binding of activated CheY to FliM displaces the carboxy-terminal domain of FliG (FliGC) from FliM, modulating the FliGC-MotA interaction, and causing the motor to switch rotational sense as required for chemotaxis.
Collapse
Affiliation(s)
- Collin M Dyer
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
30
|
Flagellar biogenesis of Xanthomonas campestris requires the alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM. J Bacteriol 2009; 191:2266-75. [PMID: 19136588 DOI: 10.1128/jb.01152-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In prokaryotes, flagellar biogenesis is a complicated process involving over 40 genes. The phytopathogen Xanthomonas campestris pv. campestris possesses a single polar flagellum, which is essential for the swimming motility. A sigma54 activator, FleQ, has been shown to be required for the transcriptional activation of the flagellar type III secretion system (F-T3SS), rod, and hook proteins. One of the two rpoN genes, rpoN2, encoding sigma54, is essential for flagellation. RpoN2 and FleQ direct the expression of a second alternative sigma FliA (sigma28) that is essential for the expression of the flagellin FliC. FlgM interacts with FliA and represses the FliA regulons. An flgM mutant overexpressing FliC generates a deformed flagellum and displays an abnormal motility. Mutation in the two structural genes of F-T3SS, flhA and flhB, suppresses the production of FliC. Furthermore, FliA protein levels are decreased in an flhB mutant. A mutant defective in flhA, but not flhB, exhibits a decreased infection rate. In conclusion, the flagellar biogenesis of Xanthomonas campestris requires alternative sigma factors RpoN2 and FliA and is temporally regulated by FlhA, FlhB, and FlgM.
Collapse
|
31
|
Abstract
AbstractThe bacterial flagellar motor is a reversible rotary nano-machine, about 45 nm in diameter, embedded in the bacterial cell envelope. It is powered by the flux of H+or Na+ions across the cytoplasmic membrane driven by an electrochemical gradient, the proton-motive force or the sodium-motive force. Each motor rotates a helical filament at several hundreds of revolutions per second (hertz). In many species, the motor switches direction stochastically, with the switching rates controlled by a network of sensory and signalling proteins. The bacterial flagellar motor was confirmed as a rotary motor in the early 1970s, the first direct observation of the function of a single molecular motor. However, because of the large size and complexity of the motor, much remains to be discovered, in particular, the structural details of the torque-generating mechanism. This review outlines what has been learned about the structure and function of the motor using a combination of genetics, single-molecule and biophysical techniques, with a focus on recent results and single-molecule techniques.
Collapse
|
32
|
Characterization of the periplasmic domain of MotB and implications for its role in the stator assembly of the bacterial flagellar motor. J Bacteriol 2008; 190:3314-22. [PMID: 18310339 DOI: 10.1128/jb.01710-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MotA and MotB are integral membrane proteins that form the stator complex of the proton-driven bacterial flagellar motor. The stator complex functions as a proton channel and couples proton flow with torque generation. The stator must be anchored to an appropriate place on the motor, and this is believed to occur through a putative peptidoglycan-binding (PGB) motif within the C-terminal periplasmic domain of MotB. In this study, we constructed and characterized an N-terminally truncated variant of Salmonella enterica serovar Typhimurium MotB consisting of residues 78 through 309 (MotB(C)). MotB(C) significantly inhibited the motility of wild-type cells when exported into the periplasm. Some point mutations in the PGB motif enhanced the motility inhibition, while an in-frame deletion variant, MotB(C)(Delta197-210), showed a significantly reduced inhibitory effect. Wild-type MotB(C) and its point mutant variants formed a stable homodimer, while the deletion variant was monomeric. A small amount of MotB was coisolated only with the secreted form of MotB(C)-His(6) by Ni-nitrilotriacetic acid affinity chromatography, suggesting that the motility inhibition results from MotB-MotB(C) heterodimer formation in the periplasm. However, the monomeric mutant variant MotB(C)(Delta197-210) did not bind to MotB, suggesting that MotB(C) is directly involved in stator assembly. We propose that the MotB(C) dimer domain plays an important role in targeting and stable anchoring of the MotA/MotB complex to putative stator-binding sites of the motor.
Collapse
|
33
|
Affiliation(s)
- David F Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
34
|
Thomas DR, Francis NR, Xu C, DeRosier DJ. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar Typhimurium. J Bacteriol 2006; 188:7039-48. [PMID: 17015643 PMCID: PMC1636246 DOI: 10.1128/jb.00552-06] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional reconstructions from electron cryomicrographs of the rotor of the flagellar motor reveal that the symmetry of individual M rings varies from 24-fold to 26-fold while that of the C rings, containing the two motor/switch proteins FliM and FliN, varies from 32-fold to 36-fold, with no apparent correlation between the symmetries of the two rings. Results from other studies provided evidence that, in addition to the transmembrane protein FliF, at least some part of the third motor/switch protein, FliG, contributes to a thickening on the face of the M ring, but there was no evidence as to whether or not any portion of FliG also contributes to the C ring. Of the four morphological features in the cross section of the C ring, the feature closest to the M ring is not present with the rotational symmetry of the rest of the C ring, but instead it has the symmetry of the M ring. We suggest that this inner feature arises from a domain of FliG. We present a hypothetical docking in which the C-terminal motor domain of FliG lies in the C ring, where it can interact intimately with FliM.
Collapse
Affiliation(s)
- Dennis R Thomas
- Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
35
|
Brown PN, Terrazas M, Paul K, Blair DF. Mutational analysis of the flagellar protein FliG: sites of interaction with FliM and implications for organization of the switch complex. J Bacteriol 2006; 189:305-12. [PMID: 17085573 PMCID: PMC1797384 DOI: 10.1128/jb.01281-06] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The switch complex at the base of the bacterial flagellum is essential for flagellar assembly, rotation, and switching. In Escherichia coli and Salmonella, the complex contains about 26 copies of FliG, 34 copies of FliM, and more then 100 copies of FliN, together forming the basal body C ring. FliG is involved most directly in motor rotation and is located in the upper (membrane-proximal) part of the C ring. A crystal structure of the middle and C-terminal parts of FliG shows two globular domains connected by an alpha-helix and a short extended segment. The middle domain of FliG has a conserved surface patch formed by the residues EHPQ(125-128) and R(160) (the EHPQR motif), and the C-terminal domain has a conserved surface hydrophobic patch. To examine the functional importance of these and other surface features of FliG, we made mutations in residues distributed over the protein surface and measured the effects on flagellar assembly and function. Mutations preventing flagellar assembly occurred mainly in the vicinity of the EHPQR motif and the hydrophobic patch. Mutations causing aberrant clockwise or counterclockwise motor bias occurred in these same regions and in the waist between the upper and lower parts of the C-terminal domain. Pull-down assays with glutathione S-transferase-FliM showed that FliG interacts with FliM through both the EHPQR motif and the hydrophobic patch. We propose a model for the organization of FliG and FliM subunits that accounts for the FliG-FliM interactions identified here and for the different copy numbers of FliG and FliM in the flagellum.
Collapse
Affiliation(s)
- Perry N Brown
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | |
Collapse
|
36
|
Murphy GE, Leadbetter JR, Jensen GJ. In situ structure of the complete Treponema primitia flagellar motor. Nature 2006; 442:1062-4. [PMID: 16885937 DOI: 10.1038/nature05015] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 06/21/2006] [Indexed: 11/08/2022]
Abstract
The bacterial flagellar motor is an amazing nanomachine: built from approximately 25 different proteins, it uses an electrochemical ion gradient to drive rotation at speeds of up to 300 Hz (refs 1, 2). The flagellar motor consists of a fixed, membrane-embedded, torque-generating stator and a typically bidirectional, spinning rotor that changes direction in response to chemotactic signals. Most structural analyses so far have targeted the purified rotor, and hence little is known about the stator and its interactions. Here we show, using electron cryotomography of whole cells, the in situ structure of the complete flagellar motor from the spirochaete Treponema primitia at 7 nm resolution. Twenty individual motor particles were computationally extracted from the reconstructions, aligned and then averaged. The stator assembly, revealed for the first time, possessed 16-fold symmetry and was connected directly to the rotor, C ring and a novel P-ring-like structure. The unusually large size of the motor suggested mechanisms for increasing torque and supported models wherein critical interactions occur atop the C ring, where our data suggest that both the carboxy-terminal and middle domains of FliG are found.
Collapse
Affiliation(s)
- Gavin E Murphy
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
37
|
Park SY, Lowder B, Bilwes AM, Blair DF, Crane BR. Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor. Proc Natl Acad Sci U S A 2006; 103:11886-91. [PMID: 16882724 PMCID: PMC1567671 DOI: 10.1073/pnas.0602811103] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria switch the direction their flagella rotate to control movement. FliM, along with FliN and FliG, compose a complex in the motor that, upon binding phosphorylated CheY, reverses the sense of flagellar rotation. The 2.0-A resolution structure of the FliM middle domain (FliM(M)) from Thermotoga maritima reveals a pseudo-2-fold symmetric topology similar to the CheY phosphatases CheC and CheX. A variable structural element, which, in CheC, mediates binding to CheD (alpha2') and, in CheX, mediates dimerization (beta'(x)), has a truncated structure unique to FliM (alpha2'). An exposed helix of FliM(M) (alpha1) does not contain the catalytic residues of CheC and CheX but does include positions conserved in FliM sequences. Cross-linking experiments with site-directed cysteine mutants show that FliM self-associates through residues on alpha1 and alpha2'. CheY activated by BeF(3)(-) binds to FliM with approximately 40-fold higher affinity than CheY (K(d) = 0.04 microM vs. 2 microM). Mapping residue conservation, suppressor mutation sites, binding data, and deletion analysis onto the FliM(M) surface defines regions important for contacts with the stator-interacting protein FliG and for either counterclockwise or clockwise rotation. Association of 33-35 FliM subunits would generate a 44- to 45-nm-diameter disk, consistent with the known dimensions of the C-ring. The localization of counterclockwise- and clockwise-biasing mutations to distinct surfaces suggests that the binding of phosphorylated CheY cooperatively realigns FliM around the ring.
Collapse
Affiliation(s)
- Sang-Youn Park
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - Bryan Lowder
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Alexandrine M. Bilwes
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
| | - David F. Blair
- Department of Biology, University of Utah, Salt Lake City, UT 84112
| | - Brian R. Crane
- *Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
38
|
Aldridge P, Karlinsey JE, Becker E, Chevance FF, Hughes KT. Flk prevents premature secretion of the anti-sigma factor FlgM into the periplasm. Mol Microbiol 2006; 60:630-43. [PMID: 16629666 PMCID: PMC3471667 DOI: 10.1111/j.1365-2958.2006.05135.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The flk locus of Salmonella typhimurium was identified as a regulator of flagellar gene expression in strains defective in P- and l-ring formation. Flk acts as a regulator of flagellar gene expression by modulating the protein levels of the anti-sigma28 factor FlgM. Evidence is presented which suggests that Flk is a cytoplasmic-facing protein anchored to the inner membrane by a single, C-terminal transmembrane-spanning domain (TMS). The specific amino acid sequence of the TMS is not essential for Flk activity, but membrane anchoring is essential. Membrane fractionation and visualization of protein fusions of green fluorescent protein derivatives to Flk suggested that the Flk protein is present in the membrane as punctate spots in number that are much greater than the number of flagellar basal structures. The turnover of the anti-sigma28 factor FlgM was increased in flk mutant strains. Using FlgM-beta-lactamase fusions we show the increased turnover of FlgM in flk null mutations is due to FlgM secretion into the periplasm where it is degraded. Our data suggest that Flk inhibits FlgM secretion by acting as a braking system for the flagellar-associated type III secretion system. A model is presented to explain a role for Flk in flagellar assembly and gene regulatory processes.
Collapse
Affiliation(s)
- Phillip Aldridge
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Joyce E. Karlinsey
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Eric Becker
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093-034, USA
| | | | - Kelly T. Hughes
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
- For correspondence. ; Tel. (+1) 801 587 3367; Fax (+1) 801 581 4668
| |
Collapse
|
39
|
Abstract
FliN is a major constituent of the C ring in the flagellar basal body of many bacteria. It is present in >100 copies per flagellum and together with FliM and FliG forms the switch complex that functions in flagellar assembly, rotation, and clockwise-counterclockwise switching. FliN is essential for flagellar assembly and switching, but its precise functions are unknown. The C-terminal part of the protein is best conserved and most important for function; a crystal structure of this C-terminal domain of FliN from Thermotoga maritima revealed a saddle-shaped dimer formed mainly from beta strands (P. N. Brown, M. A. A. Mathews, L. A. Joss, C. P. Hill, and D. F. Blair, J. Bacteriol. 187:2890-2902, 2005). Equilibrium sedimentation studies showed that FliN can form stable tetramers and that a FliM1FliN4 complex is also stable. Here, we have examined the organization of FliN subunits by using targeted cross-linking. Cys residues were introduced at various positions in FliN, singly or in pairs, and disulfide cross-linking was induced by oxidation. Efficient cross-linking was observed for certain positions near the ends of the dimer and for some positions in the structurally uncharacterized N-terminal domain. Certain combinations of two Cys replacements gave a high yield of cross-linked tetramer. The results support a model in which FliN is organized in doughnut-shaped tetramers, stabilized in part by contacts involving the N-terminal domain. Electron microscopic reconstructions show a bulge at the bottom of the C-ring whose size and shape are a close match for the hypothesized FliN tetramer.
Collapse
Affiliation(s)
- Koushik Paul
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|