1
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
2
|
Abstract
Nearly all virulence factors in Bordetella pertussis are activated by a master two-component system, BvgAS, composed of the sensor kinase BvgS and the response regulator BvgA. When BvgS is active, BvgA is phosphorylated (BvgA~P), and virulence-activated genes (vags) are expressed [Bvg(+) mode]. When BvgS is inactive and BvgA is not phosphorylated, virulence-repressed genes (vrgs) are induced [Bvg(−) mode]. Here, we have used transcriptome sequencing (RNA-seq) and reverse transcription-quantitative PCR (RT-qPCR) to define the BvgAS-dependent regulon of B. pertussis Tohama I. Our analyses reveal more than 550 BvgA-regulated genes, of which 353 are newly identified. BvgA-activated genes include those encoding two-component systems (such as kdpED), multiple other transcriptional regulators, and the extracytoplasmic function (ECF) sigma factor brpL, which is needed for type 3 secretion system (T3SS) expression, further establishing the importance of BvgA~P as an apex regulator of transcriptional networks promoting virulence. Using in vitro transcription, we demonstrate that the promoter for brpL is directly activated by BvgA~P. BvgA-FeBABE cleavage reactions identify BvgA~P binding sites centered at positions −41.5 and −63.5 in bprL. Most importantly, we show for the first time that genes for multiple and varied metabolic pathways are significantly upregulated in the B. pertussis Bvg(−) mode. These include genes for fatty acid and lipid metabolism, sugar and amino acid transporters, pyruvate dehydrogenase, phenylacetic acid degradation, and the glycolate/glyoxylate utilization pathway. Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence and identify over 200 new vrgs that can be tested for function. Within the past 20 years, outbreaks of whooping cough, caused by Bordetella pertussis, have led to respiratory disease and infant mortalities, despite good vaccination coverage. This is due, at least in part, to the introduction of a less effective acellular vaccine in the 1990s. It is crucial, then, to understand the molecular basis of B. pertussis growth and infection. The two-component system BvgA (response regulator)/BvgS (histidine kinase) is the master regulator of B. pertussis virulence genes. We report here the first RNA-seq analysis of the BvgAS regulon in B. pertussis, revealing that more than 550 genes are regulated by BvgAS. We show that genes for multiple and varied metabolic pathways are highly regulated in the Bvg(−) mode (absence of BvgA phosphorylation). Our results suggest that metabolic changes in the Bvg(−) mode may be participating in bacterial survival, transmission, and/or persistence.
Collapse
|
3
|
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 2017; 41:512-537. [PMID: 28369623 PMCID: PMC5812530 DOI: 10.1093/femsre/fux008] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/20/2017] [Indexed: 01/01/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE-host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE 'fitness'). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells.
Collapse
Affiliation(s)
- François Delavat
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki 305-8566, Japan
| | - Nicolas Carraro
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | - Nicolas Pradervand
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne Switzerland
| | | |
Collapse
|
4
|
Resolution of Mismatched Overlap Holliday Junction Intermediates by the Tyrosine Recombinase IntDOT. J Bacteriol 2017; 199:JB.00873-16. [DOI: 10.1128/jb.00873-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/19/2017] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
CTnDOT is an integrated conjugative element found in
Bacteroides
species. CTnDOT contains and transfers antibiotic resistance genes. The element integrates into and excises from the host chromosome via a Holliday junction (HJ) intermediate as part of a site-specific recombination mechanism. The CTnDOT integrase, IntDOT, is a tyrosine recombinase with core-binding, catalytic, and amino-terminal (N) domains. Unlike well-studied tyrosine recombinases, such as lambda integrase (Int), IntDOT is able to resolve Holliday junctions containing heterology (mismatched bases) between the sites of strand exchange. All known natural isolates of CTnDOT contain mismatches in the overlap region between the sites of strand exchange. Previous work showed that IntDOT was unable to resolve synthetic Holliday junctions containing mismatched bases to products in the absence of the arm-type sites and a DNA-bending protein. We constructed synthetic HJs with the arm-type sites and tested them with the
Bacteroides
host factor (BHFa). We found that the addition of BHFa stimulated resolution of HJ intermediates with mismatched overlap regions to products. In addition, the L1 site is required for directionality of the reaction, particularly when the HJ contains mismatches. BHFa is required for product formation when the overlap region contains mismatches, and it stimulates resolution to products when the overlap region is identical. Without this DNA bending, the N domain of IntDOT is likely unable to bind the L1 arm-type site. These findings suggest that BHFa bends DNA into the necessary conformation for the higher-order complexes, including the L1 site, that are required for product formation.
IMPORTANCE
CTnDOT is a mobile element that carries antibiotic resistance genes and moves by site-selective recombination and subsequent conjugation. The recombination reaction is catalyzed by an integrase IntDOT that is a member of the tyrosine recombinase family. The reaction proceeds through ordered strand exchanges that generate a Holliday junction (HJ) intermediate. Unlike other tyrosine recombinases, IntDOT can resolve HJs containing mismatched bases in the overlap region
in vivo
, as is the case under natural conditions. However, HJ intermediates including only IntDOT core-type sites cannot be resolved to products if the HJ intermediate contains mismatched bases. We added arm-type sites in
cis
and in
trans
to the HJ intermediates and the protein BHFa to study the requirements for higher-order nucleoprotein complexes.
Collapse
|
5
|
Lopatkin AJ, Sysoeva TA, You L. Dissecting the effects of antibiotics on horizontal gene transfer: Analysis suggests a critical role of selection dynamics. Bioessays 2016; 38:1283-1292. [PMID: 27699821 DOI: 10.1002/bies.201600133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Horizontal gene transfer (HGT) is a major mechanism responsible for the spread of antibiotic resistance. Conversely, it is often assumed that antibiotics promote HGT. Careful dissection of the literature, however, suggests a lack of conclusive evidence supporting this notion in general. This is largely due to the lack of well-defined quantitative experiments to address this question in an unambiguous manner. In this review, we discuss the extent to which HGT is responsible for the spread of antibiotic resistance and examine what is known about the effect of antibiotics on the HGT dynamics. We focus on conjugation, which is the dominant mode of HGT responsible for spreading antibiotic resistance on the global scale. Our analysis reveals a need to design experiments to quantify HGT in such a way to facilitate rigorous data interpretation. Such measurements are critical for developing novel strategies to combat resistance spread through HGT.
Collapse
Affiliation(s)
| | - Tatyana A Sysoeva
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
6
|
Abstract
Bacteroides species are one of the most prevalent groups of bacteria present in the human colon. Many strains carry large, integrated elements including integrative and conjugative elements (ICEs). One such ICE is CTnDOT, which is 65 kb in size and encodes resistances to tetracycline and erythromycin. CTnDOT has been increasing in prevalence in Bacteroides spp., and is now found in greater than 80% of natural isolates. In recent years, CTnDOT has been implicated in the spread of antibiotic resistance among gut microbiota. Interestingly, the excision and transfer of CTnDOT is stimulated in the presence of tetracycline. The tyrosine recombinase IntDOT catalyzes the integration and excision reactions of CTnDOT. Unlike the well-characterized lambda Int, IntDOT tolerates heterology in the overlap region between the sites of cleavage and strand exchange. IntDOT also appears to have a different arrangement of active site catalytic residues. It is missing one of the arginine residues that is conserved in other tyrosine recombinases. The excision reaction of CTnDOT is complex, involving excision proteins Xis2c, Xis2d, and Exc, as well as IntDOT and a Bacteroides host factor. Xis2c and Xis2d are small, basic proteins like other recombination directionality factors (RDFs). Exc is a topoisomerase; however, the topoisomerase function is not required for the excision reaction. Exc has been shown to stimulate excision frequencies when there are mismatches in the overlap regions, suggesting that it may play a role in resolving Holliday junctions (HJs) containing heterology. Work is currently under way to elucidate the complex interactions involved with the formation of the CTnDOT excisive intasomes.
Collapse
|
7
|
Hopp CM, Gardner JF, Salyers AA. The Xis2d protein of CTnDOT binds to the intergenic region between the mob and tra operons. Plasmid 2015. [PMID: 26212728 DOI: 10.1016/j.plasmid.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CTnDOT is a 65kbp integrative and conjugative element (ICE) that carries genes encoding both tetracycline and erythromycin resistances. The excision operon of this element encodes Xis2c, Xis2d, and Exc proteins involved in the excision of CTnDOT from host chromosomes. These proteins are also required in the complex transcriptional regulation of the divergently transcribed transfer (tra) and mobilization (mob) operons of CTnDOT. Transcription of the tra operon is positively regulated by Xis2c and Xis2d, whereas, transcription of the mob operon is positively regulated by Xis2d and Exc. Xis2d is the only protein that is involved in the excision reaction, as well as the transcriptional regulation of both the mob and tra operons. This paper helps establish how Xis2d binds the DNA in the mob and tra region. Unlike other excisionase proteins, Xis2d binds a region of dyad symmetry. The binding site is located in the intergenic region between the mob and tra promoters, and once bound Xis2d induces a bend in the DNA. Xis2d binding to this region could be the preliminary step for the activation of both operons. Then the other proteins, like Exc, can interact with Xis2d and form higher order complexes.
Collapse
Affiliation(s)
- Crystal M Hopp
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Jeffrey F Gardner
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Abigail A Salyers
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
8
|
Abstract
UNLABELLED CTnDOT is a 65-kb conjugative transposon that is found in Bacteroides spp., which are one of the more abundant members within the lower human gastrointestinal tract. CTnDOT encodes resistance to the antibiotics erythromycin and tetracycline (Tc). An interesting feature of CTnDOT is that exposure to low levels of Tc induces a cascade of events that ultimately results in CTnDOT conjugative transfer. However, Tc is apparently not a switch that activates transfer but rather a signal that appears to override a series of negative regulators that inhibit premature excision and transfer of CTnDOT. In this minireview, we summarize over 20 years of research that focused on elucidating the highly coordinated regulation of excision, mobilization, and transfer of CTnDOT. IMPORTANCE Bacteroides spp. are abundant commensals in the human colon, but they are also considered opportunistic pathogens, as they can cause life-threatening infections if they should escape the colon. Bacteroides spp. are the most common cause of anaerobic infections and are rather difficult to treat due to the prevalence of antibiotic resistance within this genus. Today over 80% of Bacteroides are resistant to tetracycline (Tc), and a study looking at both clinical and community isolates demonstrated that this resistance was specifically due to the conjugative transposon CTnDOT.
Collapse
|
9
|
Tetracycline-related transcriptional regulation of the CTnDOT mobilization region. J Bacteriol 2013; 195:5431-8. [PMID: 24078614 DOI: 10.1128/jb.00691-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CTnDOT is a 65-kb conjugative transposon (CTn) in Bacteroides spp. that confers resistance to the antibiotics erythromycin and tetracycline (Tc). Conjugative transfer of CTnDOT is regulated upon exposure of cells to Tc. In the absence of Tc, no transfer is detectable; however, a cascade of regulatory events results in the conjugative transfer of CTnDOT upon Tc induction. Previous studies addressing regulation of CTnDOT conjugative transfer focused primarily on the 13-kb transfer (tra) operon, which encodes the proteins required for assembly of the mating apparatus. We report here that the mob operon that encodes the relaxase and coupling proteins required for mobilization of CTnDOT are regulated at the transcriptional level upon Tc induction. The Xis2d and Exc excision proteins are required for the upregulation of mob transcription upon Tc induction, and yet a deletion of xis2c has no effect. We also show preliminary evidence suggesting that the integrase, IntDOT, may play a regulatory role, as pLYL72 transfer is not detectable when intDOT is provided in trans.
Collapse
|
10
|
Keeton CM, Park J, Wang GR, Hopp CM, Shoemaker NB, Gardner JF, Salyers AA. The excision proteins of CTnDOT positively regulate the transfer operon. Plasmid 2013; 69:172-9. [PMID: 23237854 PMCID: PMC3570755 DOI: 10.1016/j.plasmid.2012.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 10/27/2022]
Abstract
The Bacteroides conjugative transposon, CTnDOT, is an integrated conjugative element (ICE), found in many human colonic Bacteroides spp. strains. It has a complex regulatory system for both excision from the chromosome and transfer and mobilization into a new host. It was previously shown that a cloned DNA segment encoding the xis2c, xis2d, orf3, and exc genes was required for tetracycline dependent activation of the P(tra) promoter. The Xis2c and Xis2d proteins are required for excision while the Exc protein stimulates excision. We report here that neither the Orf3 nor the Exc proteins are involved in activation of the P(tra) promoter. Deletion analysis and electromobility shift assays showed that the Xis2c and Xis2d proteins bind to the P(tra) promoter to activate the tra operon. Thus, the recombination directionality factors of CTnDOT excision also function as activator proteins of the P(tra) promoter.
Collapse
Affiliation(s)
- Carolyn M Keeton
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Avenue, Urbana, IL 61801, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A 2012; 109:19786-91. [PMID: 23150581 DOI: 10.1073/pnas.1211002109] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Humans host an intestinal population of microbes--collectively referred to as the gut microbiome--which encode the carbohydrate active enzymes, or CAZymes, that are absent from the human genome. These CAZymes help to extract energy from recalcitrant polysaccharides. The question then arises as to if and how the microbiome adapts to new carbohydrate sources when modern humans change eating habits. Recent metagenome analysis of microbiomes from healthy American, Japanese, and Spanish populations identified putative CAZymes obtained by horizontal gene transfer from marine bacteria, which suggested that human gut bacteria evolved to degrade algal carbohydrates-for example, consumed in form of sushi. We approached this hypothesis by studying such a polysaccharide utilization locus (PUL) obtained by horizontal gene transfer by the gut bacterium Bacteroides plebeius. Transcriptomic and growth experiments revealed that the PUL responds to the polysaccharide porphyran from red algae, enabling growth on this carbohydrate but not related substrates like agarose and carrageenan. The X-ray crystallographic and biochemical analysis of two proteins encoded by this PUL, BACPLE_01689 and BACPLE_01693, showed that they are β-porphyranases belonging to glycoside hydrolase families 16 and 86, respectively. The product complex of the GH86 at 1.3 Å resolution highlights the molecular details of porphyran hydrolysis by this new porphyranase. Combined, these data establish experimental support for the argument that CAZymes and associated genes obtained from extrinsic microbes add new catabolic functions to the human gut microbiome.
Collapse
|
12
|
Abstract
Excision from the chromosome is the first step during the transfer of conjugative transposons (CTns) to a recipient. We previously showed that the excision of CTnDOT is more complex than the excision of lambdoid phages and CTns such as Tn916. The excision in vivo of CTnDOT utilizes four CTnDOT-encoded proteins, IntDOT, Xis2c, Xis2d, and Exc, and a host factor. We previously developed an in vitro excision reaction where the recombination sites attL and attR were located on different plasmids. The reaction was inefficient and did not require Exc, suggesting that the reaction conditions did not mimic in vivo conditions. Here, we report the development of an intramolecular excision reaction where the attL and attR sites are located on the same DNA molecule. We found that Exc stimulates the reaction 3- to 5-fold. The efficiency of the excision reaction was also dependent on the distance between the attL and attR sites and on the sequences of the overlap regions between the sites of the strand exchanges. Substrates with identical overlap sequences recombined more efficiently than ones with heterologous overlap sequences. This was surprising, because the integration reaction is not sensitive to heterology in the overlap regions of the attDOT and attB sites.
Collapse
|
13
|
van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM. Acquired antibiotic resistance genes: an overview. Front Microbiol 2011; 2:203. [PMID: 22046172 PMCID: PMC3202223 DOI: 10.3389/fmicb.2011.00203] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/08/2011] [Indexed: 01/18/2023] Open
Abstract
In this review an overview is given on antibiotic resistance (AR) mechanisms with special attentions to the AR genes described so far preceded by a short introduction on the discovery and mode of action of the different classes of antibiotics. As this review is only dealing with acquired resistance, attention is also paid to mobile genetic elements such as plasmids, transposons, and integrons, which are associated with AR genes, and involved in the dispersal of antimicrobial determinants between different bacteria.
Collapse
Affiliation(s)
- Angela H. A. M. van Hoek
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| | - Dik Mevius
- Central Veterinary Institute of Wageningen URLelystad, Netherlands
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Beatriz Guerra
- National Salmonella Reference Laboratory, Federal Institute for Risk AssessmentBerlin, Germany
| | - Peter Mullany
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Adam Paul Roberts
- Department of Microbial Diseases, University College London Eastman Dental Institute, University College LondonLondon, UK
| | - Henk J. M. Aarts
- Laboratory for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute of Public Health and the EnvironmentUtrecht, Netherlands
| |
Collapse
|
14
|
Nguyen M, Vedantam G. Mobile genetic elements in the genus Bacteroides, and their mechanism(s) of dissemination. Mob Genet Elements 2011; 1:187-196. [PMID: 22479685 DOI: 10.4161/mge.1.3.18448] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/15/2011] [Accepted: 10/17/2011] [Indexed: 01/25/2023] Open
Abstract
Bacteroides spp organisms, the predominant commensal bacteria in the human gut have become increasingly resistant to many antibiotics. They are now also considered to be reservoirs of antibiotic resistance genes due to their capacity to harbor and disseminate these genes via mobile transmissible elements that occur in bewildering variety. Gene dissemination occurs within and from Bacteroides spp primarily by conjugation, the molecular mechanisms of which are still poorly understood in the genus, even though the need to prevent this dissemination is urgent. One current avenue of research is thus focused on interventions that use non-antibiotic methodologies to prevent conjugation-based DNA transfer.
Collapse
Affiliation(s)
- Mai Nguyen
- Section of Digestive Diseases and Nutrition; University of Illinois; Chicago, IL USA
| | | |
Collapse
|
15
|
Aminov RI. Horizontal gene exchange in environmental microbiota. Front Microbiol 2011; 2:158. [PMID: 21845185 PMCID: PMC3145257 DOI: 10.3389/fmicb.2011.00158] [Citation(s) in RCA: 361] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Horizontal gene transfer (HGT) plays an important role in the evolution of life on the Earth. This view is supported by numerous occasions of HGT that are recorded in the genomes of all three domains of living organisms. HGT-mediated rapid evolution is especially noticeable among the Bacteria, which demonstrate formidable adaptability in the face of recent environmental changes imposed by human activities, such as the use of antibiotics, industrial contamination, and intensive agriculture. At the heart of the HGT-driven bacterial evolution and adaptation are highly sophisticated natural genetic engineering tools in the form of a variety of mobile genetic elements (MGEs). The main aim of this review is to give a brief account of the occurrence and diversity of MGEs in natural ecosystems and of the environmental factors that may affect MGE-mediated HGT.
Collapse
Affiliation(s)
- Rustam I Aminov
- Rowett Institute of Nutrition and Health, University of Aberdeen Aberdeen, UK
| |
Collapse
|
16
|
Abstract
Excision of the Bacteroides conjugative transposon CTnDOT is stimulated by tetracycline. It was shown previously that a gene, rteC, is necessary for tetracycline-stimulated transcriptional regulation of the orf2c operon, which contains the excision genes. The protein encoded by this gene, RteC, did not have primary amino acid sequence homology to any known proteins in the databases. Accordingly, we sought structural homologs of RteC. A three-dimensional structure prediction by Robetta suggested that RteC might have two domains and that the C-terminal domain might have a winged helix motif. Based on the Robetta prediction, the human transcriptional factors E2F-4 and DP2 were identified as the most likely structural homologs of RteC. We made alanine substitutions within the putative DNA binding helix 3 region of RteC. Assays of orf2c::uidA activation by alanine mutants indicated that residues 174, 175, 178, 180, and 184 in helix 3 might contact the upstream region of P(E). The upstream region of orf2c contained two inverted-repeat half sites. Mutational analysis of these half sites showed that both half sites are important for activity. Thus, we have identified the DNA binding portion of RteC and the DNA site to which it binds.
Collapse
|
17
|
Daccord A, Ceccarelli D, Burrus V. Integrating conjugative elements of the SXT/R391 family trigger the excision and drive the mobilization of a new class of Vibrio genomic islands. Mol Microbiol 2010; 78:576-88. [PMID: 20807202 DOI: 10.1111/j.1365-2958.2010.07364.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vibrios and enterobacteria lateral gene transfer is often facilitated by integrating conjugative elements (ICEs) of the SXT/R391 family. SXT/R391 ICEs integrate by site-specific recombination into prfC and transfer by conjugation, a process that is initiated at a specific locus called the origin of transfer (oriT(SXT) ). We identified genomic islands (GIs) harbouring a sequence that shares >63% identity with oriT(SXT) in three species of Vibrio. Unlike SXT/R391 ICEs, these GIs are integrated into a gene coding for a putative stress-induced protein and do not appear to carry any gene coding for a conjugative machinery or for mobilization proteins. Our results show that SXT/R391 ICEs trigger the excision and mediate the conjugative transfer in trans of the three Vibrio GIs at high frequency. GIs' excision is independent of the ICE-encoded recombinase and is controlled by the ICE-encoded transcriptional activator SetCD, which is expressed during the host SOS response. Both mobI and traI, two ICE-borne genes involved in oriT recognition, are essential for GIs' transfer. We also found that SXT/R391 ICEs mobilize in trans over 1 Mb of chromosomal DNA located 5' of the GIs' integration site. Together these results support a novel mechanism of mobilization of GIs by ICEs of the SXT/R391 family.
Collapse
Affiliation(s)
- Aurélie Daccord
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | |
Collapse
|
18
|
Wozniak RAF, Waldor MK. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat Rev Microbiol 2010; 8:552-63. [PMID: 20601965 DOI: 10.1038/nrmicro2382] [Citation(s) in RCA: 558] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrative and conjugative elements (ICEs) are a diverse group of mobile genetic elements found in both Gram-positive and Gram-negative bacteria. These elements primarily reside in a host chromosome but retain the ability to excise and to transfer by conjugation. Although ICEs use a range of mechanisms to promote their core functions of integration, excision, transfer and regulation, there are common features that unify the group. This Review compares and contrasts the core functions for some of the well-studied ICEs and discusses them in the broader context of mobile-element and genome evolution.
Collapse
|
19
|
|
20
|
Moon K, Gottesman S. A PhoQ/P-regulated small RNA regulates sensitivity of Escherichia coli to antimicrobial peptides. Mol Microbiol 2009; 74:1314-30. [PMID: 19889087 DOI: 10.1111/j.1365-2958.2009.06944.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-coding small RNAs (sRNAs) play a major role in post-transcriptional regulation of gene expression. Of the 80 sRNAs that have been identified in E. coli, one-third bind to the RNA chaperone Hfq. Hfq both stabilizes these sRNAs in vivo and stimulates pairing to targets in vitro. A novel Hfq-dependent RNA, called here MgrR, was identified by its ability to bind Hfq. Expression of MgrR requires the PhoQ/PhoP two-component system; the PhoP response regulator is active under low Mg2+ concentrations and is an important virulence regulator in Salmonella; mgrR is also found in Salmonella species. Negatively regulated targets of MgrR identified using microarrays include eptB, involved in lipopolysaccharide (LPS) modification, and ygdQ, encoding a hypothetical protein. Cell sensitivity to the antimicrobial polymyxin B is affected by LPS modifications, and cells carrying an mgrR deletion were approximately 10 times more resistant than wild-type cells to polymyxin B. Thus, lower Mg2+ concentrations, sensed by PhoQ/PhoP, lead to expression of MgrR, changing LPS. sRNAs have previously been shown to regulate many outer membrane proteins. This work demonstrates that LPS, a major contributor of bacterial interactions with mammalian cells, is also subject to regulation by sRNAs.
Collapse
Affiliation(s)
- Kyung Moon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
21
|
Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT. J Bacteriol 2009; 191:6374-82. [PMID: 19700528 DOI: 10.1128/jb.00739-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Many human colonic Bacteroides spp. harbor a conjugative transposon, CTnDOT, which carries two antibiotic resistance genes, tetQ and ermF. A distinctive feature of CTnDOT is that its excision and transfer are stimulated by tetracycline. Regulation of the genes responsible for excision has been described previously. We provide here the first characterization of the regulation of CTnDOT transfer (tra) genes. Reverse transcription-PCR analysis of the region containing the tra genes showed that these genes are regulated at the transcriptional level. Surprisingly, increased production of tra gene mRNA in tetracycline-stimulated cells was mediated by the proteins encoded by the excision genes. Previous studies have shown that expression of the excision gene operon is controlled by the regulatory protein RteC. Accordingly, it was possible that RteC was also regulating tra gene expression and that the excision proteins were only accessory proteins. However, placing the excision gene operon under the control of a heterologous promoter showed that the excision proteins alone could activate tra gene expression and that RteC was not directly involved. We also found a second level of tra gene control. The transfer of CTnDOT was inhibited by a DNA segment that included only a portion of the 3' end of one of the excision genes (exc). This segment contained a small open reading frame, rteR. By replacing the codons encoding the first two amino acids of the putative protein product of this open reading frame with stop codons, we showed that the rteR gene might encode a small regulatory RNA. RteR acted in trans to reduce the number of tra transcripts in a way that was independent of the excision proteins. The repressive effect of RteR was not the result of decreased stability of the tra mRNA. Instead, RteR appears to be modulating the level of tra gene expression in some more direct fashion. The complex regulatory system that controls and links the expression of CTnDOT excision and transfer genes may be designed to ensure stable maintenance of CTnDOT in nature by reducing the fitness toll it takes on the cell that harbors it.
Collapse
|
22
|
Abstract
Investigations of antibiotic resistance from an environmental prospective shed new light on a problem that was traditionally confined to a subset of clinically relevant antibiotic-resistant bacterial pathogens. It is clear that the environmental microbiota, even in apparently antibiotic-free environments, possess an enormous number and diversity of antibiotic resistance genes, some of which are very similar to the genes circulating in pathogenic microbiota. It is difficult to explain the role of antibiotics and antibiotic resistance in natural environments from an anthropocentric point of view, which is focused on clinical aspects such as the efficiency of antibiotics in clearing infections and pathogens that are resistant to antibiotic treatment. A broader overview of the role of antibiotics and antibiotic resistance in nature from the evolutionary and ecological prospective suggests that antibiotics have evolved as another way of intra- and inter-domain communication in various ecosystems. This signalling by non-clinical concentrations of antibiotics in the environment results in adaptive phenotypic and genotypic responses of microbiota and other members of the community. Understanding the complex picture of evolution and ecology of antibiotics and antibiotic resistance may help to understand the processes leading to the emergence and dissemination of antibiotic resistance and also help to control it, at least in relation to the newer antibiotics now entering clinical practice.
Collapse
Affiliation(s)
- Rustam I Aminov
- University of Aberdeen, Rowett Institute of Nutrition and Health, Greenburn Road, Aberdeen AB21 9SB, UK.
| |
Collapse
|
23
|
Vedantam G. Antimicrobial resistance in Bacteroides spp.: occurrence and dissemination. Future Microbiol 2009; 4:413-23. [PMID: 19416011 DOI: 10.2217/fmb.09.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacteroides spp. organisms, though important human commensals, are also opportunistic pathogens when they escape the colonic milieu. Resistance to multiple antibiotics has been increasing in Bacteroides spp. for decades, and is primarily due to horizontal gene transfer of a plethora of mobile elements. The mechanistic aspects of conjugation in Bacteroides spp. are only now being elucidated at a functional level. There appear to be key differences between Bacteroides spp. and non-Bacteroides spp. conjugation systems that may contribute to promiscuous gene transfer within and from this genus. This review summarizes the mechanisms of action and resistance of antibiotics used to treat Bacteroides spp. infections, and highlights current information on conjugation-based DNA exchange.
Collapse
Affiliation(s)
- Gayatri Vedantam
- Department of Veterinary Science & Microbiology, Building 90, Room 108A, 1117 E. Lowell Street, Tucson, AZ 85721, USA.
| |
Collapse
|
24
|
Ghosh S, Sadowsky MJ, Roberts MC, Gralnick JA, LaPara TM. Sphingobacterium sp. strain PM2-P1-29 harbours a functional tet(X) gene encoding for the degradation of tetracycline. J Appl Microbiol 2009; 106:1336-42. [PMID: 19187139 DOI: 10.1111/j.1365-2672.2008.04101.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The tet(X) gene has previously been found in obligate anaerobic Bacteroides spp., which is curious because tet(X) encodes for a NADP-dependent monooxygenase that requires oxygen to degrade tetracycline. In this study, we characterized a tetracycline resistant, aerobic, Gram-negative Sphingobacterium sp. strain PM2-P1-29 that harbours a tet(X) gene. METHODS AND RESULTS Sphingobacterium sp. PM2-P1-29 demonstrated the ability to transform tetracycline compared with killed controls. The presence of the tet(X) gene was verified by PCR and nucleotide sequence analysis. Additional nucleotide sequence analysis of regions flanking the tet(X) gene revealed a mobilizable transposon-like element (Tn6031) that shared organizational features and genes with the previously described Bacteroides conjugative transposon CTnDOT. A circular transposition intermediate of the tet(X) region, characteristic of mobilizable transposons, was detected. However, we could not demonstrate the conjugal transfer of the tet(X) gene using three different recipient strains and numerous experimental conditions. CONCLUSIONS This study suggests that Sphingobacterium sp. PM2-P1-29 or a related bacterium may be an ancestral source of the tet(X) gene. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the importance of environmental bacteria and lateral gene transfer in the dissemination and proliferation of antibiotic resistance among bacteria.
Collapse
Affiliation(s)
- S Ghosh
- Department of Civil Engineering, University of Minnesota, Minneapolis, 55455-0116, USA
| | | | | | | | | |
Collapse
|
25
|
An unexpected effect of tetracycline concentration: growth phase-associated excision of the Bacteroides mobilizable transposon NBU1. J Bacteriol 2008; 191:1078-82. [PMID: 18952794 DOI: 10.1128/jb.00637-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Early studies of the Bacteroides mobilizable transposon NBU1 established that excision, the first step in NBU1 transfer, requires exposure of the cells to tetracycline. More recently, we found that excision is also associated with growth phase; even after exposure to tetracycline, excision is detectable only after the cells enter late exponential phase. The tetracycline effect is mediated by a two-component regulatory system, RteA and RteB, which is provided in trans by an integrated self-transmissible element, CTnDOT. The rteA and rteB genes are part of a three-gene operon that also contains the tetracycline resistance gene tetQ. We report here that neither transcription nor translation of the tetQ-rteA-rteB operon is affected by growth phase. Moreover, RteA is not required for the growth phase effect, because a mutant form of RteB that does not require phosphorylation by RteA did not make excision independent of growth phase. Two conditions made NBU1 excision independent of growth phase. One was reducing the tetracycline concentration from an inhibitory concentration (1 microg/ml) to a subinhibitory level (0.05 microg/ml). Independence of growth phase also occurred when rteA and rteB were placed under the control of a heterologous maltose-inducible promoter, P(susA). Our results suggest that at low concentrations of tetracycline, ribosomes are capable of translating enough RteA and RteB for excision to occur. At higher tetracycline concentrations, however, TetQ is needed to protect enough ribosomes to allow the translation of excision genes, and this protection takes time to develop. Thus, subinhibitory concentrations of tetracycline may increase the probability of gene transfer because, in contrast to inhibitory concentrations, excision can occur at all phases of growth.
Collapse
|
26
|
Bose B, Auchtung JM, Lee CA, Grossman AD. A conserved anti-repressor controls horizontal gene transfer by proteolysis. Mol Microbiol 2008; 70:570-82. [PMID: 18761623 DOI: 10.1111/j.1365-2958.2008.06414.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mobile genetic element ICEBs1 is an integrative and conjugative element (a conjugative transposon) found in the Bacillus subtilis chromosome. The SOS response and the RapI-PhrI sensory system activate ICEBs1 gene expression, excision and transfer by inactivating the ICEBs1 repressor protein ImmR. Although ImmR is similar to many characterized phage repressors, we found that, unlike these repressors, inactivation of ImmR requires an ICEBs1-encoded anti-repressor ImmA (YdcM). ImmA was needed for the degradation of ImmR in B. subtilis. Coexpression of ImmA and ImmR in Escherichia coli or co-incubation of purified ImmA and ImmR resulted in site-specific cleavage of ImmR. Homologues of immR and immA are found in many mobile genetic elements. We found that the ImmA homologue encoded by B. subtilis phage phi105 is required for inactivation of the phi105 repressor (an ImmR homologue). ImmA-dependent proteolysis of ImmR repressors may be a conserved mechanism for regulating horizontal gene transfer.
Collapse
Affiliation(s)
- Baundauna Bose
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
27
|
Abstract
SUMMARY Bacteroides species are significant clinical pathogens and are found in most anaerobic infections, with an associated mortality of more than 19%. The bacteria maintain a complex and generally beneficial relationship with the host when retained in the gut, but when they escape this environment they can cause significant pathology, including bacteremia and abscess formation in multiple body sites. Genomic and proteomic analyses have vastly added to our understanding of the manner in which Bacteroides species adapt to, and thrive in, the human gut. A few examples are (i) complex systems to sense and adapt to nutrient availability, (ii) multiple pump systems to expel toxic substances, and (iii) the ability to influence the host immune system so that it controls other (competing) pathogens. B. fragilis, which accounts for only 0.5% of the human colonic flora, is the most commonly isolated anaerobic pathogen due, in part, to its potent virulence factors. Species of the genus Bacteroides have the most antibiotic resistance mechanisms and the highest resistance rates of all anaerobic pathogens. Clinically, Bacteroides species have exhibited increasing resistance to many antibiotics, including cefoxitin, clindamycin, metronidazole, carbapenems, and fluoroquinolones (e.g., gatifloxacin, levofloxacin, and moxifloxacin).
Collapse
|
28
|
Moon K, Sonnenburg J, Salyers AA. Unexpected effect of a Bacteroides conjugative transposon, CTnDOT, on chromosomal gene expression in its bacterial host. Mol Microbiol 2007; 64:1562-71. [PMID: 17555438 PMCID: PMC1976400 DOI: 10.1111/j.1365-2958.2007.05756.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foreign DNA elements such as plasmids and conjugative transposons are constantly entering new bacterial hosts. A possible outcome of such events that has not been considered previously is that regulatory genes carried on some of them might affect the expression of chromosomal genes of the new host. To assess this possibility, we investigated the effect of the Bacteroides conjugative transposon CTnDOT on expression of chromosomal genes in Bacteroides thetaiotaomicron 5482 (BT4001). Most of the upregulated genes were genes of unknown function, but a number of them were associated with a region of the chromosome that contained a putative conjugative transposon, which had been tentatively designated as CTn4-bt. Upregulation of CTn4-bt genes and other chromosomal genes affected by CTnDOT was controlled by two regulatory genes on CTnDOT, rteA and rteB, which encode a two-component regulatory system. Transfer of CTn4-bt was also mediated by rteA and rteB. Three other putative CTns, CTn1-bt, CTn2-bt and CTn3-bt, were mobilized by CTnERL, a CTn closely related to CTnDOT, but genes from CTnERL other than rteA and rteB were also required. Unexpectedly, homologous recombination was required for CTn1-bt, CTn2-bt, CTn3-bt and CTn4-bt to integrate in the recipient. Our results show that regulatory genes on an incoming mobile element can have multiple effects on its new host, including the activation of previously non-transmissible elements.
Collapse
Affiliation(s)
- Kyung Moon
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of HealthBethesda, MD 20892, USA.
| | - Justin Sonnenburg
- Center for Genome Sciences, Washington University School of MedicineSt. Louis, MO 63108, USA.
| | - Abigail A Salyers
- Department of Microbiology, University of IllinoisUrbana, IL 61801, USA.
- For correspondence. E-mail ; Tel. (+1) 217 333 7378; Fax (+1) 217 244 6697
| |
Collapse
|
29
|
Flanigan A, Gardner JF. Interaction of the Gifsy-1 Xis protein with the Gifsy-1 attP sequence. J Bacteriol 2007; 189:6303-11. [PMID: 17601790 PMCID: PMC1951908 DOI: 10.1128/jb.00577-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gifsy-1 phage integrates site specifically into the Salmonella chromosome via an integrase-mediated site-specific recombination mechanism. Initial genetic analysis suggests that Gifsy-1 integrase-mediated excision of the Gifsy-1 phage is influenced by proteins encoded by both the Gifsy-1 and the Gifsy-2 phages. Our studies show that the Gifsy-1 Xis protein regulates the directionality of integrase-mediated excision of the Gifsy-1 phage. Electrophoretic mobility shift assays, DNase I footprinting, dimethyl sulfate (DMS) interference assays, and DMS protection assays were used to identify a 31-base-pair sequence in the attP region to which the Gifsy-1 protein binds. The results suggest that this recombination directionality factor binds in vitro to three imperfect direct repeats, spaced 10 base pairs apart, in a sequential and cooperative manner in the absence of other phage-encoded proteins. Our studies suggest that, while the Gifsy-1 Xis does not require additional factors for specific and high-affinity binding, it may form a microfilament on DNA similar to that described for the phage lambda Xis protein.
Collapse
Affiliation(s)
- Asa Flanigan
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
30
|
Salyers AA, Moon K, Schlesinger D. The human intestinal tract – a hotbed of resistance gene transfer? Part I. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.clinmicnews.2007.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Whittle G, Hamburger N, Shoemaker NB, Salyers AA. A bacteroides conjugative transposon, CTnERL, can transfer a portion of itself by conjugation without excising from the chromosome. J Bacteriol 2006; 188:1169-74. [PMID: 16428422 PMCID: PMC1347320 DOI: 10.1128/jb.188.3.1169-1174.2006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CTnERL, a Bacteroides conjugative transposon, transferred DNA by an Hfr-type mechanism during conjugation when it was excision deficient due to an insertion in the integrase gene. Rescue of the conjugative transposon sequences required the recipient to be RecA proficient and to contain an integrated CTnERL. The transfer efficiency was only 10- to 30-fold lower than the normal element transfer efficiency, and the direction of transfer from the oriT gene showed that the integrase end was transferred first and that the transfer genes were transferred last.
Collapse
Affiliation(s)
- Gabrielle Whittle
- Department of Microbiology, 601 S. Goodwin Ave., University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|