1
|
Dawadi P, Khanal S, Prasai Joshi T, KC S, Tuladhar R, Maharjan BL, Darai A, Joshi DR. Antibiotic Resistance, Biofilm Formation and Sub-Inhibitory Hydrogen Peroxide Stimulation in Uropathogenic Escherichia coli. Microbiol Insights 2022; 15:11786361221135224. [PMID: 36420183 PMCID: PMC9677168 DOI: 10.1177/11786361221135224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the most prevalent cause of urinary tract infections (UTIs). Biofilm formation and antibiotic resistance could be high among the causative agent. The purpose of this study was to determine antibiotic resistance, biofilm production, and biofilm-associated genes, bcsA and csgD, and sub-inhibitory hydrogen peroxide (H2O2) stimulation in UPEC for biofilm formation. A total of 71 UPEC were collected from a tertiary care hospital in Kathmandu and subjected to identify antibiotic susceptibility using Kirby-Bauer disk diffusion. The biofilm formation was assessed using microtiter culture plate method while pellicle formation was tested by a tube method. In representative 15 isolates based on biofilm-forming ability, bcsA and csgD were screened by conventional polymerase chain reaction, and treated with sub-lethal H2O2. The UPEC were found the most susceptible to meropenem (90.2%), and the least to ampicillin (11.3%) in vitro and 90.1% of them were multi-drug resistant (MDR). Most UPEC harbored biofilm-producing ability (97.2%), and could form pellicle at 37°C. Among representative 15 isolates, csgD was detected only among 10 isolates (66.67%) while bcsA gene was present in 13 isolates (86.67%). This study revealed that level of biofilm production elevated after sub-lethal H2O2 treatment (P = .041). These findings suggested that the pathogens are emerging as MDR. The biofilm production is high and the majority of selected strains contained bcsA and csgD genes. Pellicle formation test was suggestive to be an alternative qualitative method to screen biofilm production in UPEC. The sub-inhibitory concentration of H2O2 may contribute in increasing biofilm formation in UPEC.
Collapse
Affiliation(s)
- Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Santosh Khanal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Tista Prasai Joshi
- Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Sudeep KC
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bijaya Laxmi Maharjan
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Anjani Darai
- Department of Pathology, Bharosa Hospital, Mid-Baneswor, Kathmandu, Nepal
| | - Dev Raj Joshi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
2
|
Zarei M, Bahrami S, Liljebjelke K. Biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii responds to nutrient availability. Int Microbiol 2022; 25:691-700. [PMID: 35676463 DOI: 10.1007/s10123-022-00252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/15/2022] [Accepted: 05/28/2022] [Indexed: 11/29/2022]
Abstract
Acanthamoeba spp. and Salmonella share common habitats, and their interaction may influence the biofilm-forming ability of Salmonella. In this study, biofilm formation of Salmonella enterica serovar Enteritidis cocultured with Acanthamoeba castellanii was examined in nutrient-rich and nutrient-deficient media. Furthermore, transcript copy number of biofilm-related genes in the biofilm cells of S. Enteritidis in monoculture was compared to those in coculture with A. castellanii. Results demonstrated that the presence of A. castellanii in the culture media activates the genes involved in the biofilm formation of S. Enteritidis, regardless of the nutrient availability. However, biofilm formation of S. Enteritidis cocultured with A. castellanii was not consistent with the transcript copy number results. In nutrient-rich medium, the number of Salmonella biofilm cells and the contents of the three main components of the biofilms including eDNA, protein, and carbohydrates were higher in the presence of A. castellanii compared to monocultures. However, in nutrient-deficient medium, the number of biofilm cells, and the amount of biofilm components in coculture conditions were less than the monocultures. These results indicate that despite activation of relevant genes in both nutrient-rich and nutrient-deficient media, biofilm formation of S. Enteritidis cocultured with A. castellanii responds to nutrient availability.
Collapse
Affiliation(s)
- Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Somayeh Bahrami
- Department of Parasitology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
3
|
Jia S, Hong H, Yang Q, Liu X, Zhuang S, Li Y, Liu J, Luo Y. TMT-based proteomic analysis of the fish-borne spoiler Pseudomonas psychrophila subjected to chitosan oligosaccharides in fish juice system. Food Microbiol 2020; 90:103494. [DOI: 10.1016/j.fm.2020.103494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/04/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
|
4
|
Chouhan OP, Roske Y, Heinemann U, Biswas S. Structure of the active GGEEF domain of a diguanylate cyclase from Vibrio cholerae. Biochem Biophys Res Commun 2019; 523:287-292. [PMID: 31862141 DOI: 10.1016/j.bbrc.2019.11.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023]
Abstract
Cyclic-di-GMP (c-di-GMP) synthesized by diguanylate cyclases has been an important and ubiquitous secondary messenger in almost all bacterial systems. In Vibrio cholerae, c-di-GMP plays an intricate role in the production of the exopolysaccharide matrix, and thereby, in biofilm formation. The formation of the surface biofilm enables the bacteria to survive in aquatic bodies, when not infecting a human host. Diguanylate cyclases are the class of enzymes which synthesize c-di-GMP from two molecules of GTP and are endowed with a GGDEF or, a GGEEF signature domain. The VC0395_0300 protein from V. cholerae, has been established as a diguanylate cyclase with a necessary role in biofilm formation. Here we present the structure of an N-terminally truncated form of VC0395_0300, which retains the active GGEEF domain for diguanylate cyclase activity but lacks 160 residues from the poorly organized N-terminal domain. X-ray diffraction data was collected from a crystal of VC0395_0300(161-321) to a resolution of 1.9 Å. The structure displays remarkable topological similarity with diguanylate cyclases from other bacterial systems, but lacks the binding site for c-di-GMP present in its homologues. Finally, we demonstrate the ability of the truncated diguanylate cyclase VC0395_0300(161-321) to produce c-di-GMP, and its role in biofilm formation for the bacteria.
Collapse
Affiliation(s)
| | - Yvette Roske
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction Laboratory, Max Delbrück Center for Molecular Medicine, Berlin, Germany; Chemistry and Biochemistry Institute, Freie Universität, Berlin, Germany
| | - Sumit Biswas
- ViStA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
5
|
Cimdins A, Simm R. Semiquantitative Analysis of the Red, Dry, and Rough Colony Morphology of Salmonella enterica Serovar Typhimurium and Escherichia coli Using Congo Red. Methods Mol Biol 2018; 1657:225-241. [PMID: 28889298 DOI: 10.1007/978-1-4939-7240-1_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Congo Red (CR) assay is a standard biofilm test assessing the colony morphology of bacteria growing on agar plates supplemented with the diazo dye Congo Red. Biofilm forming Salmonella enterica serovar Typhimurium and Escherichia coli produce a red, dry, and rough (rdar) morphotype on CR-plates. The phenotype is characterized by staining of the extracellular matrix components curli (brown color) and cellulose (pink color) by CR. This method allows semiquantitative determination of the expression level of the individual matrix components and dissection of the regulatory networks controlling their production in response to c-di-GMP levels. Here, we describe the CR-assay and its variations and discuss the effect of deletion or overexpression of c-di-GMP turnover proteins on colony morphology.
Collapse
Affiliation(s)
- Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Institute of Hygiene, University of Münster, Mendelstrasse 7, 48149, Münster, Germany.
| | - Roger Simm
- Norwegian Veterinary Institute, Oslo, Norway
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Hall CL, Lee VT. Cyclic-di-GMP regulation of virulence in bacterial pathogens. WILEY INTERDISCIPLINARY REVIEWS. RNA 2018; 9:10.1002/wrna.1454. [PMID: 28990312 PMCID: PMC5739959 DOI: 10.1002/wrna.1454] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
Signaling pathways allow bacteria to adapt to changing environments. For pathogenic bacteria, signaling pathways allow for timely expression of virulence factors and the repression of antivirulence factors within the mammalian host. As the bacteria exit the mammalian host, signaling pathways enable the expression of factors promoting survival in the environment and/or nonmammalian hosts. One such signaling pathway uses the dinucleotide cyclic-di-GMP (c-di-GMP), and many bacterial genomes encode numerous proteins that are responsible for synthesizing and degrading c-di-GMP. Once made, c-di-GMP binds to individual protein and RNA receptors to allosterically alter the macromolecule function to drive phenotypic changes. Each bacterial genome encodes unique sets of genes for c-di-GMP signaling and virulence factors so the regulation by c-di-GMP is organism specific. Recent works have pointed to evidence that c-di-GMP regulates virulence in different bacterial pathogens of mammalian hosts. In this review, we discuss the criteria for determining the contribution of signaling nucleotides to pathogenesis using a well-characterized signaling nucleotide, cyclic AMP (cAMP), in Pseudomonas aeruginosa. Using these criteria, we review the roles of c-di-GMP in mediating virulence and highlight common themes that exist among eight diverse pathogens that cause different diseases through different routes of infection and transmission. WIREs RNA 2018, 9:e1454. doi: 10.1002/wrna.1454 This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Cherisse L Hall
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland at College Park, College Park, MD, USA
| |
Collapse
|
7
|
Altered Regulation of the Diguanylate Cyclase YaiC Reduces Production of Type 1 Fimbriae in a Pst Mutant of Uropathogenic Escherichia coli CFT073. J Bacteriol 2017; 199:JB.00168-17. [PMID: 28924030 DOI: 10.1128/jb.00168-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022] Open
Abstract
The pst gene cluster encodes the phosphate-specific transport (Pst) system. Inactivation of the Pst system constitutively activates the two-component regulatory system PhoBR and attenuates the virulence of pathogenic bacteria. In uropathogenic Escherichia coli strain CFT073, attenuation by inactivation of pst is predominantly attributed to the decreased expression of type 1 fimbriae. However, the molecular mechanisms connecting the Pst system and type 1 fimbriae are unknown. To address this, a transposon library was constructed in the pst mutant, and clones were tested for a regain in type 1 fimbrial production. Among them, the diguanylate cyclase encoded by yaiC (adrA in Salmonella) was identified to connect the Pst system and type 1 fimbrial expression. In the pst mutant, the decreased expression of type 1 fimbriae is connected by the induction of yaiC This is predominantly due to altered expression of the FimBE-like recombinase genes ipuA and ipbA, affecting at the same time the inversion of the fim promoter switch (fimS). In the pst mutant, inactivation of yaiC restored fim-dependent adhesion to bladder cells and virulence. Interestingly, the expression of yaiC was activated by PhoB, since transcription of yaiC was linked to the PhoB-dependent phoA-psiF operon. As YaiC is involved in cyclic di-GMP (c-di-GMP) biosynthesis, an increased accumulation of c-di-GMP was observed in the pst mutant. Hence, the results suggest that one mechanism by which deletion of the Pst system reduces the expression of type 1 fimbriae is through PhoBR-mediated activation of yaiC, which in turn increases the accumulation of c-di-GMP, represses the fim operon, and, consequently, attenuates virulence in the mouse urinary tract infection model.IMPORTANCE Urinary tract infections (UTIs) are common bacterial infections in humans. They are mainly caused by uropathogenic Escherichia coli (UPEC). We previously showed that interference with phosphate homeostasis decreases the expression of type 1 fimbriae and attenuates UPEC virulence. Herein, we identified that alteration of the phosphate metabolism increases production of the signaling molecule c-di-GMP, which in turn decreases the expression of type 1 fimbriae. We also determine the regulatory cascade leading to the accumulation of c-di-GMP and identify the Pho regulon as new players in c-di-GMP-mediated cell signaling. By understanding the molecular mechanisms leading to the expression of virulence factors, we will be in a better position to develop new therapeutics.
Collapse
|
8
|
Bandekar D, Chouhan OP, Mohapatra S, Hazra M, Hazra S, Biswas S. Putative protein VC0395_0300 from Vibrio cholerae is a diguanylate cyclase with a role in biofilm formation. Microbiol Res 2017. [PMID: 28647124 DOI: 10.1016/j.micres.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hallmark of the lifecycle of Vibrio cholerae is its ability to switch between two lifestyles - the sessile, non-pathogenic form and the motile, infectious form in human hosts. One of these changes is in the formation of surface biofilms, when in sessile aquatic habitats. The cell-cell interactions within a V. cholerae biofilm are stabilized by the production of an exopolysachharide (EPS) matrix, which in turn is regulated by the ubiquitous secondary messenger, cyclic di-GMP (c-di-GMP), synthesized by proteins containing GGD(/E)EF domains in all prokaryotic systems. Here, we report the functional role of the VC0395_0300 protein (Sebox3) encoded by the chromosome I of V. cholerae, with a GGEEF signature sequence, in the formation of surface biofilms. In our study, we have shown that Escherichia coli containing the full-length Sebox3 displays enhanced biofilm forming ability with cellulose production as quantified and visualized by multiple assays, most notably using FEG-SEM. This has also been corroborated with the lack of motility of host containing Sebox3 in semi-solid media. Searching for the reasons for this biofilm formation, we have demonstrated in vitro that Sebox3 can synthesize c-di-GMP from GTP. The homology derived model of Sebox3 displayed significant conservation of the GGD(/E)EF architecture as well. Hence, we propose that the putative protein VC0395_0300 from V. cholerae is a diguanylate cyclase which has an active role in biofilm formation.
Collapse
Affiliation(s)
- Divya Bandekar
- VISTA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India
| | | | - Swati Mohapatra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Mousumi Hazra
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Saugata Hazra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Sumit Biswas
- VISTA Lab, BITS, Pilani - K K Birla Goa Campus, Zuarinagar, Goa, India.
| |
Collapse
|
9
|
Ahmad I, Rouf SF, Sun L, Cimdins A, Shafeeq S, Le Guyon S, Schottkowski M, Rhen M, Römling U. BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium. Microb Cell Fact 2016; 15:177. [PMID: 27756305 PMCID: PMC5070118 DOI: 10.1186/s12934-016-0576-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/03/2016] [Indexed: 02/04/2023] Open
Abstract
Background Cellulose, a 1,4 beta-glucan polysaccharide, is produced by a variety of organisms including bacteria. Although the production of cellulose has a high biological, ecological and economical impact, regulatory mechanisms of cellulose biosynthesis are mostly unknown. Family eight cellulases are regularly associated with cellulose biosynthesis operons in bacteria; however, their function is poorly characterized. In this study, we analysed the role of the cellulase BcsZ encoded by the bcsABZC cellulose biosynthesis operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) in biofilm related behavior. We also investigated the involvement of BcsZ in pathogenesis of S. Typhimurium including a murine typhoid fever infection model. Result In S. Typhimurium, cellulase BcsZ with a putative periplasmic location negatively regulates cellulose biosynthesis. Moreover, as assessed with a non-polar mutant, BcsZ affects cellulose-associated phenotypes such as the rdar biofilm morphotype, cell clumping, biofilm formation, pellicle formation and flagella-dependent motility. Strikingly, although upregulation of cellulose biosynthesis was not observed on agar plate medium at 37 °C, BcsZ is required for efficient pathogen-host interaction. Key virulence phenotypes of S. Typhimurium such as invasion of epithelial cells and proliferation in macrophages were positively regulated by BcsZ. Further on, a bcsZ mutant was outcompeted by the wild type in organ colonization in the murine typhoid fever infection model. Selected phenotypes were relieved upon deletion of the cellulose synthase BcsA and/or the central biofilm activator CsgD. Conclusion Although the protein scaffold has an additional physiological role, our findings indicate that the catalytic activity of BcsZ effectively downregulates CsgD activated cellulose biosynthesis. Repression of cellulose production by BcsZ subsequently enables Salmonella to efficiently colonize the host. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0576-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Syed Fazle Rouf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Quebec, Canada
| | - Lei Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Cimdins
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Soazig Le Guyon
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marco Schottkowski
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Ren GX, Fan S, Guo XP, Chen S, Sun YC. Differential Regulation of c-di-GMP Metabolic Enzymes by Environmental Signals Modulates Biofilm Formation in Yersinia pestis. Front Microbiol 2016; 7:821. [PMID: 27375563 PMCID: PMC4891359 DOI: 10.3389/fmicb.2016.00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Cyclic diguanylate (c-di-GMP) is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs), HmsT and HmsD and one phosphodiesterase (PDE), HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD, and HmsP in Y. pestis. Biofilm formation was higher in the presence of non-lethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulate activity of DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.
Collapse
Affiliation(s)
- Gai-Xian Ren
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Sai Fan
- Institute of Nutrition and Food Hygiene, Beijing Centre for Disease Control and Prevention Beijing, China
| | - Xiao-Peng Guo
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Yi-Cheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| |
Collapse
|
11
|
Chen S, Thompson KM, Francis MS. Environmental Regulation of Yersinia Pathophysiology. Front Cell Infect Microbiol 2016; 6:25. [PMID: 26973818 PMCID: PMC4773443 DOI: 10.3389/fcimb.2016.00025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia.
Collapse
Affiliation(s)
- Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, China
| | - Karl M Thompson
- Department of Microbiology, College of Medicine, Howard University Washington, DC, USA
| | - Matthew S Francis
- Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden; Department of Molecular Biology, Umeå UniversityUmeå, Sweden
| |
Collapse
|
12
|
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 2015; 112:E5048-57. [PMID: 26305945 DOI: 10.1073/pnas.1507245112] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.
Collapse
|
13
|
Liang ZX. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites. Nat Prod Rep 2015; 32:663-83. [PMID: 25666534 DOI: 10.1039/c4np00086b] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.
Collapse
Affiliation(s)
- Zhao-Xun Liang
- Division of Structural Biology & Biochemistry, School of Biological Sciences, Nanyang Technological University, Singapore 637551.
| |
Collapse
|
14
|
Whiteley CG, Lee DJ. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv 2014; 33:124-141. [PMID: 25499693 DOI: 10.1016/j.biotechadv.2014.11.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous bacterial cyclic di-guanosine monophosphate (c-di-GMP) emerges as an important messenger for the control of many bacterial cellular functions including virulence, motility, bioluminescence, cellulose biosynthesis, adhesion, secretion, community behaviour, biofilm formation and cell differentiation. The synthesis of this cyclic nucleotide arises from external stimuli on various signalling domains within the N-terminal region of a dimeric diguanylate cyclase. This initiates the condensation of two molecules of guanosine triphosphate juxtaposed to each other within the C-terminal region of the enzyme. The biofilm from pathogenic microbes is highly resistant to antimicrobial agents suggesting that diguanylate cyclase and its product - c-di-GMP - are key biomedical targets for the inhibition of biofilm development. Furthermore the formation and long-term stability of the aerobic granule, a superior biofilm for biological wastewater treatment, can be controlled by stimulation of c-di-GMP. Any modulation of the synthetic pathways for c-di-GMP is clearly advantageous in terms of medical, industrial and/or environmental bioremediation implications. This review discusses the structure and reaction of individual diguanylate cyclase enzymes with a focus on new directions in c-di-GMP research. Specific attention is made on the molecular mechanisms that control bacterial exopolysaccharide biofilm formation and aerobic granules.
Collapse
Affiliation(s)
- Chris G Whiteley
- Graduate Institute of Applied Science & Technology, National Taiwan University of Science and Technology, Taipei, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Identification of a diguanylate cyclase and its role in Porphyromonas gingivalis virulence. Infect Immun 2014; 82:2728-35. [PMID: 24733094 DOI: 10.1128/iai.00084-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative obligate anaerobic bacterium and is considered a keystone pathogen in the initiation of periodontitis, one of the most widespread infectious diseases. Bacterial bis-(3'-5') cyclic GMP (cyclic di-GMP [c-di-GMP]) serves as a second messenger and is involved in modulating virulence factors in numerous bacteria. However, the role of this second messenger has not been investigated in P. gingivalis, mainly due to a lack of an annotation regarding diguanylate cyclases (DGCs) in this bacterium. Using bioinformatics tools, we found a protein, PGN_1932, containing a GGDEF domain. A deletion mutation in the pgn_1932 gene had a significant effect on the intracellular c-di-GMP level in P. gingivalis. Genetic analysis showed that expression of the fimA and rgpA genes, encoding the major protein subunit of fimbriae and an arginine-specific proteinase, respectively, was downregulated in the pgn_1932 mutant. Correspondingly, FimA protein production and the fimbrial display on the mutant were significantly reduced. Mutations in the pgn_1932 gene also had a significant impact on the adhesive and invasive capabilities of P. gingivalis, which are required for its pathogenicity. These findings provide evidence that the PGN_1932 protein is both responsible for synthesizing c-di-GMP and involved in biofilm formation and host cell invasion by P. gingivalis by controlling the expression and biosynthesis of FimA.
Collapse
|
16
|
Bobrov AG, Kirillina O, Vadyvaloo V, Koestler BJ, Hinz AK, Mack D, Waters CM, Perry RD. The Yersinia pestis HmsCDE regulatory system is essential for blockage of the oriental rat flea (Xenopsylla cheopis), a classic plague vector. Environ Microbiol 2014; 17:947-59. [PMID: 25586342 DOI: 10.1111/1462-2920.12419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/22/2014] [Accepted: 01/29/2014] [Indexed: 01/04/2023]
Abstract
The second messenger molecule cyclic diguanylate is essential for Yersinia pestis biofilm formation that is important for blockage-dependent plague transmission from fleas to mammals. Two diguanylate cyclases (DGCs) HmsT and Y3730 (HmsD) are responsible for biofilm formation in vitro and biofilm-dependent blockage in the oriental rat flea Xenopsylla cheopis respectively. Here, we have identified a tripartite signalling system encoded by the y3729-y3731 operon that is responsible for regulation of biofilm formation in different environments. We present genetic evidence that a putative inner membrane-anchored protein with a large periplasmic domain Y3729 (HmsC) inhibits HmsD DGC activity in vitro while an outer membrane Pal-like putative lipoprotein Y3731 (HmsE) counteracts HmsC to activate HmsD in the gut of X. cheopis. We propose that HmsE is a critical element in the transduction of environmental signal(s) required for HmsD-dependent biofilm formation.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Ono T, Murakami K, Miyake Y. [Regulatory networks for antibiotic tolerance and biofilm formation in Pseudomonas aeruginosa]. Nihon Saikingaku Zasshi 2014; 67:227-43. [PMID: 22688178 DOI: 10.3412/jsb.67.227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tsuneko Ono
- Department of Molecular Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima
| | | | | |
Collapse
|
18
|
Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B, Waters CM, Palys TJ. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. BIOFOULING 2014; 30:17-28. [PMID: 24117391 PMCID: PMC4120261 DOI: 10.1080/08927014.2013.832224] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation.
Collapse
Affiliation(s)
| | - Chunyuan Luo
- Wound Infections, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Xiarong Feng
- Wound Infections, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Benjamin Koestler
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Christopher M. Waters
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Thomas J. Palys
- Wound Infections, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
19
|
Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzolà F, Landini P. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl Microbiol Biotechnol 2013; 97:7325-36. [PMID: 23584245 DOI: 10.1007/s00253-013-4875-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 12/21/2022]
Abstract
In Gram-negative bacteria, production of the signal molecule c-di-GMP by diguanylate cyclases (DGCs) is a key trigger for biofilm formation, which, in turn, is often required for the development of chronic bacterial infections. Thus, DGCs represent interesting targets for new chemotherapeutic drugs with anti-biofilm activity. We searched for inhibitors of the WspR protein, a Pseudomonas aeruginosa DGC involved in biofilm formation and production of virulence factors, using a set of microbiological assays developed in an Escherichia coli strain expressing the wspR gene. We found that azathioprine, an immunosuppressive drug used in the treatment of Crohn's disease, was able to inhibit WspR-dependent c-di-GMP biosynthesis in bacterial cells. However, in vitro enzymatic assays ruled out direct inhibition of WspR DGC activity either by azathioprine or by its metabolic derivative 2-amino-6-mercapto-purine riboside. Azathioprine is an inhibitor of 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase, an enzyme involved in purine biosynthesis, which suggests that inhibition of c-di-GMP biosynthesis by azathioprine may be due to perturbation of intracellular nucleotide pools. Consistent with this hypothesis, WspR activity is abolished in an E. coli purH mutant strain, unable to produce AICAR transformylase. Despite its effect on WspR, azathioprine failed to prevent biofilm formation by P. aeruginosa; however, it affected production of extracellular structures in E. coli clinical isolates, suggesting efficient inhibition of c-di-GMP biosynthesis in this bacterium. Our results indicate that azathioprine can prevent biofilm formation in E. coli through inhibition of c-di-GMP biosynthesis and suggest that such inhibition might contribute to its anti-inflammatory activity in Crohn's disease.
Collapse
Affiliation(s)
- Davide Antoniani
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sun F, Gao H, Zhang Y, Wang L, Fang N, Tan Y, Guo Z, Xia P, Zhou D, Yang R. Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One 2012; 7:e52392. [PMID: 23285021 PMCID: PMC3528687 DOI: 10.1371/journal.pone.0052392] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 11/13/2012] [Indexed: 11/29/2022] Open
Abstract
Background Yersinia pestis synthesizes the attached biofilms in the flea proventriculus, which is important for the transmission of this pathogen by fleas. The hmsHFRS operons is responsible for the synthesis of exopolysaccharide (the major component of biofilm matrix), which is activated by the signaling molecule 3′, 5′-cyclic diguanylic acid (c-di-GMP) synthesized by the only two diguanylate cyclases HmsT, and YPO0449 (located in a putative operonYPO0450-0448). Methodology/Principal Findings The phenotypic assays indicated that the transcriptional regulator Fur inhibited the Y. pestis biofilm production in vitro and on nematode. Two distinct Fur box-like sequences were predicted within the promoter-proximal region of hmsT, suggesting that hmsT might be a direct Fur target. The subsequent primer extension, LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays disclosed that Fur specifically bound to the hmsT promoter-proximal region for repressing the hmsT transcription. In contrast, Fur had no regulatory effect on hmsHFRS and YPO0450-0448 at the transcriptional level. The detection of intracellular c-di-GMP levels revealed that Fur inhibited the c-di-GMP production. Conclusions/Significance Y. pestis Fur inhibits the c-di-GMP production through directly repressing the transcription of hmsT, and thus it acts as a repressor of biofilm formation. Since the relevant genetic contents for fur, hmsT, hmsHFRS, and YPO0450-0448 are extremely conserved between Y. pestis and typical Y. pseudotuberculosis, the above regulatory mechanisms can be applied to Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Fengjun Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
| | - He Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Li Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Nan Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhaobiao Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing, China
- * E-mail: (PX); (DZ); (RY)
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (PX); (DZ); (RY)
| |
Collapse
|
21
|
Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol 2012; 195:417-28. [PMID: 23161026 DOI: 10.1128/jb.01789-12] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.
Collapse
|
22
|
Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 2012; 56:5202-11. [PMID: 22850508 DOI: 10.1128/aac.01396-12] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bacterial biofilm formation is responsible for numerous chronic infections, causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. New strategies to treat biofilm-based infections are critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. As this signaling system is found only in bacteria, it is an attractive target for the development of new antibiofilm interventions. Here, we describe the results of a high-throughput screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP. We report seven small molecules that antagonize these enzymes and inhibit biofilm formation by Vibrio cholerae. Moreover, two of these compounds significantly reduce the total concentration of c-di-GMP in V. cholerae, one of which also inhibits biofilm formation by Pseudomonas aeruginosa in a continuous-flow system. These molecules represent the first compounds described that are able to inhibit DGC activity to prevent biofilm formation.
Collapse
|
23
|
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger molecule that regulates the transition between sessile and motile lifestyles in bacteria. Bacteria often encode multiple diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that produce and degrade c-di-GMP, respectively. Because of multiple inputs into the c-di-GMP-signaling network, it is unclear whether this system functions via high or low specificity. High-specificity signaling is characterized by individual DGCs or PDEs that are specifically associated with downstream c-di-GMP-mediated responses. In contrast, low-specificity signaling is characterized by DGCs or PDEs that modulate a general signal pool, which, in turn, controls a global c-di-GMP-mediated response. To determine whether c-di-GMP functions via high or low specificity in Vibrio cholerae, we correlated the in vivo c-di-GMP concentration generated by seven DGCs, each expressed at eight different levels, to the c-di-GMP-mediated induction of biofilm formation and transcription. There was no correlation between total intracellular c-di-GMP levels and biofilm formation or gene expression when considering all states. However, individual DGCs showed a significant correlation between c-di-GMP production and c-di-GMP-mediated responses. Moreover, the rate of phenotypic change versus c-di-GMP concentration was significantly different between DGCs, suggesting that bacteria can optimize phenotypic output to c-di-GMP levels via expression or activation of specific DGCs. Our results conclusively demonstrate that c-di-GMP does not function via a simple, low-specificity signaling pathway in V. cholerae.
Collapse
|
24
|
Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SC. Salmonella biofilms: An overview on occurrence, structure, regulation and eradication. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.038] [Citation(s) in RCA: 314] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Bacterial Biofilm and Peculiarities of Its Formation in Plague Agent and in Other Pathogenic Yersinia. PROBLEMS OF PARTICULARLY DANGEROUS INFECTIONS 2011. [DOI: 10.21055/0370-1069-2011-4(110)-5-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
He M, Ouyang Z, Troxell B, Xu H, Moh A, Piesman J, Norgard MV, Gomelsky M, Yang XF. Cyclic di-GMP is essential for the survival of the lyme disease spirochete in ticks. PLoS Pathog 2011; 7:e1002133. [PMID: 21738477 PMCID: PMC3128128 DOI: 10.1371/journal.ppat.1002133] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 05/18/2011] [Indexed: 11/19/2022] Open
Abstract
Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host.
Collapse
Affiliation(s)
- Ming He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Zhiming Ouyang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Bryan Troxell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haijun Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Akira Moh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Joseph Piesman
- Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Michael V. Norgard
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, Unites States of America
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
27
|
Sun YC, Koumoutsi A, Jarrett C, Lawrence K, Gherardini FC, Darby C, Hinnebusch BJ. Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases. PLoS One 2011; 6:e19267. [PMID: 21559445 PMCID: PMC3084805 DOI: 10.1371/journal.pone.0019267] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/25/2011] [Indexed: 11/25/2022] Open
Abstract
Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.
Collapse
Affiliation(s)
- Yi-Cheng Sun
- Laboratory of Zoonotic Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhou D, Yang R. Formation and regulation of Yersinia biofilms. Protein Cell 2011; 2:173-9. [PMID: 21380640 DOI: 10.1007/s13238-011-1024-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/18/2011] [Indexed: 12/31/2022] Open
Abstract
Flea-borne transmission is a recent evolutionary adaptation that distinguishes the deadly Yersinia pestis from its progenitor Y. Pseudotuberculosis, a mild pathogen transmitted via the food-borne route. Y. Pestis synthesizes biofilms in the flea gut, which is important for fleaborne transmission. Yersinia biofilms are bacterial colonies surrounded by extracellular matrix primarily containing a homopolymer of N-acetyl-D-glucosamine that are synthesized by a set of specific enzymes. Yersinia biofilm production is tightly regulated at both transcriptional and post-transcriptional levels. All the known structural genes responsible for biofilm production are harbored in both Y. Pseudotuberculosis and Y. Pestis, but Y. Pestis has evolved changes in the regulation of biofilm development, thereby acquiring efficient arthropod-borne transmission.
Collapse
Affiliation(s)
- Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.
| | | |
Collapse
|
29
|
Biofilm development on Caenorhabditis elegans by Yersinia is facilitated by quorum sensing-dependent repression of type III secretion. PLoS Pathog 2011; 7:e1001250. [PMID: 21253572 PMCID: PMC3017118 DOI: 10.1371/journal.ppat.1001250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 12/06/2010] [Indexed: 12/30/2022] Open
Abstract
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS. Many Gram-negative bacteria communicate by producing and sensing the presence of chemical signal molecules such as the N-acylhomoserine lactones (AHLs). Bacterial cells use AHLs to convey information about their environment, metabolism and population size. This type of chemical signalling is called ‘quorum sensing’ (QS) and is often used by pathogenic bacteria to promote acute or chronic infections through the control of motility, toxins, tissue degrading enzymes and surface-associated biofilms. Yersinia pseudotuberculosis is a human pathogen which forms biofilms on the surface of the nematode worm, Caenorhabditis elegans. This offers a simple means for investigating biofilm development on living tissues and can be used to identify genetic features of both the pathogen and the host that contribute to biofilm-associated infections. We have discovered that quorum sensing is required for Y. pseudotuberculosis biofilm formation on C. elegans through a regulatory pathway which involves the master motility regulator protein (FlhDC) reciprocally controlling bacterial swimming and the construction of a specialized secretion needle that delivers proteins into mammalian cells to disrupt their normal activities.
Collapse
|
30
|
Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol 2010; 79:533-51. [PMID: 21219468 DOI: 10.1111/j.1365-2958.2010.07470.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic di-GMP (c-di-GMP) is a signalling molecule that governs the transition between planktonic and biofilm states. Previously, we showed that the diguanylate cyclase HmsT and the putative c-di-GMP phosphodiesterase HmsP inversely regulate biofilm formation through control of HmsHFRS-dependent poly-β-1,6-N-acetylglucosamine synthesis. Here, we systematically examine the functionality of the genes encoding putative c-di-GMP metabolic enzymes in Yersinia pestis. We determine that, in addition to hmsT and hmsP, only the gene y3730 encodes a functional enzyme capable of synthesizing c-di-GMP. The seven remaining genes are pseudogenes or encode proteins that do not function catalytically or are not expressed. Furthermore, we show that HmsP has c-di-GMP-specific phosphodiesterase activity. We report that a mutant incapable of c-di-GMP synthesis is unaffected in virulence in plague mouse models. Conversely, an hmsP mutant, unable to degrade c-di-GMP, is defective in virulence by a subcutaneous route of infection due to poly-β-1,6-N-acetylglucosamine overproduction. This suggests that c-di-GMP signalling is not only dispensable but deleterious for Y. pestis virulence. Our results show that a key event in the evolution of Y. pestis from the ancestral Yersinia pseudotuberculosis was a significant reduction in the complexity of its c-di-GMP signalling network likely resulting from the different disease cycles of these human pathogens.
Collapse
Affiliation(s)
- Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Modulation of Pseudomonas aeruginosa biofilm dispersal by a cyclic-Di-GMP phosphodiesterase with a putative hypoxia-sensing domain. Appl Environ Microbiol 2010; 76:8160-73. [PMID: 20971871 DOI: 10.1128/aem.01233-10] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa encodes many enzymes that are potentially associated with the synthesis or degradation of the widely conserved second messenger cyclic-di-GMP (c-di-GMP). In this study, we show that mutation of rbdA, which encodes a fusion protein consisting of PAS-PAC-GGDEF-EAL multidomains, results in decreased biofilm dispersal. RbdA contains a highly conserved GGDEF domain and EAL domain, which are involved in the synthesis and degradation of c-di-GMP, respectively. However, in vivo and in vitro analyses show that the full-length RbdA protein only displays phosphodiesterase activity, causing c-di-GMP degradation. Further analysis reveals that the GGDEF domain of RbdA plays a role in activating the phosphodiesterase activity of the EAL domain in the presence of GTP. Moreover, we show that deletion of the PAS domain or substitution of the key residues implicated in sensing low-oxygen stress abrogates the functionality of RbdA. Subsequent study showed that RbdA is involved in positive regulation of bacterial motility and production of rhamnolipids, which are associated with biofilm dispersal, and in negative regulation of production of exopolysaccharides, which are required for biofilm formation. These data indicate that the c-di-GMP-degrading regulatory protein RbdA promotes biofilm dispersal through its two-pronged effects on biofilm development, i.e., downregulating biofilm formation and upregulating production of the factors associated with biofilm dispersal.
Collapse
|
32
|
Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J Bacteriol 2010; 192:4122-33. [PMID: 20562302 DOI: 10.1128/jb.00132-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a bacterial second messenger produced by GGDEF domain-containing proteins. The genome of Ehrlichia chaffeensis, an obligatory intracellular bacterium that causes human monocytic ehrlichiosis, encodes a single protein that contains a GGDEF domain, called PleD. In this study, we investigated the effects of c-di-GMP signaling on E. chaffeensis infection of the human monocytic cell line THP-1. Recombinant E. chaffeensis PleD showed diguanylate cyclase activity as it generated c-di-GMP in vitro. Because c-di-GMP is not cell permeable, the c-di-GMP hydrophobic analog 2'-O-di(tert-butyldimethylsilyl)-c-di-GMP (CDGA) was used to examine intracellular c-di-GMP signaling. CDGA activity was first tested with Salmonella enterica serovar Typhimurium. CDGA inhibited well-defined c-di-GMP-regulated phenomena, including cellulose synthesis, clumping, and upregulation of csgD and adrA mRNA, indicating that CDGA acts as an antagonist in c-di-GMP signaling. [(32)P]c-di-GMP bound several E. chaffeensis native proteins and two E. chaffeensis recombinant I-site proteins, and this binding was blocked by CDGA. Although pretreatment of E. chaffeensis with CDGA did not reduce bacterial binding to THP-1 cells, bacterial internalization was reduced. CDGA facilitated protease-dependent degradation of particular, but not all, bacterial surface-exposed proteins, including TRP120, which is associated with bacterial internalization. Indeed, the serine protease HtrA was detected on the surface of E. chaffeensis, and TRP120 was degraded by treatment of E. chaffeensis with recombinant E. chaffeensis HtrA. Furthermore, anti-HtrA inhibited CDGA-induced TRP120 degradation. Our results suggest that E. chaffeensis invasion is regulated by c-di-GMP signaling, which stabilizes some bacterial surface-exposed proteins against proteases.
Collapse
|
33
|
Wortham BW, Oliveira MA, Fetherston JD, Perry RD. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. Environ Microbiol 2010; 12:2034-47. [PMID: 20406298 DOI: 10.1111/j.1462-2920.2010.02219.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We previously showed that mutations in the genes encoding the two main biosynthetic enzymes responsible for polyamine production, arginine decarboxylase (SpeA) and ornithine decarboxylase (SpeC) cause a loss of biofilm formation in Yersinia pestis. In Y. pestis the development of a biofilm is dependent on 6 Hms (hemin storage) proteins (HmsH, F, R, S, T and P) grouped into 3 operons; hmsHFRS, hmsT and hmsP. In this article we show that polyamines are necessary to maintain the levels of key Hms proteins. In the absence of polyamines there is an approximately 93%, approximately 43% and approximately 90% reduction in protein levels of HmsR, HmsS and HmsT respectively. Overexpression of hmsR and hmsT from plasmids alone can restore biofilm formation to a SpeA(-)SpeC(-) mutant. Addition of exogenous putrescine also restores normal levels of HmsR, HmsS, HmsT and biofilm production. Analyses using transcriptional reporters and quantitative RT-PCR indicate that the initiation of transcription and mRNA stability are not reduced by polyamine deficiency. Instead, translational reporters indicate that polyamines function at least in part by modulating the translation of HmsR and HmsT. Although construction of a consensus Shine-Dalgarno sequence upstream of hmsT modestly reduced the stimulation of translation by putrescine, additional mechanisms likely contribute to the polyamine-dependent expression of HmsT. Finally, we have shown that polyamines play a role in bubonic plague.
Collapse
Affiliation(s)
- Brian W Wortham
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
34
|
Vetter SM, Eisen RJ, Schotthoefer AM, Montenieri JA, Holmes JL, Bobrov AG, Bearden SW, Perry RD, Gage KL. Biofilm formation is not required for early-phase transmission of Yersinia pestis. MICROBIOLOGY-SGM 2010; 156:2216-2225. [PMID: 20395271 PMCID: PMC3068684 DOI: 10.1099/mic.0.037952-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early-phase transmission (EPT) is a recently described model of plague transmission that explains the rapid spread of disease from flea to mammal host during an epizootic. Unlike the traditional blockage-dependent model of plague transmission, EPT can occur when a flea takes its first blood meal after initially becoming infected by feeding on a bacteraemic host. Blockage of the flea gut results from biofilm formation in the proventriculus, mediated by the gene products found in the haemin storage (hms) locus of the Yersinia pestis chromosome. Although biofilms are required for blockage-dependent transmission, the role of biofilms in EPT has yet to be determined. An artificial feeding system was used to feed Xenopsylla cheopis and Oropsylla montana rat blood spiked with the parental Y. pestis strain KIM5(pCD1)+, two different biofilm-deficient mutants (ΔhmsT, ΔhmsR), or a biofilm-overproducer mutant (ΔhmsP). Infected fleas were then allowed to feed on naïve Swiss Webster mice for 1–4 days after infection, and the mice were monitored for signs of infection. We also determined the bacterial loads of each flea that fed upon naïve mice. Biofilm-defective mutants transmitted from X. cheopis and O. montana as efficiently as the parent strain, whereas the EPT efficiency of fleas fed the biofilm-overproducing strain was significantly less than that of fleas fed either the parent or a biofilm-deficient strain. Fleas infected with a biofilm-deficient strain harboured lower bacterial loads 4 days post-infection than fleas infected with the parent strain. Thus, defects in biofilm formation did not prevent flea-borne transmission of Y. pestis in our EPT model, although biofilm overproduction inhibited efficient EPT. Our results also indicate, however, that biofilms may play a role in infection persistence in the flea.
Collapse
Affiliation(s)
- Sara M Vetter
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Rebecca J Eisen
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Anna M Schotthoefer
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - John A Montenieri
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Jennifer L Holmes
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Alexander G Bobrov
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, MS415 Medical Center, Lexington, KY 40536, USA
| | - Scott W Bearden
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| | - Robert D Perry
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, MS415 Medical Center, Lexington, KY 40536, USA
| | - Kenneth L Gage
- Bacterial Diseases Branch, Division of Vector Borne Diseases, National Center for Enteric and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3150 Rampart Rd, Fort Collins, CO 80521, USA
| |
Collapse
|
35
|
Hassett DJ, Korfhagen TR, Irvin RT, Schurr MJ, Sauer K, Lau GW, Sutton MD, Yu H, Hoiby N. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies. Expert Opin Ther Targets 2010; 14:117-30. [PMID: 20055712 DOI: 10.1517/14728220903454988] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IMPORTANCE OF THE FIELD CF airway mucus can be infected by opportunistic microorganisms, notably Pseudomonas aeruginosa. Once organisms are established as biofilms, even the most potent antibiotics have little effect on their viability, especially during late-stage chronic infections. Better understanding of the mechanisms used by P. aeruginosa to circumvent host defenses and therapeutic intervention strategies is critical for advancing novel treatment strategies. AREAS COVERED IN THIS REVIEW Inflammatory injury in CF lung, role of neutrophils in pathogenesis, P. aeruginosa biofilms, mucoidy and its relationship with poor airway oxygenation, mechanisms by which P. aeruginosa biofilms in the CF airway can be killed. WHAT THE READER WILL GAIN An understanding of the processes that P. aeruginosa undergoes during CF airway disease and clues to better treat such infections in future. TAKE HOME MESSAGE The course of CF airway disease is a process involving host and microbial factors that often dictate frequency of pulmonary exacerbations, thus affecting the overall course. In the past decade significant discoveries have been made regarding the pathogenic processes used by P. aeruginosa to bypass the immune system. Many new and exciting features of P. aeruginosa now illuminate weaknesses in the organism that may render it susceptible to inexpensive compounds that force its own destruction.
Collapse
Affiliation(s)
- Daniel J Hassett
- University of Cincinnati College of Medicine, Department of Molecular Genetics, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abu Khweek A, Fetherston JD, Perry RD. Analysis of HmsH and its role in plague biofilm formation. MICROBIOLOGY-SGM 2010; 156:1424-1438. [PMID: 20093287 DOI: 10.1099/mic.0.036640-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Yersinia pestis Hms(+) phenotype is a manifestation of biofilm formation that causes adsorption of Congo red and haemin at 26 degrees C but not at 37 degrees C. This phenotype is required for blockage of the proventricular valve of the oriental rat flea and plays a role in transmission of bubonic plague from fleas to mammals. Genes responsible for this phenotype are located in three separate operons, hmsHFRS, hmsT and hmsP. HmsH and HmsF are outer membrane (OM) proteins, while the other four Hms proteins are located in the inner membrane. According to the Hidden Markov Method-based predictor, HmsH has a large N terminus in the periplasm, a beta-barrel structure with 16 beta-strands that traverse the OM, eight surface-exposed loops, and seven short turns connecting the beta-strands on the periplasmic side. Here, we demonstrate that HmsH is a heat-modifiable protein, a characteristic of other beta-barrel proteins, thereby supporting the bioinformatics analysis. Alanine scanning mutagenesis was used to identify conserved amino acids in the HmsH-like family that are critical for the function of HmsH in biofilm formation. Of 23 conserved amino acids mutated, four residues affected HmsH function and three likely caused protein instability. We used formaldehyde cross-linking to demonstrate that HmsH interacts with HmsF but not with HmsR, HmsS, HmsT or HmsP. Loss-of-function HmsH variants with single alanine substitutions retained their beta-structure and interaction with HmsF. Finally, using a polar hmsH : : mini-kan mutant, we demonstrated that biofilm development is not important for the pathogenesis of bubonic or pneumonic plague in mice.
Collapse
Affiliation(s)
- Arwa Abu Khweek
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St., Lexington, KY, USA
| | - Jacqueline D Fetherston
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St., Lexington, KY, USA
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, 800 Rose St., Lexington, KY, USA
| |
Collapse
|
37
|
Jonas K, Melefors O, Römling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 2009; 4:341-58. [PMID: 19327118 DOI: 10.2217/fmb.09.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic (5 to 3 )-diguanosine monophosphate (c-di-GMP) is a small molecule that regulates the transition between the sessile and motile lifestyle, an integrative part of biofilm formation and other multicellular behavior, in many bacteria. The recognition of c-di-GMP as a novel secondary messenger soon raised the question about the specificity of the signaling system, as individual bacterial genomes frequently encode numerous c-di-GMP metabolizing proteins. Recent work has demonstrated that several global regulators concertedly modify the expression of selected panels of c-di-GMP metabolizing proteins, which act on targets with physiological functions. Within complex feed-forward arrangements, the global regulators commonly combine the control of c-di-GMP metabolism with the direct regulation of proteins with functions in motility or biofilm formation, leading to precise and fine-tuned output responses that determine bacterial behavior. c-di-GMP metabolizing proteins are also controlled at the post-translational level by mechanisms including phosphorylation, localization, protein-protein interactions or protein stability. A detailed understanding of such complex regulatory mechanisms will not only help to explain the specificity in c-di-GMP signaling systems, but will also be necessary to understand the high phenotypic diversity within bacterial biofilms at the single cell level.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
38
|
Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc Natl Acad Sci U S A 2009; 106:7997-8002. [PMID: 19416883 DOI: 10.1073/pnas.0812573106] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3'-5'-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP-dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable.
Collapse
|
39
|
Cha J, Jung J, Park S, Cho M, Seo D, Ha S, Yoon J, Lee O, Kim Y, Park C. Molecular cloning and functional characterization of a sucrose isomerase (isomaltulose synthase) gene from Enterobacter sp. FMB-1. J Appl Microbiol 2009; 107:1119-30. [DOI: 10.1111/j.1365-2672.2009.04295.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Rogers EA, Terekhova D, Zhang HM, Hovis KM, Schwartz I, Marconi RT. Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol Microbiol 2009; 71:1551-73. [PMID: 19210621 DOI: 10.1111/j.1365-2958.2009.06621.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two-component systems (TCS) are universal among bacteria and play critical roles in gene regulation. Our understanding of the contributions of TCS in the biology of the Borrelia is just now beginning to develop. Borrelia burgdorferi, a causative agent of Lyme disease, harbours a TCS comprised of open reading frames (ORFs) BB0419 and BB0420. BB0419 encodes a response regulator designated Rrp1, and BB0420 encodes a hybrid histidine kinase-response regulator designated Hpk1. Rrp1, which contains a conserved GGDEF domain, undergoes phosphorylation and produces the secondary messenger, cyclic diguanylate (c-di-GMP), a critical signaling molecule in numerous organisms. However, the regulatory role of the Rrp1-Hpk1 TCS and c-di-GMP signaling in Borrelia biology are unexplored. In this study, the distribution, conservation, expression and potential global regulatory capability of Rrp1 were assessed. rrp1 was found to be universal and highly conserved among isolates, co-transcribed with hpk1, constitutively expressed during in vitro cultivation, and significantly upregulated upon tick feeding. Allelic exchange replacement and microarray analyses revealed that the Rrp1 regulon consists of a large number of genes encoded by the core Borrelia genome (linear chromosome, linear plasmid 54 and circular plasmid 26) that encode for proteins involved in central metabolic processes and virulence mechanisms including immune evasion.
Collapse
Affiliation(s)
- Elizabeth A Rogers
- Department of Microbiology and Immunology, Medical College of Virginia Commonwealth University, Richmond, VA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa. Environ Microbiol 2008; 11:1126-36. [PMID: 19170727 DOI: 10.1111/j.1462-2920.2008.01842.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HD-GYP is a protein domain involved in the hydrolysis of the bacterial second messenger cyclic-di-GMP. The genome of the human pathogen Pseudomonas aeruginosa PAO1 encodes two proteins (PA4108, PA4781) with an HD-GYP domain and a third protein, PA2572, which contains a domain with variant key residues (YN-GYP). Here we have investigated the role of these proteins in biofilm formation, virulence factor synthesis and virulence of P. aeruginosa. Mutation of PA4108 and PA4781 led to an increase in the level of cyclic-di-GMP in P. aeruginosa, consistent with the predicted activity of the encoded proteins as cyclic-di-GMP phosphodiesterases. Mutation of both genes led to reduced swarming motility but had differing effects on production of the virulence factors pyocyanin, pyoverdin and ExoS. Mutation of PA2572 had no effect on cyclic-di-GMP levels and did not influence swarming motility. However, PA2572 had a negative influence on swarming that was cryptic and was revealed only after removal of an uncharacterized C-terminal domain. Mutation of PA4108, PA4781 and PA2572 had distinct effects on biofilm formation and architecture of P. aeruginosa. All three proteins contributed to virulence of P. aeruginosa to larvae of the Greater Wax moth Galleria mellonella.
Collapse
Affiliation(s)
- Robert P Ryan
- Department of Microbiology, BIOMERIT Research Centre, BioSciences Institute, National University of Ireland, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Effect of permeate drag force on the development of a biofouling layer in a pressure-driven membrane separation system. Appl Environ Microbiol 2008; 74:7338-47. [PMID: 18931284 DOI: 10.1128/aem.00631-08] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of permeate flux on the development of a biofouling layer on cross-flow separation membranes was studied by using a bench-scale system consisting of two replicate 100-molecular-weight-cutoff tubular ultrafiltration membrane modules, one that allowed flow of permeate and one that did not (control). The system was inoculated with Pseudomonas putida S-12 tagged with a red fluorescent protein and was operated using a laminar flow regimen under sterile conditions with a constant feed of diluted (1:75) Luria-Bertani medium. Biofilm development was studied by using field emission scanning electron microscopy and confocal scanning laser microscopy and was subsequently quantified by image analysis, as well as by determining live counts and by permeate flux monitoring. Biofilm development was highly enhanced in the presence of permeate flow, which resulted in the buildup of complex three-dimensional structures on the membrane. Bacterial transport toward the membrane by permeate drag was found to be a mechanism by which cross-flow filtration contributes to the buildup of a biofouling layer that was more dominant than transport of nutrients. Cellular viability was found to be not essential for transport and adhesion under cross-flow conditions, since the permeate drag overcame the effect of bacterial motility.
Collapse
|
43
|
Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors O. The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 2008; 70:236-57. [PMID: 18713317 DOI: 10.1111/j.1365-2958.2008.06411.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The carbon storage regulator CsrA is an RNA binding protein that controls carbon metabolism, biofilm formation and motility in various eubacteria. Nevertheless, in Escherichia coli only five target mRNAs have been shown to be directly regulated by CsrA at the post-transcriptional level. Here we identified two new direct targets for CsrA, ycdT and ydeH, both of which encode proteins with GGDEF domains. A csrA mutation caused mRNA levels of ycdT and ydeH to increase more than 10-fold. RNA mobility shift assays confirmed the direct and specific binding of CsrA to the mRNA leaders of ydeH and ycdT. Overexpression of ycdT and ydeH resulted in a more than 20-fold increase in the cellular concentration of the second messenger cyclic di-GMP (c-di-GMP), implying that both proteins possess diguanylate cyclase activity. Phenotypic characterization revealed that both proteins are involved in the regulation of motility in a c-di-GMP-dependent manner. CsrA was also found to regulate the expression of five additional GGDEF/EAL proteins and a csrA mutation led to modestly increased cellular levels of c-di-GMP. All together, these data demonstrate a global role for CsrA in the regulation of c-di-GMP metabolism by regulating the expression of GGDEF proteins at the post-transcriptional level.
Collapse
Affiliation(s)
- Kristina Jonas
- Swedish Institute for Infectious Disease Control, SE-17182, Solna; and Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Bobrov AG, Kirillina O, Forman S, Mack D, Perry RD. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Environ Microbiol 2008; 10:1419-32. [DOI: 10.1111/j.1462-2920.2007.01554.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Abstract
Bacterial biofilms are found under diverse environmental conditions, from sheltered and specialized environments found within mammalian hosts to the extremes of biological survival. The process of forming a biofilm and the eventual return of cells to the planktonic state involve the coordination of vast amounts of genetic information. Nevertheless, the prevailing evidence suggests that the overall progression of this cycle within a given species or strain of bacteria responds to environmental conditions via a finite number of key regulatory factors and pathways, which affect enzymatic and structural elements that are needed for biofilm formation and dispersal. Among the conditions that affect biofilm development are temperature, pH, O2 levels, hydrodynamics, osmolarity, the presence of specific ions, nutrients, and factors derived from the biotic environment. The integration of these influences ultimately determines the pattern of behavior of a given bacterium with respect to biofilm development. This chapter will present examples of how environmental conditions affect biofilm development, most of which come from studies of species that have mammalian hosts.
Collapse
Affiliation(s)
- C C Goller
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
46
|
Hinnebusch BJ, Erickson DL. Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 2008; 322:229-48. [PMID: 18453279 DOI: 10.1007/978-3-540-75418-3_11] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-beta-1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response.
Collapse
Affiliation(s)
- B J Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIH, NIAID, Hamilton, MT 59840, USA.
| | | |
Collapse
|
47
|
Abstract
Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli.
Collapse
Affiliation(s)
- C Beloin
- Groupe de Génétique des Biofilms, Institut Pasteur, CNRS URA 2172, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
48
|
Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol 2007; 65:1474-84. [PMID: 17824927 PMCID: PMC2170427 DOI: 10.1111/j.1365-2958.2007.05879.x] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bis-(3′,5′)-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been shown to be a global regulatory molecule that modulates the reciprocal responses of bacteria to activate either virulence pathways or biofilm formation. The mechanism of c-di-GMP signal transduction, including recognition of c-di-GMP and subsequent phenotypic regulation, remain largely uncharacterized. The key components of these regulatory pathways are the various adaptor proteins (c-di-GMP receptors). There is compelling evidence suggesting that, in addition to PilZ domains, there are other unidentified c-di-GMP receptors. Here we show that the PelD protein of Pseudomonas aeruginosa is a novel c-di-GMP receptor that mediates c-di-GMP regulation of PEL polysaccharide biosynthesis. Analysis of PelD orthologues identified a number of conserved residues that are required for c-di-GMP binding as well as synthesis of the PEL polysaccharide. Secondary structure similarities of PelD to the inhibitory site of diguanylate cyclase suggest that a common fold can act as a platform to bind c-di-GMP. The combination of a c-di-GMP binding site with a variety of output signalling motifs within one protein domain provides an explanation for the specificity for different cellular responses to this regulatory dinucleotide.
Collapse
Affiliation(s)
- Vincent T Lee
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD 20742, USA
| | - Jody M Matewish
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
| | - Jennifer L Kessler
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege Park, MD 20742, USA
| | - Mamoru Hyodo
- Graduate School of Information Science/Human Informatics and CREST of JST, Nagoya UniversityChikusa, Nagoya 464-8601, Japan
| | - Yoshihiro Hayakawa
- Graduate School of Information Science/Human Informatics and CREST of JST, Nagoya UniversityChikusa, Nagoya 464-8601, Japan
| | - Stephen Lory
- Department of Microbiology and Molecular Genetics, Harvard Medical SchoolBoston, MA 02115, USA
- E-mail ; Tel. (+1) 617 432 5099; Fax (+1) 617 738 7664
| |
Collapse
|
49
|
Malone JG, Williams R, Christen M, Jenal U, Spiers AJ, Rainey PB. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain. MICROBIOLOGY-SGM 2007; 153:980-994. [PMID: 17379708 DOI: 10.1099/mic.0.2006/002824-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The GGDEF response regulator WspR couples the chemosensory Wsp pathway to the overproduction of acetylated cellulose and cell attachment in the Pseudomonas fluorescens SBW25 wrinkly spreader (WS) genotype. Here, it is shown that WspR is a diguanylate cyclase (DGC), and that DGC activity is elevated in the WS genotype compared to that in the ancestral smooth (SM) genotype. A structure-function analysis of 120 wspR mutant alleles was employed to gain insight into the regulation and activity of WspR. Firstly, 44 random and defined pentapeptide insertions were produced in WspR, and the effects determined using assays based on colony morphology, attachment to surfaces and cellulose production. The effects of mutations within WspR were interpreted using a homology model, based on the crystal structure of Caulobacter crescentus PleD. Mutational analyses indicated that WspR activation occurs as a result of disruption of the interdomain interface, leading to the release of effector-domain repression by the N-terminal receiver domain. Quantification of attachment and cellulose production raised significant questions concerning the mechanisms of WspR function. The conserved RYGGEEF motif of WspR was also subjected to mutational analysis, and 76 single amino acid residue substitutions were tested for their effects on WspR function. The RYGGEEF motif of WspR is functionally conserved, with almost every mutation abolishing function.
Collapse
Affiliation(s)
- J G Malone
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - R Williams
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - M Christen
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - U Jenal
- Division of Molecular Microbiology, Biozentrum, Klingelbergstrasse 50-70, CH-4056 Basel, Switzerland
| | - A J Spiers
- Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - P B Rainey
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
50
|
Rahman M, Simm R, Kader A, Basseres E, Römling U, Möllby R. The role of c-di-GMP signaling in an Aeromonas veronii biovar sobria strain. FEMS Microbiol Lett 2007; 273:172-9. [PMID: 17573931 DOI: 10.1111/j.1574-6968.2007.00803.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Aeromonas is a ubiquitous gram-negative bacterium that persists in the environment. It is shown that all isolates of persistent Aeromonas clones show strong biofilm formation ability. C-di-GMP regulates biofilm formation in many bacteria. To investigate the impact of c-di-GMP signaling, we introduced heterologous GGDEF and EAL domain proteins from Salmonella Typhimurium to an Aeromonas veronii biovar sobria strain. Overexpression of the GGDEF domain protein AdrA increased c-di-GMP concentration and biofilm formation and reduced motility. Production of the quorum-sensing signaling molecule C4-homoserine lactone and adhesion to aquatic plant duckweed and amoeba surfaces were enhanced. On the other hand, overexpression of the EAL domain protein YhjH decreased biofilm formation and increased motility.
Collapse
Affiliation(s)
- Mokhlasur Rahman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|