1
|
Mahoney BJ, Lyman LR, Ford J, Soule J, Cheung NA, Goring AK, Ellis-Guardiola K, Collazo MJ, Cascio D, Ton-That H, Schmitt MP, Clubb RT. Molecular basis of hemoglobin binding and heme removal in Corynebacterium diphtheriae. Proc Natl Acad Sci U S A 2025; 122:e2411833122. [PMID: 39739808 PMCID: PMC11725911 DOI: 10.1073/pnas.2411833122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/02/2025] Open
Abstract
To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. Corynebacterium diphtheriae causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that C. diphtheriae selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits. Quantitative growth and heme release measurements are compatible with C. diphtheriae acquiring heme passively released from hemoglobin's β subunits. We propose a model in which HbpA and heme-binding receptors collectively function on the C. diphtheriae surface to capture hemoglobin and its spontaneously released heme. Acquisition mechanisms that exploit the propensity of hemoglobin's β subunit to release heme likely represent a common strategy used by bacterial pathogens to obtain iron during infections.
Collapse
Affiliation(s)
- Brendan J. Mahoney
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Jordan Ford
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jess Soule
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Nicole A. Cheung
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| | - Andrew K. Goring
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Kat Ellis-Guardiola
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael J. Collazo
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Hung Ton-That
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA90095
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD20903
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- University of California, Los Angeles-United States Department of Energy Institute of Genomics and Proteomics, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
2
|
Araújo MRB, Prates FD, Viana MVC, Santos LS, Mattos-Guaraldi AL, Camargo CH, Sacchi CT, Campos KR, Vieira VV, Santos MBN, Bokermann S, Ramos JN, Azevedo V. Genomic analysis of two penicillin- and rifampin-resistant Corynebacterium rouxii strains isolated from cutaneous infections in dogs. Res Vet Sci 2024; 179:105396. [PMID: 39213744 DOI: 10.1016/j.rvsc.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Although diphtheria is a vaccine-preventable disease, numerous cases are still reported around the world, as well as outbreaks in countries, including European ones. Species of the Corynebacterium diphtheriae complex are potentially toxigenic and, therefore, must be considered given the possible consequences, such as the circulation of clones and transmission of antimicrobial resistance and virulence genes. Recently, Corynebacterium rouxii was characterized and included among the valid species of the complex. Therefore, two cases of C. rouxii infection arising from infections in domestic animals are presented here. We provide molecular characterization, phylogenetic analyses, genome sequencing, and CRISPR-Cas analyses to contribute to a better understanding of the molecular bases, pathogenesis, and epidemiological monitoring of this species, which is still little studied. We confirmed its taxonomic position with genome sequencing and in silico analysis and identified the ST-918 for both strains. The clinical isolates were sensitive resistance to benzylpenicillin and rifampin. Antimicrobial resistance genes, including tetB, rpoB2, and rbpA genes, were predicted. The bla and ampC genes were not found. Several virulence factors were also detected, including adhesion, iron uptake systems, gene regulation (dtxR), and post-translational modification (MdbA). Finally, one prophage and the Type I-E CRISPR-Cas system were identified.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute (Fleury Group), Av. das Nações, 2448, Santo Antônio, 33200-000 Vespasiano, MG, Brazil; Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Canário Viana
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Louisy Sanches Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Ana Luiza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, 21040-360 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Benedito Nascimento Santos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, Av. Dr. Arnaldo, 355, Cerqueira César, 01246-000 São Paulo, SP, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Av. 28 de Setembro, 87, Fundos, 3° andar, Vila Isabel, 20551-030 Rio de Janeiro, RJ, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil..
| |
Collapse
|
3
|
Araújo MRB, Prates FD, Ramos JN, Sousa EG, Bokermann S, Sacchi CT, de Mattos-Guaraldi AL, Campos KR, Sousa MÂB, Vieira VV, Santos MBN, Camargo CH, de Oliveira Sant'Anna L, Dos Santos LS, Azevedo V. Infection by a multidrug-resistant Corynebacterium diphtheriae strain: prediction of virulence factors, CRISPR-Cas system analysis, and structural implications of mutations conferring rifampin resistance. Funct Integr Genomics 2024; 24:145. [PMID: 39196424 DOI: 10.1007/s10142-024-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cases of diphtheria, even in immunized individuals, are still reported in several parts of the world, including in Brazil. New outbreaks occur in Europe and other continents. In this context, studies on Corynebacterium diphtheriae infections are highly relevant, both for a better understanding of the pathogenesis of the disease and for controlling the circulation of clones and antimicrobial resistance genes. Here we present a case of cutaneous infection by multidrug-resistant Corynebacterium diphtheriae and provide its whole-genome sequencing. Genomic analysis revealed resistance genes, including tet(W), sul1, cmx, rpoB2, rbpA and mutation in rpoB. We performed phylogenetic analyzes and used the BRIG to compare the predicted resistance genes with those found in genomes from other significant isolates, including those associated with some outbreaks. Virulence factors such as spaD, srtBC, spaH, srtDE, surface-anchored pilus proteins (sapD), nonfimbrial adhesins (DIP0733, DIP1281, and DIP1621), embC and mptC (putatively involved in CdiLAM), sigA, dtxR and MdbA (putatively involved) in post-translational modification, were detected. We identified the CRISPR-Cas system in our isolate, which was classified as Type II-U based on the database and contains 15 spacers. This system functions as an adaptive immune mechanism. The strain was attributed to a new sequence type ST-928, and phylogenetic analysis confirmed that it was related to ST-634 of C. diphtheriae strains isolated in French Guiana and Brazil. In addition, since infections are not always reported, studies with the sequence data might be a way to complement and inform C. diphtheriae surveillance.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus, Microbiology, Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Eduarda Guimarães Sousa
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Cláudio Tavares Sacchi
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Ana Luiza de Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Karoline Rodrigues Campos
- Strategic Laboratory, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | | | - Verônica Viana Vieira
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Carlos Henrique Camargo
- Center of Bacteriology, Adolfo Lutz Institute, Secretary of Health of the State of São Paulo, São Paulo, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Louisy Sanches Dos Santos
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Peng ED, Lyman LR, Schmitt MP. Identification and characterization of zinc importers in Corynebacterium diphtheriae. J Bacteriol 2024; 206:e0012424. [PMID: 38809016 PMCID: PMC11332173 DOI: 10.1128/jb.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Corynebacterium diphtheriae is the causative agent of diphtheria, a severe respiratory disease in humans. C. diphtheriae colonizes the human upper respiratory tract, where it acquires zinc, an essential metal required for survival in the host. While the mechanisms for zinc transport by C. diphtheriae are not well characterized, four putative zinc ABC-type transporter loci were recently identified in strain 1737: iutABCD/E (iut), znuACB (znu), nikABCD1 (nik1), and nikABCD2 (nik2). A mutant deleted for all four loci (Δ4) exhibited similar growth to that of the wild-type strain in a zinc-limited medium, suggesting there are additional zinc transporters. Two additional gene loci predicted to be associated with metal import, mntABCD (mnt) and sidAB (sid), were deleted in the Δ4 mutant to construct a new mutant designated Δ6. The C. diphtheriae Δ6 mutant exhibited significantly reduced growth under zinc limitation relative to the wild type, suggesting a deficiency in zinc acquisition. Strains retaining the iut, znu, mnt, or sid loci grew to near-wild-type levels in the absence of the other five loci, indicating that each of these transporters may be involved in zinc uptake. Plasmid complementation with cloned iut, znu, mnt, or nik1 loci also enhanced the growth of the Δ6 mutant. Quantification of intracellular zinc content by inductively coupled plasma mass spectrometry was consistent with reduced zinc uptake by Δ6 relative to the wild type and further supports a zinc uptake function for the transporters encoded by iut, znu, and mnt. This study demonstrates that C. diphtheriae zinc transport is complex and involves multiple zinc uptake systems.IMPORTANCEZinc is a critical nutrient for all forms of life, including human bacterial pathogens. Thus, the tools that bacteria use to acquire zinc from host sources are crucial for pathogenesis. While potential candidates for zinc importers have been identified in Corynebacterium diphtheriae from gene expression studies, to date, no study has clearly demonstrated this function for any of the putative transporters. We show that C. diphtheriae encodes at least six loci associated with zinc import, underscoring the extent of redundancy for zinc acquisition. Furthermore, we provide evidence that a previously studied manganese-regulated importer can also function in zinc import. This study builds upon our knowledge of bacterial zinc transport mechanisms and identifies potential targets for future diphtheria vaccine candidates.
Collapse
Affiliation(s)
- Eric D. Peng
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lindsey R. Lyman
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Michael P. Schmitt
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Maumela P, Magida S, Serepa-Dlamini MH. Bioremediation of Pb contaminated water using a novel Bacillus sp. strain MHSD_36 isolated from Solanum nigrum. PLoS One 2024; 19:e0302460. [PMID: 38683768 PMCID: PMC11057764 DOI: 10.1371/journal.pone.0302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
The Pb bioremediation mechanism of a multi-metal resistant endophytic bacteria Bacillus sp. strain MHSD_36, isolated from Solanum nigrum, was characterised. The strain tested positive for the presence of plant growth promoters such as indoleacetic acid, 1-aminocyclopropane-1-carboxylate deaminase, siderophores, and phosphate solubilization. The experimental data illustrated that exopolysaccharides and cell hydrophobicity played a role in Pb uptake. The data further showed that the cell wall biosorbed a significant amount (71%) of the total Pb (equivalent to 4 mg/L) removed from contaminated water, compared to the cell membrane (11%). As much as 11% of the Pb was recovered from the cytoplasmic fraction, demonstrating the ability of the strain to control the influx of toxic heavy metals into the cell and minimize their negative impacts. Pb biosorption was significantly influenced by the pH and the initial concentration of the toxic ions. Furthermore, the presence of siderophores and biosurfactants, when the strain was growing under Pb stress, was detected through liquid chromatography mass spectrometry. The strain demonstrated a multi-component based Pb biosorption mechanism and thus, has a great potential for application in heavy metal bioremediation.
Collapse
Affiliation(s)
- Pfariso Maumela
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Sinomncedi Magida
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| | - Mahloro Hope Serepa-Dlamini
- Faculty of Science, Department of Biotechnology and Food Technology, University of Johannesburg, Doornfontein Campus, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
6
|
Araújo MRB, Ramos JN, de Oliveira Sant'Anna L, Bokermann S, Santos MBN, Mattos-Guaraldi AL, Azevedo V, Prates FD, Rodrigues DLN, Aburjaile FF, Sacchi CT, Campos KR, Alvim LB, Vieira VV, Camargo CH, Dos Santos LS. Phenotypic and molecular characterization and complete genome sequence of a Corynebacterium diphtheriae strain isolated from cutaneous infection in an immunized individual. Braz J Microbiol 2023; 54:1325-1334. [PMID: 37597133 PMCID: PMC10485220 DOI: 10.1007/s42770-023-01086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/21/2023] Open
Abstract
Diphtheria is an infectious disease potentially fatal that constitutes a threat to global health security, with possible local and systemic manifestations that result mainly from the production of diphtheria toxin (DT). In the present work, we report a case of infection by Corynebacterium diphtheriae in a cutaneous lesion of a fully immunized individual and provided an analysis of the complete genome of the isolate. The clinical isolate was first identified by MALDI-TOF Mass Spectrometry. The commercial strip system and mPCR performed phenotypic and genotypic characterization, respectively. The antimicrobial susceptibility profile was determined by the disk diffusion method. Additionally, genomic DNA was sequenced and analyzed for species confirmation and sequence type (ST) determination. Detection of resistance and virulence genes was performed by comparisons against ResFinder and VFDB databases. The isolate was identified as a nontoxigenic C. diphtheriae biovar Gravis strain. Its genome presented a size of 2.46 Mbp and a G + C content of 53.5%. Ribosomal Multilocus Sequence Typing (rMLST) allowed the confirmation of species as C. diphtheriae with 100% identity. DDH in silico corroborated this identification. Moreover, MLST analyses revealed that the isolate belongs to ST-536. No resistance genes were predicted or mutations detected in antimicrobial-related genes. On the other hand, virulence genes, mostly involved in iron uptake and adherence, were found. Presently, we provided sufficient clinical data regarding the C. diphtheriae cutaneous infection in addition to the phenotypic and genomic data of the isolate. Our results indicate a possible circulation of ST-536 in Brazil, causing cutaneous infection. Considering that cases of C. diphtheriae infections, as well as diphtheria outbreaks, have still been reported in several regions of the world, studies focusing on taxonomic analyzes and predictions of resistance genes may help to improve the diagnosis and to monitor the propagation of resistant clones. In addition, they can contribute to understanding the association between variation in genetic factors and resistance to antimicrobials.
Collapse
Affiliation(s)
- Max Roberto Batista Araújo
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Juliana Nunes Ramos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lincoln de Oliveira Sant'Anna
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio Bokermann
- Center of Bacteriology, Adolfo Lutz Institute, São Paulo, São Paulo, Brazil
| | | | - Ana Luiza Mattos-Guaraldi
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Diniz Prates
- Operational Technical Nucleus (Microbiology), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Diego Lucas Neres Rodrigues
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávia Figueira Aburjaile
- Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Luige Biciati Alvim
- Operational Technical Nucleus (Research and Development), Hermes Pardini Institute, Vespasiano, Minas Gerais, Brazil
| | - Verônica Viana Vieira
- Interdisciplinary Medical Research Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Louisy Sanches Dos Santos
- Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Thakur Z, Vaid RK, Anand T, Tripathi BN. Comparative Genome Analysis of 19 Trueperella pyogenes Strains Originating from Different Animal Species Reveal a Genetically Diverse Open Pan-Genome. Antibiotics (Basel) 2022; 12:antibiotics12010024. [PMID: 36671226 PMCID: PMC9854608 DOI: 10.3390/antibiotics12010024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Trueperella pyogenes is a Gram-positive opportunistic pathogen that causes severe cases of mastitis, metritis, and pneumonia in a wide range of animals, resulting in significant economic losses. Although little is known about the virulence factors involved in the disease pathogenesis, a comprehensive comparative genome analysis of T. pyogenes genomes has not been performed till date. Hence, present investigation was carried out to characterize and compare 19 T. pyogenes genomes originating in different geographical origins including the draftgenome of the first Indian origin strain T. pyogenes Bu5. Additionally, candidate virulence determinants that could be crucial for their pathogenesis were also detected and analyzed by using various bioinformatics tools. The pan-genome calculations revealed an open pan-genome of T. pyogenes. In addition, an inventory of virulence related genes, 190 genomic islands, 31 prophage sequences, and 40 antibiotic resistance genes that could play a significant role in organism's pathogenicity were detected. The core-genome based phylogeny of T. pyogenes demonstrates a polyphyletic, host-associated group with a high degree of genomic diversity. The identified core-genome can be further used for screening of drug and vaccine targets. The investigation has provided unique insights into pan-genome, virulome, mobiliome, and resistome of T. pyogenes genomes and laid the foundation for future investigations.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Rajesh Kumar Vaid
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Correspondence:
| | - Taruna Anand
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
| | - Bhupendra Nath Tripathi
- Bacteriology Laboratory, National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar 125001, India
- Division of Animal Science, Krishi Bhavan, New Delhi 110001, India
| |
Collapse
|
8
|
Jesus HNR, Rocha DJPG, Ramos RTJ, Silva A, Brenig B, Góes-Neto A, Costa MM, Soares SC, Azevedo V, Aguiar ERGR, Martínez-Martínez L, Ocampo A, Alibi S, Dorta A, Pacheco LGC, Navas J. Pan-genomic analysis of Corynebacterium amycolatum gives insights into molecular mechanisms underpinning the transition to a pathogenic phenotype. Front Microbiol 2022; 13:1011578. [DOI: 10.3389/fmicb.2022.1011578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Corynebacterium amycolatum is a nonlipophilic coryneform which is increasingly being recognized as a relevant human and animal pathogen showing multidrug resistance to commonly used antibiotics. However, little is known about the molecular mechanisms involved in transition from colonization to the MDR invasive phenotype in clinical isolates. In this study, we performed a comprehensive pan-genomic analysis of C. amycolatum, including 26 isolates from different countries. We obtained the novel genome sequences of 8 of them, which are multidrug resistant clinical isolates from Spain and Tunisia. They were analyzed together with other 18 complete or draft C. amycolatum genomes retrieved from GenBank. The species C. amycolatum presented an open pan-genome (α = 0.854905), with 3,280 gene families, being 1,690 (51.52%) in the core genome, 1,121 related to accessory genes (34.17%), and 469 related to unique genes (14.29%). Although some classic corynebacterial virulence factors are absent in the species C. amycolatum, we did identify genes associated with immune evasion, toxin, and antiphagocytosis among the predicted putative virulence factors. Additionally, we found genomic evidence for extensive acquisition of antimicrobial resistance genes through genomic islands.
Collapse
|
9
|
Rosana Y, Lusiana DIG, Yasmon A. Genetic characterization of diphtheria tox B to evaluate vaccine efficacy in Indonesia. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:606-610. [PMID: 36721501 PMCID: PMC9867633 DOI: 10.18502/ijm.v14i4.10248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background and Objectives Blocking the attachment of diphtheria toxins to host cells through the intact receptor binding site (tox B) was the initial mechanism of action of the diphtheria vaccine. Diphtheria outbreaks in populations with good vaccination coverage can be caused by mutations or changes in the genetic structure of the tox B protein. The aim of this study was to characterize the Tox B protein produced by Corynebacterium diphtheriae isolated from 2018 to 2019 in patients in Jakarta who had already received the diphtheria vaccine. Materials and Methods Of the 89 throat swab specimens of patients with a clinical diagnosis of diphtheria, 10 were positive for diphtheria and toxin. PCR was used to amplify the tox B DNA fragment in the 10 positive isolates. DNA sequencing was conducted with overlapping primers and the DNA sequences were analysed by using SeqScape V2.7. Results Of the 10 isolates, nine isolate showed a DNA mutation (G30A), but the mutation did not change the amino acid encoding arginin (silent mutation). Our findings indicate that the efficacy of the diphtheria vaccine used in Indonesia has not decreased because of mutations in the tox B genes not change the amino acid. Conclusion Overall, there are no amino acid changes in the tox B protein, indicating that the outbreaks are not affected by mutation in tox B. Another possible mechanism - overexpression of the toxin - is likely responsible for causing diphtheria in patients who have a complete history of immunization in Indonesia.
Collapse
Affiliation(s)
- Yeva Rosana
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia,Corresponding author: Yeva Rosana, Ph.D, Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia. Telefax: +62-21-3100810
| | - Diana Intan Gabriella Lusiana
- Department of Microbiology, Master’s Programme in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Andi Yasmon
- Department of Microbiology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
10
|
Proteins from the core genome of Corynebacterium ulcerans respond for pathogenicity and reveal promising vaccine targets for diphtheria. Microb Pathog 2021; 161:105263. [PMID: 34687839 DOI: 10.1016/j.micpath.2021.105263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022]
Abstract
Corynebacterium ulcerans is an emerging pathogen able to transmit the acute infection diphtheria to humans. Although there is a well-established vaccine based on the toxin produced by Corynebacterium diphtheriae, another species of this genus known to cause the disease, there is still no vaccine formulations described for C. ulcerans; this fact contributes to the increase in cases of infection that has been observed. In this study, we want to provide information at the genomic level of this bacterium in order to suggest proteins as possible vaccine targets. We carried out an in silico prospection of vaccine candidates through reverse vaccinology for targets that exhibit antigenic potential against diphtheria. We found important virulence factors, such as adhesion-related ones, that are responsible for pathogen-host interaction after infection, but we did not find the diphtheria toxin, which is the main component of the currently available vaccine. This study provides detailed information about the exoproteome and hypothetical proteins from the core genome of C. ulcerans, suggesting vaccine targets to be further tested in vitro for the development of a new vaccine against diphtheria.
Collapse
|
11
|
Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. J Bacteriol 2021; 203:e0027421. [PMID: 34370555 DOI: 10.1128/jb.00274-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is the causative agent of a severe respiratory disease in humans. The bacterial systems required for infection are poorly understood, but the acquisition of metals such as manganese (Mn) is likely critical for host colonization. MntR is a Mn-dependent transcriptional regulator in C. diphtheriae that represses the expression of the mntABCD genes, which encode a putative ABC metal transporter. However, other targets of Mn and MntR regulation in C. diphtheriae have not been identified. In this study, we use comparisons between the gene expression profiles of wild-type C. diphtheriae strain 1737 grown without or with Mn supplementation and comparisons of gene expression between wild-type and an mntR deletion mutant to characterize the C. diphtheriae Mn and MntR regulon. MntR was observed to both repress and induce various target genes in a Mn-dependent manner. Genes induced by MntR include the Mn-superoxide dismutase, sodA, and the putative ABC transporter locus, iutABCD. DNA binding studies showed that MntR interacts with the promoter regions for several genes identified in the expression study, and a 17-bp consensus MntR DNA binding site was identified. We found that an mntR mutant displayed increased sensitivity to Mn and cadmium that could be alleviated by the additional deletion of the mntABCD transport locus, providing evidence that the MntABCD transporter functions as a Mn uptake system in C. diphtheriae. The findings in this study further our understanding of metal uptake systems and global metal regulatory networks in this important human pathogen. Importance Mechanisms for metal scavenging are critical to the survival and success of bacterial pathogens, including Corynebacterium diphtheriae. Metal import systems in pathogenic bacteria have been studied as possible vaccine components due to high conservation, critical functionality, and surface localization. In this study, we expand our understanding of the genes controlled by the global manganese regulator, MntR. We determined a role for the MntABCD transporter in manganese import using evidence from manganese and cadmium toxicity assays. Understanding the nutritional requirements of C. diphtheriae and the tools used to acquire essential metals will aid in the development of future vaccines.
Collapse
|
12
|
Parise D, Teixeira Dornelles Parise M, Pinto Gomide AC, Figueira Aburjaile F, Bentes Kato R, Salgado-Albarrán M, Tauch A, Ariston de Carvalho Azevedo V, Baumbach J. The Transcriptional Regulatory Network of Corynebacterium pseudotuberculosis. Microorganisms 2021; 9:microorganisms9020415. [PMID: 33671149 PMCID: PMC7923171 DOI: 10.3390/microorganisms9020415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022] Open
Abstract
Corynebacterium pseudotuberculosis is a Gram-positive, facultative intracellular, pathogenic bacterium that infects several different hosts, yielding serious economic losses in livestock farming. It causes several diseases including oedematous skin disease (OSD) in buffaloes, ulcerative lymphangitis (UL) in horses, and caseous lymphadenitis (CLA) in sheep, goats and humans. Despite its economic and medical-veterinary importance, our understanding concerning this organism’s transcriptional regulatory mechanisms is still limited. Here, we review the state of the art knowledge on transcriptional regulatory mechanisms of this pathogenic species, covering regulatory interactions mediated by two-component systems, transcription factors and sigma factors. Key transcriptional regulatory players involved in virulence and pathogenicity of C. pseudotuberculosis, such as the PhoPR system and DtxR, are in the focus of this review, as these regulators are promising targets for future vaccine design and drug development. We conclude that more experimental studies are needed to further understand the regulatory repertoire of this important zoonotic pathogen, and that regulators are promising targets for future vaccine design and drug development.
Collapse
Affiliation(s)
- Doglas Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
- Correspondence: or
| | - Mariana Teixeira Dornelles Parise
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Anne Cybelle Pinto Gomide
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | | | - Rodrigo Bentes Kato
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Marisol Salgado-Albarrán
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City 05348, Mexico
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany;
| | - Vasco Ariston de Carvalho Azevedo
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (A.C.P.G.); (R.B.K.); (V.A.d.C.A.)
| | - Jan Baumbach
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany; (M.T.D.P.); (M.S.-A.); (J.B.)
- Computational BioMedicine lab, Institute of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
- Chair of Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
13
|
Ribonuclease J-Mediated mRNA Turnover Modulates Cell Shape, Metabolism and Virulence in Corynebacterium diphtheriae. Microorganisms 2021; 9:microorganisms9020389. [PMID: 33672886 PMCID: PMC7917786 DOI: 10.3390/microorganisms9020389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Controlled RNA degradation is a crucial process in bacterial cell biology for maintaining proper transcriptome homeostasis and adaptation to changing environments. mRNA turnover in many Gram-positive bacteria involves a specialized ribonuclease called RNase J (RnJ). To date, however, nothing is known about this process in the diphtheria-causative pathogen Corynebacterium diphtheriae, nor is known the identity of this ribonuclease in this organism. Here, we report that C. diphtheriae DIP1463 encodes a predicted RnJ homolog, comprised of a conserved N-terminal β-lactamase domain, followed by β-CASP and C-terminal domains. A recombinant protein encompassing the β-lactamase domain alone displays 5'-exoribonuclease activity, which is abolished by alanine-substitution of the conserved catalytic residues His186 and His188. Intriguingly, deletion of DIP1463/rnj in C. diphtheriae reduces bacterial growth and generates cell shape abnormality with markedly augmented cell width. Comparative RNA-seq analysis revealed that RnJ controls a large regulon encoding many factors predicted to be involved in biosynthesis, regulation, transport, and iron acquisition. One upregulated gene in the ∆rnj mutant is ftsH, coding for a membrane protease (FtsH) involved in cell division, whose overexpression in the wild-type strain also caused cell-width augmentation. Critically, the ∆rnj mutant is severely attenuated in virulence in a Caenorhabditis elegans model of infection, while the FtsH-overexpressing and toxin-less strains exhibit full virulence as the wild-type strain. Evidently, RNase J is a key ribonuclease in C. diphtheriae that post-transcriptionally influences the expression of numerous factors vital to corynebacterial cell physiology and virulence. Our findings have significant implications for basic biological processes and mechanisms of corynebacterial pathogenesis.
Collapse
|
14
|
Xiaoli L, Benoliel E, Peng Y, Aneke J, Cassiday PK, Kay M, McKeirnan S, Duchin JS, Kawakami V, Lindquist S, Acosta AM, DeBolt C, Tondella ML, Weigand MR. Genomic epidemiology of nontoxigenic Corynebacterium diphtheriae from King County, Washington State, USA between July 2018 and May 2019. Microb Genom 2020; 6. [PMID: 33275088 PMCID: PMC8116682 DOI: 10.1099/mgen.0.000467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Between July 2018 and May 2019, Corynebacterium diphtheriae was isolated from eight patients with non-respiratory infections, seven of whom experienced homelessness and had stayed at shelters in King County, WA, USA. All isolates were microbiologically identified as nontoxigenic C. diphtheriae biovar mitis. Whole-genome sequencing confirmed that all case isolates were genetically related, associated with sequence type 445 and differing by fewer than 24 single-nucleotide polymorphisms (SNPs). Compared to publicly available C. diphtheriae genomic data, these WA isolates formed a discrete cluster with SNP variation consistent with previously reported outbreaks. Virulence-related gene content variation within the highly related WA cluster isolates was also observed. These results indicated that genome characterization can readily support epidemiology of nontoxigenic C. diphtheriae.
Collapse
Affiliation(s)
| | | | - Yanhui Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Pamela K Cassiday
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Meagan Kay
- Public Health Seattle and King County, Seattle, WA, USA
| | | | | | | | | | - Anna M Acosta
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chas DeBolt
- Washington State Department of Health, Shoreline, WA, USA
| | - Maria Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael R Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
15
|
Sharma NC, Efstratiou A, Mokrousov I, Mutreja A, Das B, Ramamurthy T. Diphtheria. Nat Rev Dis Primers 2019; 5:81. [PMID: 31804499 DOI: 10.1038/s41572-019-0131-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 01/09/2023]
Abstract
Diphtheria is a potentially fatal infection mostly caused by toxigenic Corynebacterium diphtheriae strains and occasionally by toxigenic C. ulcerans and C. pseudotuberculosis strains. Diphtheria is generally an acute respiratory infection, characterized by the formation of a pseudomembrane in the throat, but cutaneous infections are possible. Systemic effects, such as myocarditis and neuropathy, which are associated with increased fatality risk, are due to diphtheria toxin, an exotoxin produced by the pathogen that inhibits protein synthesis and causes cell death. Clinical diagnosis is confirmed by the isolation and identification of the causative Corynebacterium spp., usually by bacterial culture followed by enzymatic and toxin detection tests. Diphtheria can be treated with the timely administration of diphtheria antitoxin and antimicrobial therapy. Although effective vaccines are available, this disease has the potential to re-emerge in countries where the recommended vaccination programmes are not sustained, and increasing proportions of adults are becoming susceptible to diphtheria. Thousands of diphtheria cases are still reported annually from several countries in Asia and Africa, along with many outbreaks. Changes in the epidemiology of diphtheria have been reported worldwide. The prevalence of toxigenic Corynebacterium spp. highlights the need for proper clinical and epidemiological investigations to quickly identify and treat affected individuals, along with public health measures to prevent and contain the spread of this disease.
Collapse
Affiliation(s)
- Naresh Chand Sharma
- Laboratory Department, Maharishi Valmiki Infectious Diseases Hospital, Delhi, India
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, Reference Microbiology Division, Public Health England, London, UK
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, St. Petersburg, Russia
| | - Ankur Mutreja
- Global Health-Infectious Diseases, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Bhabatosh Das
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Thandavarayan Ramamurthy
- Infection and Immunology Division, Translational Health Science and Technology Institute, Faridabad, India.
| |
Collapse
|
16
|
Ibraim IC, Parise MTD, Parise D, Sfeir MZT, de Paula Castro TL, Wattam AR, Ghosh P, Barh D, Souza EM, Góes-Neto A, Gomide ACP, Azevedo V. Transcriptome profile of Corynebacterium pseudotuberculosis in response to iron limitation. BMC Genomics 2019; 20:663. [PMID: 31429699 PMCID: PMC6701010 DOI: 10.1186/s12864-019-6018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Iron is an essential micronutrient for the growth and development of virtually all living organisms, playing a pivotal role in the proliferative capability of many bacterial pathogens. The impact that the bioavailability of iron has on the transcriptional response of bacterial species in the CMNR group has been widely reported for some members of the group, but it hasn't yet been as deeply explored in Corynebacterium pseudotuberculosis. Here we describe for the first time a comprehensive RNA-seq whole transcriptome analysis of the T1 wild-type and the Cp13 mutant strains of C. pseudotuberculosis under iron restriction. The Cp13 mutant strain was generated by transposition mutagenesis of the ciuA gene, which encodes a surface siderophore-binding protein involved in the acquisition of iron. Iron-regulated acquisition systems are crucial for the pathogenesis of bacteria and are relevant targets to the design of new effective therapeutic approaches. RESULTS Transcriptome analyses showed differential expression in 77 genes within the wild-type parental T1 strain and 59 genes in Cp13 mutant under iron restriction. Twenty-five of these genes had similar expression patterns in both strains, including up-regulated genes homologous to the hemin uptake hmu locus and two distinct operons encoding proteins structurally like hemin and Hb-binding surface proteins of C. diphtheriae, which were remarkably expressed at higher levels in the Cp13 mutant than in the T1 wild-type strain. These hemin transport protein genes were found to be located within genomic islands associated with known virulent factors. Down-regulated genes encoding iron and heme-containing components of the respiratory chain (including ctaCEF and qcrCAB genes) and up-regulated known iron/DtxR-regulated transcription factors, namely ripA and hrrA, were also identified differentially expressed in both strains under iron restriction. CONCLUSION Based on our results, it can be deduced that the transcriptional response of C. pseudotuberculosis under iron restriction involves the control of intracellular utilization of iron and the up-regulation of hemin acquisition systems. These findings provide a comprehensive analysis of the transcriptional response of C. pseudotuberculosis, adding important understanding of the gene regulatory adaptation of this pathogen and revealing target genes that can aid the development of effective therapeutic strategies against this important pathogen.
Collapse
Affiliation(s)
- Izabela Coimbra Ibraim
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana Teixeira Dornelles Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Doglas Parise
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Thiago Luiz de Paula Castro
- Departamento de Biointeração, Instituto de Ciências da Saude, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Alice Rebecca Wattam
- Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA
| | - Preetam Ghosh
- Department of Computer Science, Biological Networks Lab, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Emannuel Maltempi Souza
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270-901, Brazil
| | - Anne Cybelle Pinto Gomide
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vasco Azevedo
- Laboratório de Genética Molecular e Celular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
17
|
Competition among Nasal Bacteria Suggests a Role for Siderophore-Mediated Interactions in Shaping the Human Nasal Microbiota. Appl Environ Microbiol 2019; 85:AEM.02406-18. [PMID: 30578265 DOI: 10.1128/aem.02406-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/14/2018] [Indexed: 12/26/2022] Open
Abstract
Resources available in the human nasal cavity are limited. Therefore, to successfully colonize the nasal cavity, bacteria must compete for scarce nutrients. Competition may occur directly through interference (e.g., antibiotics) or indirectly by nutrient sequestration. To investigate the nature of nasal bacterial competition, we performed coculture inhibition assays between nasal Actinobacteria and Staphylococcus spp. We found that isolates of coagulase-negative staphylococci (CoNS) were sensitive to growth inhibition by Actinobacteria but that Staphylococcus aureus isolates were resistant to inhibition. Among Actinobacteria, we observed that Corynebacterium spp. were variable in their ability to inhibit CoNS. We sequenced the genomes of 10 Corynebacterium species isolates, including 3 Corynebacterium propinquum isolates that strongly inhibited CoNS and 7 other Corynebacterium species isolates that only weakly inhibited CoNS. Using a comparative genomics approach, we found that the C. propinquum genomes were enriched in genes for iron acquisition and harbored a biosynthetic gene cluster (BGC) for siderophore production, absent in the noninhibitory Corynebacterium species genomes. Using a chrome azurol S assay, we confirmed that C. propinquum produced siderophores. We demonstrated that iron supplementation rescued CoNS from inhibition by C. propinquum, suggesting that inhibition was due to iron restriction through siderophore production. Through comparative metabolomics and molecular networking, we identified the siderophore produced by C. propinquum as dehydroxynocardamine. Finally, we confirmed that the dehydroxynocardamine BGC is expressed in vivo by analyzing human nasal metatranscriptomes from the NIH Human Microbiome Project. Together, our results suggest that bacteria produce siderophores to compete for limited available iron in the nasal cavity and improve their fitness.IMPORTANCE Within the nasal cavity, interference competition through antimicrobial production is prevalent. For instance, nasal Staphylococcus species strains can inhibit the growth of other bacteria through the production of nonribosomal peptides and ribosomally synthesized and posttranslationally modified peptides. In contrast, bacteria engaging in exploitation competition modify the external environment to prevent competitors from growing, usually by hindering access to or depleting essential nutrients. As the nasal cavity is a nutrient-limited environment, we hypothesized that exploitation competition occurs in this system. We determined that Corynebacterium propinquum produces an iron-chelating siderophore, and this iron-sequestering molecule correlates with the ability to inhibit the growth of coagulase-negative staphylococci. Furthermore, we found that the genes required for siderophore production are expressed in vivo Thus, although siderophore production by bacteria is often considered a virulence trait, our work indicates that bacteria may produce siderophores to compete for limited iron in the human nasal cavity.
Collapse
|
18
|
Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. J Bacteriol 2018; 200:JB.00051-18. [PMID: 29507090 DOI: 10.1128/jb.00051-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, a Gram-positive, aerobic bacterium, is the causative agent of diphtheria and cutaneous infections. While mechanisms required for heme iron acquisition are well known in C. diphtheriae, systems involved in the acquisition of other metals such as zinc and manganese remain poorly characterized. In this study, we identified a genetic region that encodes an ABC-type transporter (iutBCD) and that is flanked by two genes (iutA and iutE) encoding putative substrate binding proteins of the cluster 9 family, a related group of transporters associated primarily with the import of Mn and Zn. We showed that IutA and IutE are both membrane proteins with comparable Mn and Zn binding abilities. We demonstrated that the iutABCD genes are cotranscribed and repressed in response to iron by the iron-responsive repressor DtxR. Transcription of iutE was positively regulated in response to iron availability in a DtxR-dependent manner and was repressed in response to Zn by the Zn-dependent repressor Zur. Electrophoretic mobility shift assays showed that DtxR does not bind to the iutE upstream region, which indicates that DtxR regulation of iutE is indirect and that other regulatory factors controlled by DtxR are likely responsible for the iron-responsive regulation. Analysis of the iutE promoter region identified a 50-bp sequence at the 3' end of the iutD gene that is required for the DtxR-dependent and iron-responsive activation of the iutE gene. These findings indicate that transcription of iutE is controlled by a complex mechanism that involves multiple regulatory factors whose activity is impacted by both Zn and Fe.IMPORTANCE Vaccination against diphtheria prevents toxin-related symptoms but does not inhibit bacterial colonization of the human host by the bacterium. Thus, Corynebacterium diphtheriae remains an important human pathogen that poses a significant health risk to unvaccinated individuals. The ability to acquire iron, zinc, and manganese is critical to the pathogenesis of many disease-causing organisms. Here, we describe a gene cluster in C. diphtheriae that encodes a metal importer that is homologous to broadly distributed metal transport systems, some with important roles in virulence in other bacterial pathogens. Two metal binding components of the gene cluster encode surface exposed proteins, and studies of such proteins may guide the development of second-generation vaccines for C. diphtheriae.
Collapse
|
19
|
Bailey DC, Alexander E, Rice MR, Drake EJ, Mydy LS, Aldrich CC, Gulick AM. Structural and functional delineation of aerobactin biosynthesis in hypervirulent Klebsiella pneumoniae. J Biol Chem 2018; 293:7841-7852. [PMID: 29618511 DOI: 10.1074/jbc.ra118.002798] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/30/2018] [Indexed: 12/17/2022] Open
Abstract
Aerobactin, a citryl-hydroxamate siderophore, is produced by a number of pathogenic Gram-negative bacteria to aid in iron assimilation. Interest in this well-known siderophore was reignited by recent investigations suggesting that it plays a key role in mediating the enhanced virulence of a hypervirulent pathotype of Klebsiella pneumoniae (hvKP). In contrast to classical opportunistic strains of K. pneumoniae, hvKP causes serious life-threatening infections in previously healthy individuals in the community. Multiple contemporary reports have confirmed fears that the convergence of multidrug-resistant and hvKP pathotypes has led to the evolution of a highly transmissible, drug-resistant, and virulent "super bug." Despite hvKP harboring four distinct siderophore operons, knocking out production of only aerobactin led to a significant attenuation of virulence. Herein, we continue our structural and functional studies on the biosynthesis of this crucial virulence factor. In vivo heterologous production and in vitro reconstitution of aerobactin biosynthesis from hvKP was carried out, demonstrating the specificity, stereoselectivity, and kinetic throughput of the complete pathway. Additionally, we present a steady-state kinetic analysis and the X-ray crystal structure of the second aerobactin synthetase IucC, as well as describe a surface entropy reduction strategy that was employed for structure determination. Finally, we show solution X-ray scattering data that support a unique dimeric quaternary structure for IucC. These new insights into aerobactin assembly will help inform potential antivirulence strategies and advance our understanding of siderophore biosynthesis.
Collapse
Affiliation(s)
- Daniel C Bailey
- From the Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York, Buffalo, New York 14203.,the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, and
| | - Evan Alexander
- the Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Matthew R Rice
- the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, and
| | - Eric J Drake
- From the Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York, Buffalo, New York 14203.,the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, and
| | - Lisa S Mydy
- From the Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York, Buffalo, New York 14203.,the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, and
| | - Courtney C Aldrich
- the Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Andrew M Gulick
- From the Department of Structural Biology, The Jacobs School of Medicine & Biomedical Sciences, State University of New York, Buffalo, New York 14203, .,the Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, and
| |
Collapse
|
20
|
Wittchen M, Busche T, Gaspar AH, Lee JH, Ton-That H, Kalinowski J, Tauch A. Transcriptome sequencing of the human pathogen Corynebacterium diphtheriae NCTC 13129 provides detailed insights into its transcriptional landscape and into DtxR-mediated transcriptional regulation. BMC Genomics 2018; 19:82. [PMID: 29370758 PMCID: PMC5784534 DOI: 10.1186/s12864-018-4481-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/16/2018] [Indexed: 12/27/2022] Open
Abstract
Background The human pathogen Corynebacterium diphtheriae is the causative agent of diphtheria. In the 1990s a large diphtheria outbreak in Eastern Europe was caused by the strain C. diphtheriae NCTC 13129. Although the genome was sequenced more than a decade ago, not much is known about its transcriptome. Our aim was to use transcriptome sequencing (RNA-Seq) to close this knowledge gap and gain insights into the transcriptional landscape of a C. diphtheriae tox+ strain. Results We applied two different RNA-Seq techniques, one to retrieve 5′-ends of primary transcripts and the other to characterize the whole transcriptional landscape in order to gain insights into various features of the C. diphtheriae NCTC 13129 transcriptome. By examining the data we identified 1656 transcription start sites (TSS), of which 1202 were assigned to genes and 454 to putative novel transcripts. By using the TSS data promoter regions recognized by the housekeeping sigma factor σA and its motifs were analyzed in detail, revealing a well conserved −10 but an only weakly conserved −35 motif, respectively. Furthermore, with the TSS data 5’-UTR lengths were explored. The observed 5’-UTRs range from zero length (leaderless transcripts), which make up 20% of all genes, up to over 450 nt long leaders, which may harbor regulatory functions. The C. diphtheriae transcriptome consists of 471 operons which are further divided into 167 sub-operon structures. In a differential expression analysis approach, we discovered that genetic disruption of the iron-sensing transcription regulator DtxR, which controls expression of diphtheria toxin (DT), causes a strong influence on general gene expression. Nearly 15% of the genome is differentially transcribed, indicating that DtxR might have other regulatory functions in addition to regulation of iron metabolism and DT. Furthermore, our findings shed light on the transcriptional landscape of the DT encoding gene tox and present evidence for two tox antisense RNAs, which point to a new way of transcriptional regulation of toxin production. Conclusions This study presents extensive insights into the transcriptome of C. diphtheriae and provides a basis for future studies regarding gene characterization, transcriptional regulatory networks, and regulation of the tox gene in particular. Electronic supplementary material The online version of this article (10.1186/s12864-018-4481-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Wittchen
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.,Institute for Biology-Microbiology, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Andrew H Gaspar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Ju Huck Lee
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, USA.,Present address: Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeollabuk-do, 56212, Republic of Korea
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, USA
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| | - Andreas Tauch
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
21
|
Pokorzynski ND, Thompson CC, Carabeo RA. Ironing Out the Unconventional Mechanisms of Iron Acquisition and Gene Regulation in Chlamydia. Front Cell Infect Microbiol 2017; 7:394. [PMID: 28951853 PMCID: PMC5599777 DOI: 10.3389/fcimb.2017.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/19/2023] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis, along with its close species relatives, is known to be strictly dependent upon the availability of iron. Deprivation of iron in vitro induces an aberrant morphological phenotype termed "persistence." This persistent phenotype develops in response to various immunological and nutritional insults and may contribute to the development of sub-acute Chlamydia-associated chronic diseases in susceptible populations. Given the importance of iron to Chlamydia, relatively little is understood about its acquisition and its role in gene regulation in comparison to other iron-dependent bacteria. Analysis of the genome sequences of a variety of chlamydial species hinted at the involvement of unconventional mechanisms, being that Chlamydia lack many conventional systems of iron homeostasis that are highly conserved in other bacteria. Herein we detail past and current research regarding chlamydial iron biology in an attempt to provide context to the rapid progress of the field in recent years. We aim to highlight recent discoveries and innovations that illuminate the strategies involved in chlamydial iron homeostasis, including the vesicular mode of acquiring iron from the intracellular environment, and the identification of a putative iron-dependent transcriptional regulator that is synthesized as a fusion with a ABC-type transporter subunit. These recent findings, along with the noted absence of iron-related homologs, indicate that Chlamydia have evolved atypical approaches to the problem of iron homeostasis, reinvigorating research into the iron biology of this pathogen.
Collapse
Affiliation(s)
- Nick D Pokorzynski
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| | - Christopher C Thompson
- Jefferiss Trust Laboratories, Faculty of Medicine, Imperial College London, St. Mary's HospitalLondon, United Kingdom
| | - Rey A Carabeo
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State UniversityPullman, WA, United States
| |
Collapse
|
22
|
Silva WM, Carvalho RDDO, Dorella FA, Folador EL, Souza GHMF, Pimenta AMC, Figueiredo HCP, Le Loir Y, Silva A, Azevedo V. Quantitative Proteomic Analysis Reveals Changes in the Benchmark Corynebacterium pseudotuberculosis Biovar Equi Exoproteome after Passage in a Murine Host. Front Cell Infect Microbiol 2017; 7:325. [PMID: 28791255 PMCID: PMC5524672 DOI: 10.3389/fcimb.2017.00325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium pseudotuberculosis biovar equi is the etiologic agent of ulcerative lymphangitis. To investigate proteins that could be related to the virulence of this pathogen, we combined an experimental passage process using a murine model and high-throughput proteomics with a mass spectrometry, data-independent acquisition (LC-MSE) approach to identify and quantify the proteins released into the supernatants of strain 258_equi. To our knowledge, this approach allowed characterization of the exoproteome of a C. pseudotuberculosis equi strain for the first time. Interestingly, the recovery of this strain from infected mouse spleens induced a change in its virulence potential, and it became more virulent in a second infection challenge. Proteomic screening performed from culture supernatant of the control and recovered conditions revealed 104 proteins that were differentially expressed between the two conditions. In this context, proteomic analysis of the recovered condition detected the induction of proteins involved in bacterial pathogenesis, mainly related to iron uptake. In addition, KEGG enrichment analysis showed that ABC transporters, bacterial secretion systems and protein export pathways were significantly altered in the recovered condition. These findings show that secretion and secreted proteins are key elements in the virulence and adaptation of C. pseudotuberculosis. Collectively, bacterial pathogenesis-related proteins were identified that contribute to the processes of adherence, intracellular growth and evasion of the immune system. Moreover, this study enhances our understanding of the factors that may influence the pathogenesis of C. pseudotuberculosis.
Collapse
Affiliation(s)
- Wanderson M Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil.,Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France.,Agrocampus Ouest, UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France
| | - Rodrigo D De Oliveira Carvalho
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Fernanda A Dorella
- Escola de Veterinária, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Edson L Folador
- Centro de Biotecnologia, Universidade Federal da ParaíbaJoão Pessoa, Brazil
| | - Gustavo H M F Souza
- Waters Corporation, Waters Technologies Brazil, MS Applications LaboratorySão Paulo, Brazil
| | - Adriano M C Pimenta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | | | - Yves Le Loir
- Institut National de la Recherche Agronomique (INRA), UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France.,Agrocampus Ouest, UMR1253 Science & Technologie du Lait & de l'Oeuf (STLO)Rennes, France
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do ParáBelém, Brazil
| | - Vasco Azevedo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| |
Collapse
|
23
|
Folador EL, de Carvalho PVSD, Silva WM, Ferreira RS, Silva A, Gromiha M, Ghosh P, Barh D, Azevedo V, Röttger R. In silico identification of essential proteins in Corynebacterium pseudotuberculosis based on protein-protein interaction networks. BMC SYSTEMS BIOLOGY 2016; 10:103. [PMID: 27814699 PMCID: PMC5097352 DOI: 10.1186/s12918-016-0346-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022]
Abstract
Background Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Results Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. Conclusions The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis. Electronic supplementary material The online version of this article (doi:10.1186/s12918-016-0346-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edson Luiz Folador
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.,Biotechnology Center (CBiotec), Federal University of Paraiba (UFPB), João Pessoa, Brazil
| | - Paulo Vinícius Sanches Daltro de Carvalho
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil.,Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Wanderson Marques Silva
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Salgado Ferreira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Michael Gromiha
- Department of Biotechnology, Indian Institute of Technology (IIT) Madras, Tamilnadu, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India
| | - Vasco Azevedo
- Department of General Biology, Instituto de Ciências Biológicas (ICB), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Richard Röttger
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
24
|
Choby JE, Skaar EP. Heme Synthesis and Acquisition in Bacterial Pathogens. J Mol Biol 2016; 428:3408-28. [PMID: 27019298 PMCID: PMC5125930 DOI: 10.1016/j.jmb.2016.03.018] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens require the iron-containing cofactor heme to cause disease. Heme is essential to the function of hemoproteins, which are involved in energy generation by the electron transport chain, detoxification of host immune effectors, and other processes. During infection, bacterial pathogens must synthesize heme or acquire heme from the host; however, host heme is sequestered in high-affinity hemoproteins. Pathogens have evolved elaborate strategies to acquire heme from host sources, particularly hemoglobin, and both heme acquisition and synthesis are important for pathogenesis. Paradoxically, excess heme is toxic to bacteria and pathogens must rely on heme detoxification strategies. Heme is a key nutrient in the struggle for survival between host and pathogen, and its study has offered significant insight into the molecular mechanisms of bacterial pathogenesis.
Collapse
Affiliation(s)
- Jacob E Choby
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, & Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Tennessee Valley Healthcare System, U.S. Department of Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
25
|
Mulé MP, Giacalone D, Lawlor K, Golden A, Cook C, Lott T, Aksten E, O'Toole GA, Bergeron LJ. Iron-dependent gene expression in Actinomyces oris. J Oral Microbiol 2015; 7:29800. [PMID: 26685151 PMCID: PMC4684579 DOI: 10.3402/jom.v7.29800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 11/21/2022] Open
Abstract
Background Actinomyces oris is a Gram-positive bacterium that has been associated with healthy and diseased sites in the human oral cavity. Most pathogenic bacteria require iron to survive, and in order to acquire iron in the relatively iron-scarce oral cavity A. oris has been shown to produce iron-binding molecules known as siderophores. The genes encoding these siderophores and transporters are thought to be regulated by the amount of iron in the growth medium and by the metal-dependent repressor, AmdR, which we showed previously binds to the promoter of proposed iron-regulated genes. Objective The purpose of this study was to characterize siderophore and associated iron transport systems in A. oris.
Design We examined gene expression of the putative iron transport genes fetA and sidD in response to low- and high-iron environments. One of these genes, sidD, encoding a putative Fe ABC transporter protein, was insertionally inactivated and was examined for causing growth defects. To gain a further understanding of the role of iron metabolism in oral diseases, clinical isolates of Actinomyces spp. were examined for the presence of the gene encoding AmdR, a proposed global regulator of iron-dependent gene expression in A. oris.
Results When A. oris was grown under iron-limiting conditions, the genes encoding iron/siderophore transporters fetA and sidD showed increased expression. One of these genes (sidD) was mutated, and the sidD::Km strain exhibited a 50% reduction in growth in late log and stationary phase cells in media that contained iron. This growth defect was restored when the sidD gene was provided in a complemented strain. We were able to isolate the AmdR-encoding gene in seven clinical isolates of Actinomyces. When these protein sequences were aligned to the laboratory strain, there was a high degree of sequence similarity. Conclusions The growth of the sidD::Km mutant in iron-replete medium mirrored the growth of the wild-type strain grown in iron-limiting medium, suggesting that the sidD::Km mutant was compromised in iron uptake. The known iron regulator AmdR is well conserved in clinical isolates of A. oris. This work provides additional insight into iron metabolism in this important oral microbe.
Collapse
Affiliation(s)
- Matthew P Mulé
- Department of Biology, New England College, Henniker, NH, USA
| | - David Giacalone
- Department of Biology, New England College, Henniker, NH, USA
| | - Kayla Lawlor
- Department of Biology, New England College, Henniker, NH, USA
| | - Alexa Golden
- Department of Biology, New England College, Henniker, NH, USA
| | - Caroline Cook
- Department of Biology, New England College, Henniker, NH, USA
| | - Thomas Lott
- Department of Biology, New England College, Henniker, NH, USA
| | | | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lori J Bergeron
- Department of Biology, New England College, Henniker, NH, USA;
| |
Collapse
|
26
|
Sheldon JR, Heinrichs DE. Recent developments in understanding the iron acquisition strategies of gram positive pathogens. FEMS Microbiol Rev 2015; 39:592-630. [DOI: 10.1093/femsre/fuv009] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 12/26/2022] Open
|
27
|
Utilization of host iron sources by Corynebacterium diphtheriae: multiple hemoglobin-binding proteins are essential for the use of iron from the hemoglobin-haptoglobin complex. J Bacteriol 2014; 197:553-62. [PMID: 25404705 DOI: 10.1128/jb.02413-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The use of hemin iron by Corynebacterium diphtheriae requires the DtxR- and iron-regulated ABC hemin transporter HmuTUV and the secreted Hb-binding protein HtaA. We recently described two surface anchored proteins, ChtA and ChtC, which also bind hemin and Hb. ChtA and ChtC share structural similarities to HtaA; however, a function for ChtA and ChtC was not determined. In this study, we identified additional host iron sources that are utilized by C. diphtheriae. We show that several C. diphtheriae strains use the hemoglobin-haptoglobin (Hb-Hp) complex as an iron source. We report that an htaA deletion mutant of C. diphtheriae strain 1737 is unable to use the Hb-Hp complex as an iron source, and we further demonstrate that a chtA-chtC double mutant is also unable to use Hb-Hp iron. Single-deletion mutants of chtA or chtC use Hb-Hp iron in a manner similar to that of the wild type. These findings suggest that both HtaA and either ChtA or ChtC are essential for the use of Hb-Hp iron. Enzyme-linked immunosorbent assay (ELISA) studies show that HtaA binds the Hb-Hp complex, and the substitution of a conserved tyrosine (Y361) for alanine in HtaA results in significantly reduced binding. C. diphtheriae was also able to use human serum albumin (HSA) and myoglobin (Mb) but not hemopexin as iron sources. These studies identify a biological function for the ChtA and ChtC proteins and demonstrate that the use of the Hb-Hp complex as an iron source by C. diphtheriae requires multiple iron-regulated surface components.
Collapse
|
28
|
Analysis of novel iron-regulated, surface-anchored hemin-binding proteins in Corynebacterium diphtheriae. J Bacteriol 2013; 195:2852-63. [PMID: 23585541 DOI: 10.1128/jb.00244-13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corynebacterium diphtheriae utilizes hemin and hemoglobin (Hb) as iron sources during growth in iron-depleted environments, and recent studies have shown that the surface-exposed HtaA protein binds both hemin and Hb and also contributes to the utilization of hemin iron. Conserved (CR) domains within HtaA and in the associated hemin-binding protein, HtaB, are required for the ability to bind hemin and Hb. In this study, we identified and characterized two novel genetic loci in C. diphtheriae that encode factors that bind hemin and Hb. Both genetic systems contain two-gene operons that are transcriptionally regulated by DtxR and iron. The gene products of these operons are ChtA-ChtB and ChtC-CirA (previously DIP0522-DIP0523). The chtA and chtB genes are carried on a putative composite transposon associated with C. diphtheriae isolates that dominated the diphtheria outbreak in the former Soviet Union in the 1990s. ChtA and ChtC each contain a single N-terminal CR domain and exhibit significant sequence similarity to each other but only limited similarity with HtaA. The chtB and htaB gene products exhibited a high level of sequence similarity throughout their sequences, and both proteins contain a single CR domain. Whole-cell binding studies as well as protease analysis indicated that all four of the proteins encoded by these two operons are surface exposed, which is consistent with the presence of a transmembrane segment in their C-terminal regions. ChtA, ChtB, and ChtC are able to bind hemin and Hb, with ChtA showing the highest affinity. Site-directed mutagenesis showed that specific tyrosine residues within the ChtA CR domain were critical for hemin and Hb binding. Hemin iron utilization assays using various C. diphtheriae mutants indicate that deletion of the chtA-chtB region and the chtC gene has no affect on the ability of C. diphtheriae to use hemin or Hb as iron sources; however, a chtB htaB double mutant exhibits a significant decrease in hemin iron use, indicating a role in hemin transport for HtaB and ChtB.
Collapse
|
29
|
Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae. PLoS One 2012; 7:e34591. [PMID: 22514641 PMCID: PMC3326035 DOI: 10.1371/journal.pone.0034591] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/02/2012] [Indexed: 12/31/2022] Open
Abstract
During infection, Corynebacterium diphtheriae must compete with host iron-sequestering mechanisms for iron. C. diphtheriae can acquire iron by a siderophore-dependent iron-uptake pathway, by uptake and degradation of heme, or both. Previous studies showed that production of siderophore (corynebactin) by C. diphtheriae is repressed under high-iron growth conditions by the iron-activated diphtheria toxin repressor (DtxR) and that partially purified corynebactin fails to react in chemical assays for catecholate or hydroxamate compounds. In this study, we purified corynebactin from supernatants of low-iron cultures of the siderophore-overproducing, DtxR-negative mutant strain C. diphtheriae C7(β) ΔdtxR by sequential anion-exchange chromatography on AG1-X2 and Source 15Q resins, followed by reverse-phase high-performance liquid chromatography (RP-HPLC) on Zorbax C8 resin. The Chrome Azurol S (CAS) chemical assay for siderophores was used to detect and measure corynebactin during purification, and the biological activity of purified corynebactin was shown by its ability to promote growth and iron uptake in siderophore-deficient mutant strains of C. diphtheriae under iron-limiting conditions. Mass spectrometry and NMR analysis demonstrated that corynebactin has a novel structure, consisting of a central lysine residue linked through its α- and ε- amino groups by amide bonds to the terminal carboxyl groups of two different citrate residues. Corynebactin from C. diphtheriae is structurally related to staphyloferrin A from Staphylococcus aureus and rhizoferrin from Rhizopus microsporus in which d-ornithine or 1,4-diaminobutane, respectively, replaces the central lysine residue that is present in corynebactin.
Collapse
|
30
|
Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012; 194:3199-215. [PMID: 22505676 DOI: 10.1128/jb.00183-12] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.
Collapse
|
31
|
Novel hemin binding domains in the Corynebacterium diphtheriae HtaA protein interact with hemoglobin and are critical for heme iron utilization by HtaA. J Bacteriol 2011; 193:5374-85. [PMID: 21803991 DOI: 10.1128/jb.05508-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Corynebacterium diphtheriae utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. The use of hemin iron in C. diphtheriae involves the dtxR- and iron-regulated hmu hemin uptake locus, which encodes an ABC hemin transporter, and the surface-anchored hemin binding proteins HtaA and HtaB. Sequence analysis of HtaA and HtaB identified a conserved region (CR) of approximately 150 amino acids that is duplicated in HtaA and present in a single copy in HtaB. The two conserved regions in HtaA, designated CR1 and CR2, were used to construct glutathione S-transferase (GST) fusion proteins (GST-CR1 and GST-CR2) to assess hemin binding by UV-visual spectroscopy. These studies showed that both domains were able to bind hemin, suggesting that the conserved sequences are responsible for the hemin binding property previously ascribed to HtaA. HtaA and the CR2 domain were also shown to be able to bind hemoglobin (Hb) by the use of an enzyme-linked immunosorbent assay (ELISA) method in which Hb was immobilized on a microtiter plate. The CR1 domain exhibited a weak interaction with Hb in the ELISA system, while HtaB showed no significant binding to Hb. Competitive binding studies demonstrated that soluble hemin and Hb were able to inhibit the binding of HtaA and the CR domains to immobilized Hb. Moreover, HtaA was unable to bind to Hb from which the hemin had been chemically removed. Alignment of the amino acid sequences of CR domains from various Corynebacterium species revealed several conserved residues, including two highly conserved tyrosine (Y) residues and one histidine (H) residue. Site-directed mutagenesis studies showed that Y361 and H412 were critical for the binding to hemin and Hb by the CR2 domain. Biological assays showed that Y361 was essential for the hemin iron utilization function of HtaA. Hemin transfer experiments demonstrated that HtaA was able to acquire hemin from Hb and that hemin bound to HtaA could be transferred to HtaB. These findings are consistent with a proposed mechanism of hemin uptake in C. diphtheriae in which hemin is initially obtained from Hb by HtaA and then transferred between surface-anchored proteins, with hemin ultimately transported into the cytosol by an ABC transporter.
Collapse
|
32
|
Cornelis P, Wei Q, Andrews SC, Vinckx T. Iron homeostasis and management of oxidative stress response in bacteria. Metallomics 2011; 3:540-9. [PMID: 21566833 DOI: 10.1039/c1mt00022e] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Iron is both an essential nutrient for the growth of microorganisms, as well as a dangerous metal due to its capacity to generate reactive oxygen species (ROS) via the Fenton reaction. For these reasons, bacteria must tightly control the uptake and storage of iron in a manner that restricts the build-up of ROS. Therefore, it is not surprising to find that the control of iron homeostasis and responses to oxidative stress are coordinated. The mechanisms concerned with these processes, and the interactions involved, are the subject of this review.
Collapse
Affiliation(s)
- Pierre Cornelis
- Microbial Interactions, Department of Molecular and Cellular Interactions, VIB and Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
33
|
Ruiz JC, D'Afonseca V, Silva A, Ali A, Pinto AC, Santos AR, Rocha AAMC, Lopes DO, Dorella FA, Pacheco LGC, Costa MP, Turk MZ, Seyffert N, Moraes PMRO, Soares SC, Almeida SS, Castro TLP, Abreu VAC, Trost E, Baumbach J, Tauch A, Schneider MPC, McCulloch J, Cerdeira LT, Ramos RTJ, Zerlotini A, Dominitini A, Resende DM, Coser EM, Oliveira LM, Pedrosa AL, Vieira CU, Guimarães CT, Bartholomeu DC, Oliveira DM, Santos FR, Rabelo ÉM, Lobo FP, Franco GR, Costa AF, Castro IM, Dias SRC, Ferro JA, Ortega JM, Paiva LV, Goulart LR, Almeida JF, Ferro MIT, Carneiro NP, Falcão PRK, Grynberg P, Teixeira SMR, Brommonschenkel S, Oliveira SC, Meyer R, Moore RJ, Miyoshi A, Oliveira GC, Azevedo V. Evidence for reductive genome evolution and lateral acquisition of virulence functions in two Corynebacterium pseudotuberculosis strains. PLoS One 2011; 6:e18551. [PMID: 21533164 PMCID: PMC3078919 DOI: 10.1371/journal.pone.0018551] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Background Corynebacterium pseudotuberculosis, a Gram-positive, facultative intracellular pathogen, is the etiologic agent of the disease known as caseous lymphadenitis (CL). CL mainly affects small ruminants, such as goats and sheep; it also causes infections in humans, though rarely. This species is distributed worldwide, but it has the most serious economic impact in Oceania, Africa and South America. Although C. pseudotuberculosis causes major health and productivity problems for livestock, little is known about the molecular basis of its pathogenicity. Methodology and Findings We characterized two C. pseudotuberculosis genomes (Cp1002, isolated from goats; and CpC231, isolated from sheep). Analysis of the predicted genomes showed high similarity in genomic architecture, gene content and genetic order. When C. pseudotuberculosis was compared with other Corynebacterium species, it became evident that this pathogenic species has lost numerous genes, resulting in one of the smallest genomes in the genus. Other differences that could be part of the adaptation to pathogenicity include a lower GC content, of about 52%, and a reduced gene repertoire. The C. pseudotuberculosis genome also includes seven putative pathogenicity islands, which contain several classical virulence factors, including genes for fimbrial subunits, adhesion factors, iron uptake and secreted toxins. Additionally, all of the virulence factors in the islands have characteristics that indicate horizontal transfer. Conclusions These particular genome characteristics of C. pseudotuberculosis, as well as its acquired virulence factors in pathogenicity islands, provide evidence of its lifestyle and of the pathogenicity pathways used by this pathogen in the infection process. All genomes cited in this study are available in the NCBI Genbank database (http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers CP001809 and CP001829.
Collapse
Affiliation(s)
- Jerônimo C. Ruiz
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian D'Afonseca
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | - Amjad Ali
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anne C. Pinto
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Aryanne A. M. C. Rocha
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora O. Lopes
- Health Sciences Center, Federal University of São João Del Rei, Divinópilis, Minas Gerais, Brazil
| | - Fernanda A. Dorella
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luis G. C. Pacheco
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Marcília P. Costa
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Meritxell Z. Turk
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Núbia Seyffert
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pablo M. R. O. Moraes
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Siomar C. Soares
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sintia S. Almeida
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago L. P. Castro
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vinicius A. C. Abreu
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eva Trost
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | - Jan Baumbach
- Department of Computer Science, Max-Planck-Institut für Informatik, Saarbrücken, Saarlan, Germany
| | - Andreas Tauch
- Department of Genetics, University of Bielefeld, CeBiTech, Bielefeld, Nordrhein-Westfale, Germany
| | | | - John McCulloch
- Department of Genetics, Federal University of Pará, Belém, Pará, Brazil
| | | | | | - Adhemar Zerlotini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Dominitini
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela M. Resende
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Elisângela M. Coser
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana M. Oliveira
- Department of Phisics, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - André L. Pedrosa
- Department of Pharmaceutical Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Department of Biological Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlos U. Vieira
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Cláudia T. Guimarães
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Daniela C. Bartholomeu
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diana M. Oliveira
- Department of Veterinary Medicine, State University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabrício R. Santos
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Élida Mara Rabelo
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Francisco P. Lobo
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R. Franco
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Flávia Costa
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ieso M. Castro
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Sílvia Regina Costa Dias
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jesus A. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciano V. Paiva
- Department of Chemistry, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Luiz R. Goulart
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Juliana Franco Almeida
- Department of Genetics and Biochemistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maria Inês T. Ferro
- Department of Technology, State University of São Paulo, Jaboticabal, São Paulo, Brazil
| | - Newton P. Carneiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Sete Lagoas, Minas Gerais, Brazil
| | - Paula R. K. Falcão
- Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Priscila Grynberg
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Santuza M. R. Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio Brommonschenkel
- Department of Plant Pathology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Sérgio C. Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto Meyer
- Department of Biointeraction Sciences, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Anderson Miyoshi
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme C. Oliveira
- Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
- Center of Excellence in Bioinformatics, National Institute of Science and Technology, Research Center René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
34
|
Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares SDC, D'Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics 2010; 11:728. [PMID: 21192786 PMCID: PMC3022926 DOI: 10.1186/1471-2164-11-728] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 12/30/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium pseudotuberculosis is generally regarded as an important animal pathogen that rarely infects humans. Clinical strains are occasionally recovered from human cases of lymphadenitis, such as C. pseudotuberculosis FRC41 that was isolated from the inguinal lymph node of a 12-year-old girl with necrotizing lymphadenitis. To detect potential virulence factors and corresponding gene-regulatory networks in this human isolate, the genome sequence of C. pseudotuberculosis FCR41 was determined by pyrosequencing and functionally annotated. RESULTS Sequencing and assembly of the C. pseudotuberculosis FRC41 genome yielded a circular chromosome with a size of 2,337,913 bp and a mean G+C content of 52.2%. Specific gene sets associated with iron and zinc homeostasis were detected among the 2,110 predicted protein-coding regions and integrated into a gene-regulatory network that is linked with both the central metabolism and the oxidative stress response of FRC41. Two gene clusters encode proteins involved in the sortase-mediated polymerization of adhesive pili that can probably mediate the adherence to host tissue to facilitate additional ligand-receptor interactions and the delivery of virulence factors. The prominent virulence factors phospholipase D (Pld) and corynebacterial protease CP40 are encoded in the genome of this human isolate. The genome annotation revealed additional serine proteases, neuraminidase H, nitric oxide reductase, an invasion-associated protein, and acyl-CoA carboxylase subunits involved in mycolic acid biosynthesis as potential virulence factors. The cAMP-sensing transcription regulator GlxR plays a key role in controlling the expression of several genes contributing to virulence. CONCLUSION The functional data deduced from the genome sequencing and the extended knowledge of virulence factors indicate that the human isolate C. pseudotuberculosis FRC41 is equipped with a distinct gene set promoting its survival under unfavorable environmental conditions encountered in the mammalian host.
Collapse
Affiliation(s)
- Eva Trost
- Institut für Genomforschung und Systembiologie, Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae. J Bacteriol 2010; 192:4606-17. [PMID: 20639324 DOI: 10.1128/jb.00525-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme-associated signal by the N-terminal sensor domain of ChrS and the transcriptional activation of the hrtAB genes.
Collapse
|
36
|
Spinler JK, Zajdowicz SLW, Haller JC, Oram DM, Gill RE, Holmes RK. Development and use of a selectable, broad-host-range reporter transposon for identifying environmentally regulated promoters in bacteria. FEMS Microbiol Lett 2009; 291:143-50. [PMID: 19146571 DOI: 10.1111/j.1574-6968.2008.01430.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This report describes the development and use of TnKnXSp, a selectable broad-host-range reporter transposon with a promoterless aphA gene. Insertion of TnKnXSp into the chromosome of a kanamycin-susceptible bacterium confers resistance to kanamycin only if aphA is transcribed from an active promoter adjacent to the insertion site. We designed TnKnXSp as a tool for identifying environmentally regulated promoters in bacteria and developed general methods for initial characterization of any TnKnXSp integrant. To identify putative iron-regulated promoters in Corynebacterium diphtheriae, we constructed TnKnXSp integrants and identified a subgroup that expressed kanamycin resistance under low-iron, but not high-iron, conditions. We characterized representative integrants with this phenotype, located the TnKnXSp insertion in each, and demonstrated that transcription of aphA was repressed under high-iron vs. low-iron growth conditions. We also demonstrated that TnKnXSp can be used in bacteria other than C. diphtheriae, including Escherichia coli and Bacillus subtilis. Our findings validate TnKnXSp as a useful tool for identifying environmentally regulated promoters in bacteria.
Collapse
Affiliation(s)
- Jennifer K Spinler
- Department of Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
37
|
HtaA is an iron-regulated hemin binding protein involved in the utilization of heme iron in Corynebacterium diphtheriae. J Bacteriol 2009; 191:2638-48. [PMID: 19201805 DOI: 10.1128/jb.01784-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many human pathogens, including Corynebacterium diphtheriae, the causative agent of diphtheria, use host compounds such as heme and hemoglobin as essential iron sources. In this study, we examined the Corynebacterium hmu hemin transport region, a genetic cluster that contains the hmuTUV genes encoding a previously described ABC-type hemin transporter and three additional genes, which we have designated htaA, htaB, and htaC. The hmu gene cluster is composed of three distinct transcriptional units. The htaA gene appears to be part of an iron- and DtxR-regulated operon that includes hmuTUV, while htaB and htaC are transcribed from unique DtxR-regulated promoters. Nonpolar deletion of either htaA or the hmuTUV genes resulted in a reduced ability to use hemin as an iron source, while deletion of htaB had no effect on hemin iron utilization in C. diphtheriae. A comparison of the predicted amino acid sequences of HtaA and HtaB showed that they share some sequence similarity, and both proteins contain leader sequences and putative C-terminal transmembrane regions. Protein localization studies with C. diphtheriae showed that HtaA is associated predominantly with the cell envelope when the organism is grown in minimal medium but is secreted during growth in nutrient-rich broth. HtaB and HmuT were detected primarily in the cytoplasmic membrane fraction regardless of the growth medium. Hemin binding studies demonstrated that HtaA and HtaB are able to bind hemin, suggesting that these proteins may function as cell surface hemin receptors in C. diphtheriae.
Collapse
|
38
|
Zarnowski R, Cooper KG, Brunold LS, Calaycay J, Woods JP. Histoplasma capsulatum secreted gamma-glutamyltransferase reduces iron by generating an efficient ferric reductant. Mol Microbiol 2008; 70:352-68. [PMID: 18761625 DOI: 10.1111/j.1365-2958.2008.06410.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular fungal pathogen Histoplasma capsulatum (Hc) resides in mammalian macrophages and causes respiratory and systemic disease. Iron limitation is an important host antimicrobial defence, and iron acquisition is critical for microbial pathogenesis. Hc displays several iron acquisition mechanisms, including secreted glutathione-dependent ferric reductase activity (GSH-FeR). We purified this enzyme from culture supernatant and identified a novel extracellular iron reduction strategy involving gamma-glutamyltransferase (Ggt1) activity. The 320 kDa complex was composed of glycosylated protein subunits of about 50 and 37 kDa. The purified enzyme exhibited gamma-glutamyl transfer activity as well as iron reduction activity in the presence of glutathione. We cloned and manipulated expression of the encoding gene. Overexpression or RNAi silencing affected both GGT and GSH-FeR activities concurrently. Enzyme inhibition experiments showed that the activity is complex and involves two reactions. First, Ggt1 initiates enzymatic breakdown of GSH by cleavage of the gamma-glutamyl bond and release of cysteinylglycine. Second, the thiol group of the released dipeptide reduces ferric to ferrous iron. A combination of kinetic properties of both reactions resulted in efficient iron reduction over a broad pH range. Our findings provide novel insight into Hc iron acquisition strategies and reveal a unique aspect of Ggt1 function in this dimorphic mycopathogen.
Collapse
Affiliation(s)
- Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | |
Collapse
|
39
|
Bacon J, Dover LG, Hatch KA, Zhang Y, Gomes JM, Kendall S, Wernisch L, Stoker NG, Butcher PD, Besra GS, Marsh PD. Lipid composition and transcriptional response of Mycobacterium tuberculosis grown under iron-limitation in continuous culture: identification of a novel wax ester. MICROBIOLOGY-SGM 2007; 153:1435-1444. [PMID: 17464057 PMCID: PMC3123377 DOI: 10.1099/mic.0.2006/004317-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The low level of available iron in vivo is a major obstacle for microbial pathogens and is a stimulus for the expression of virulence genes. In this study, Mycobacterium tuberculosis H37Rv was grown aerobically in the presence of limited iron availability in chemostat culture to determine the physiological response of the organism to iron-limitation. A previously unidentified wax ester accumulated under iron-limited growth, and changes in the abundance of triacylglycerol and menaquinone were also observed between iron-replete and iron-limited chemostat cultures. DNA microarray analysis revealed differential expression of genes involved in glycerolipid metabolism and isoprenoid quinone biosynthesis, providing some insight into the underlying genetic changes that correlate with cell-wall lipid profiles of M. tuberculosis growing in an iron-limited environment.
Collapse
Affiliation(s)
- Joanna Bacon
- TB Research group, Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Lynn G. Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kim A. Hatch
- TB Research group, Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| | - Yi Zhang
- School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Jessica M. Gomes
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sharon Kendall
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Lorenz Wernisch
- School of Crystallography, Birkbeck College, University of London, Malet Street, London, WC1E 7HX, UK
| | - Neil G. Stoker
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | - Philip D. Butcher
- Bacterial Microarray Group, Department of Cellular and Molecular Medicine, St George’s Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Philip D. Marsh
- TB Research group, Health Protection Agency, Centre for Emergency Preparedness and Response, Porton Down, Salisbury, Wiltshire SP4 0JG, UK
| |
Collapse
|
40
|
Bibb LA, Kunkle CA, Schmitt MP. The ChrA-ChrS and HrrA-HrrS signal transduction systems are required for activation of the hmuO promoter and repression of the hemA promoter in Corynebacterium diphtheriae. Infect Immun 2007; 75:2421-31. [PMID: 17353293 PMCID: PMC1865786 DOI: 10.1128/iai.01821-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Corynebacterium diphtheriae hmuO gene, which encodes a heme oxygenase involved in heme iron utilization, is activated in a heme- or hemoglobin-dependent manner in part by the two-component system ChrA-ChrS. Mutation of either the chrA or the chrS gene resulted in a marked reduction of hemoglobin-dependent activation at the hmuO promoter in C. diphtheriae; however, it was observed that significant levels of hemoglobin-dependent expression were maintained in the mutants, suggesting that an additional activator is involved in regulation. A BLAST search of the C. diphtheriae genome sequence revealed a second two-component system, encoded by DIP2268 and DIP2267, that shares similarity with ChrS and ChrA, respectively; we have designated these genes hrrS (DIP2268) and hrrA (DIP2267). Analysis of hmuO promoter expression demonstrated that hemoglobin-dependent activity was fully abolished in strains from which both the chrA-chrS and the hrrA-hrrS two-component systems were deleted. Similarly, deletion of the sensor kinase genes chrS and hrrS or the genes encoding both of the response regulators chrA and hrrA also eliminated hemoglobin-dependent activation at the hmuO promoter. We also show that the regulators ChrA-ChrS and HrrA-HrrS are involved in the hemoglobin-dependent repression of the promoter upstream of hemA, which encodes a heme biosynthesis enzyme. Evidence for cross talk between the ChrA-ChrS and HrrA-HrrS systems is presented. In conclusion, these findings demonstrate that the ChrA-ChrS and HrrA-HrrS regulatory systems are critical for full hemoglobin-dependent activation at the hmuO promoter and also suggest that these two-component systems are involved in the complex mechanism of the regulation of heme homeostasis in C. diphtheriae.
Collapse
Affiliation(s)
- Lori A Bibb
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
41
|
Kolodkina VL, Titov LP, Sharapa TN, Drozhzhina ON. Point mutations sites in tox promoter/operator and diphtheria toxin repressor (DtxR) gene associated with the level of toxin production by Corynebacterium diphtheriae strains isolated in Belarus. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2007. [DOI: 10.3103/s0891416807010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Kunkle CA, Schmitt MP. Comparative analysis of hmuO function and expression in Corynebacterium species. J Bacteriol 2007; 189:3650-4. [PMID: 17322319 PMCID: PMC1855885 DOI: 10.1128/jb.00056-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have constructed defined deletions in the hmuO gene from Corynebacterium diphtheriae and Corynebacterium ulcerans and show that the C. ulcerans hmuO mutation results in a significant reduction in hemoglobin-iron utilization, whereas in C. diphtheriae strains, deletion of hmuO caused no or only partial reduction in the utilization of heme as an iron source. We also show that expression from the C. ulcerans hmuO promoter exhibits minimal regulation by iron and heme whereas transcription from the C. diphtheriae hmuO promoter shows both significant iron repression and heme-dependent activation. These findings indicate that variability in HmuO function and expression exists among Corynebacterium species.
Collapse
Affiliation(s)
- Carey A Kunkle
- Laboratory of Respiratory and Special Pathogens, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Adminisstration, Bethesda, MD 20892, USA
| | | |
Collapse
|
43
|
Zwiers LH, Roohparvar R, de Waard MA. MgAtr7, a new type of ABC transporter from Mycosphaerella graminicola involved in iron homeostasis. Fungal Genet Biol 2007; 44:853-63. [PMID: 17379549 DOI: 10.1016/j.fgb.2007.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 01/16/2007] [Accepted: 02/05/2007] [Indexed: 10/23/2022]
Abstract
The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif characteristic for a dityrosine/pyoverdine biosynthesis protein. This makes MgAtr7 the first member of a new class of fungal ABC transporters harboring both a transporter and a biosynthetic moiety. A homologue of MgAtr7 containing the same biosynthetic moiety was only found in the Fusarium graminearum genome and not in any other fungal genome examined so far. The gene structure of both orthologous transporters is highly conserved and the genomic area surrounding the ABC transporter exhibits micro-synteny between M. graminicola and F. graminearum. Functional analyses revealed that MgAtr7 is neither required for virulence nor involved in fungicide sensitivity but indicated a role in maintenance of iron homeostasis.
Collapse
Affiliation(s)
- Lute-Harm Zwiers
- Laboratory of Phytopathology, Wageningen University, P.O. Box 8025, 6700 EE Wageningen, The Netherlands.
| | | | | |
Collapse
|
44
|
Dertz EA, Stintzi A, Raymond KN. Siderophore-mediated iron transport in Bacillus subtilis and Corynebacterium glutamicum. J Biol Inorg Chem 2006; 11:1087-97. [PMID: 16912897 DOI: 10.1007/s00775-006-0151-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 07/21/2006] [Indexed: 11/28/2022]
Abstract
Hexadentate bacillibactin is the siderophore of Bacillus subtilis and is structurally similar to the better known enterobactin of Gram-negative bacteria such as Escherichia coli. Although both are triscatecholamide trilactones, the structural differences of these two siderophores result in opposite metal chiralities, different affinity for ferric ion, and dissimilar iron transport behaviors. Bacillibactin was first reported as isolated from Corynebacterium glutamicum and called corynebactin. However, failure of iron-starved C. glutamicum to transport 55Fe bacillibactin and lack of required bacillibactin biosynthetic genes suggest that bacillibactin is not the siderophore produced by this organism. Iron transport mediated by siderophores in B. subtilis occurs through a transport process that is specific for the iron chelating moiety, with parallel pathways for catecholates and hydroxamates. For bacillibactin, enterobactin, and their analogs, neither chirality nor presence of an amino acid spacer affects the uptake and transport process, but alteration of the net charge and size of the molecule impedes the recognition.
Collapse
Affiliation(s)
- Emily A Dertz
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA.
| | | | | |
Collapse
|
45
|
Hansmeier N, Chao TC, Kalinowski J, Pühler A, Tauch A. Mapping and comprehensive analysis of the extracellular and cell surface proteome of the human pathogen Corynebacterium diphtheriae. Proteomics 2006; 6:2465-76. [PMID: 16544277 DOI: 10.1002/pmic.200500360] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Secreted proteins of the human pathogen Corynebacterium diphtheriae might be involved in important pathogen-host cell interactions. Here, we present the first systematic reference map of the extracellular and cell surface proteome fractions of the type strain C. diphtheriae C7s(-)tox-. The analysis window of 2-DE covered the pI range from 3 to 10 along with a MW range from 8 to 150 kDa. Computational analysis of the 2-D gels detected almost 150 protein spots in the extracellular proteome fraction and about 80 protein spots of the cell surface proteome. MALDI-TOF-MS and PMF with trypsin unambiguously identified 107 extracellular protein spots and 53 protein spots of the cell surface, representing in total 85 different proteins of C. diphtheriae C7s(-)tox-. Several of the identified proteins are encoded by pathogenicity islands and might represent virulence factors of C. diphtheriae. Additionally, four solute-binding proteins (HmuT, Irp6A, CiuA, and FrgD) of different iron ABC transporters were identified, with the hitherto uncharacterized FrgD protein being the most abundant one of the cell surface proteome of C. diphtheriae C7s(-)tox-.
Collapse
Affiliation(s)
- Nicole Hansmeier
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstrasse, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
46
|
Grass G. Iron Transport in Escherichia Coli: All has not been said and Done. Biometals 2006; 19:159-72. [PMID: 16718601 DOI: 10.1007/s10534-005-4341-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022]
Abstract
During recent years new systems involved in iron transport were identified in the old workhorse Escherichia coli (and in other enterobacteria). This came as a bit of a surprise because one might think transport of this essential trace element was already thoroughly studied. Moreover, it appears that iron homeostasis consists not only of uptake but also of efflux of this potentially toxic redox-active metal. New findings in E. coli will be discussed and compared to the situation in other bacteria.
Collapse
Affiliation(s)
- Gregor Grass
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Kurt-Mothes-Str. 3, 06120, Halle, Germany.
| |
Collapse
|
47
|
Brune I, Werner H, Hüser AT, Kalinowski J, Pühler A, Tauch A. The DtxR protein acting as dual transcriptional regulator directs a global regulatory network involved in iron metabolism of Corynebacterium glutamicum. BMC Genomics 2006; 7:21. [PMID: 16469103 PMCID: PMC1382209 DOI: 10.1186/1471-2164-7-21] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 02/09/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The knowledge about complete bacterial genome sequences opens the way to reconstruct the qualitative topology and global connectivity of transcriptional regulatory networks. Since iron is essential for a variety of cellular processes but also poses problems in biological systems due to its high toxicity, bacteria have evolved complex transcriptional regulatory networks to achieve an effective iron homeostasis. Here, we apply a combination of transcriptomics, bioinformatics, in vitro assays, and comparative genomics to decipher the regulatory network of the iron-dependent transcriptional regulator DtxR of Corynebacterium glutamicum. RESULTS A deletion of the dtxR gene of C. glutamicum ATCC 13032 led to the mutant strain C. glutamicum IB2103 that was able to grow in minimal medium only under low-iron conditions. By performing genome-wide DNA microarray hybridizations, differentially expressed genes involved in iron metabolism of C. glutamicum were detected in the dtxR mutant. Bioinformatics analysis of the genome sequence identified a common 19-bp motif within the upstream region of 31 genes, whose differential expression in C. glutamicum IB2103 was verified by real-time reverse transcription PCR. Binding of a His-tagged DtxR protein to oligonucleotides containing the 19-bp motifs was demonstrated in vitro by DNA band shift assays. At least 64 genes encoding a variety of physiological functions in iron transport and utilization, in central carbohydrate metabolism and in transcriptional regulation are controlled directly by the DtxR protein. A comparison with the bioinformatically predicted networks of C. efficiens, C. diphtheriae and C. jeikeium identified evolutionary conserved elements of the DtxR network. CONCLUSION This work adds considerably to our currrent understanding of the transcriptional regulatory network of C. glutamicum genes that are controlled by DtxR. The DtxR protein has a major role in controlling the expression of genes involved in iron metabolism and exerts a dual regulatory function as repressor of genes participating in iron uptake and utilization and as activator of genes responsible for iron storage and DNA protection. The data suggest that the DtxR protein acts as global regulator by controlling the expression of other regulatory proteins that might take care of an iron-dependent regulation of a broader transcriptional network of C. glutamicum genes.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Hendrikje Werner
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andrea T Hüser
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| |
Collapse
|
48
|
Bibb LA, King ND, Kunkle CA, Schmitt MP. Analysis of a heme-dependent signal transduction system in Corynebacterium diphtheriae: deletion of the chrAS genes results in heme sensitivity and diminished heme-dependent activation of the hmuO promoter. Infect Immun 2005; 73:7406-12. [PMID: 16239540 PMCID: PMC1273899 DOI: 10.1128/iai.73.11.7406-7412.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Corynebacterium diphtheriae hmuO gene encodes a heme oxygenase that is involved in the utilization of heme as an iron source. Transcription of hmuO is activated by heme or hemoglobin and repressed by iron and DtxR. Previous studies with Escherichia coli showed that heme-dependent transcriptional activation of an hmuO promoter-lacZ fusion was dependent on the cloned C. diphtheriae chrA and chrS genes (chrAS), which encode the response regulator and sensor kinase, respectively, of a two-component signal transduction system. In this study, nonpolar deletions in the chrAS genes were constructed on the chromosome of C. diphtheriae. Mutations in chrAS resulted in marked reduction in heme-dependent transcription of hmuO, which indicates that the ChrA/S system is a key regulator at the hmuO promoter. However, low but significant levels of heme-specific transcriptional activity were observed at the hmuO promoter in the chrAS mutants, suggesting that an additional heme-dependent activator is involved in hmuO expression. The chrAS mutants were also sensitive to heme, which was observed only in stationary-phase cultures and correlated with reduced cell viability. The heme sensitivity of the mutants was not due to reduced expression of hmuO, and these results suggest that additional factors controlled by the ChrA/S system may be involved in protection against heme toxicity. Transcriptional analysis of the chrAS operon revealed that it was not autoregulated or affected by iron or heme levels.
Collapse
Affiliation(s)
- Lori A Bibb
- Laboratory of Bacterial Toxins, DBPAP, CBER, FDA, Bldg.29, Room 108, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|