1
|
B Vitamins and Their Roles in Gut Health. Microorganisms 2022; 10:microorganisms10061168. [PMID: 35744686 PMCID: PMC9227236 DOI: 10.3390/microorganisms10061168] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
B vitamins act as coenzymes in a myriad of cellular reactions. These include energy production, methyl donor generation, neurotransmitter synthesis, and immune functions. Due to the ubiquitous roles of these vitamins, their deficiencies significantly affect the host’s metabolism. Recently, novel roles of B vitamins in the homeostasis of gut microbial ecology and intestinal health continue to be unravelled. This review focuses on the functional roles and biosynthesis of B vitamins and how these vitamins influence the growth and proliferation of the gut microbiota. We have identified the gut bacteria that can produce vitamins, and their biosynthetic mechanisms are presented. The effects of B vitamin deficiencies on intestinal morphology, inflammation, and its effects on intestinal disorders are also discussed.
Collapse
|
2
|
Han L, Liu X, Cheng Z, Cui W, Guo J, Yin J, Zhou Z. Construction and Application of a High-Throughput In Vivo Screening Platform for the Evolution of Nitrile Metabolism-Related Enzymes Based on a Desensitized Repressive Biosensor. ACS Synth Biol 2022; 11:1577-1587. [PMID: 35266713 DOI: 10.1021/acssynbio.1c00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transcription factor (TF)-based biosensors are expected to serve as powerful tools for the high-throughput screening of biocatalytic systems; however, most of them respond to ligands in a narrow concentration range, which limits their application. In this study, we constructed a heterogenous niacin biosensor using the repressive TF BsNadR and its target promoters from Bacillus subtilis. The fine-tunable output of the niacin biosensor was expanded to a wide range of niacin concentrations (0-50 mM) through desensitization engineering, which was suitable for the accurate identification of differences in enzyme activity. Structural mechanism analysis indicated that weakening the affinity of BsNadR with the ligand niacin and with DNA alters its regulatory properties. Based on the desensitized niacin biosensor, a high-throughput in vivo screening platform was developed for evolving nitrile metabolism-related enzymes. The evolved nitrilase, amidase, and nitrile hydratase with 6.6-, 2.1-, and 21.3-fold improvements in activity were achieved, respectively. In addition, these mutants also exhibited elevated activity toward other cognate substrates, indicating the broad applicability of the screening platform. This study not only provided a universal high-throughput screening platform for different nitrile metabolism-related enzymes but also demonstrated the advantages of repressive biosensors and the vital role of desensitization engineering of the TF in the development of high-throughput screening platforms for enzymes.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinyue Liu
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyi Cheng
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Cui
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junling Guo
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Yin
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Lee DW, Park YW, Lee MY, Jeong KH, Lee JY. Structural analysis and insight into effector binding of the niacin-responsive repressor NiaR from Bacillus halodurans. Sci Rep 2020; 10:21039. [PMID: 33273654 PMCID: PMC7713382 DOI: 10.1038/s41598-020-78148-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The niacin-responsive repressor, NiaR, is transcriptional repressor of certain nicotinamide adenine dinucleotide (NAD) biosynthetic genes in response to an increase in niacin levels. NAD is a vital molecule involved in various cellular redox reactions as an electron donor or electron acceptor. The NiaR family is conserved broadly in the Bacillus/Clostridium group, as well as in the Fusobacteria and Thermotogales lineages. The NiaR structure consists of two domains: an N-terminal DNA-binding domain, and a C-terminal regulation domain containing a metal-binding site. In this paper, we report the crystal structures of apo and niacin-bound forms of NiaR from Bacillus halodurans (BhNiaR). The analysis of metal-binding and niacin-binding sites through the apo and niacin-bound structures is described. Each N- and C-terminal domain structure of BhNiaR is almost identical with NiaR from Thermotoga maritima, but the overall domain arrangement is quite different. A zinc ion is fully occupied in each subunit with well-conserved residues in the C-terminal domain. Niacin is also located at a hydrophobic pocket near the zinc ion in the C-terminal domain.
Collapse
Affiliation(s)
- Dong Won Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Young Woo Park
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.,Structural Biology Lab, B2SBIO, Yeonsu-gu, Incheon, Republic of Korea
| | - Myung Yeon Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Kang Hwa Jeong
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jae Young Lee
- Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
4
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
5
|
Wang Q, Hassan BH, Lou N, Merritt J, Feng Y. Functional definition of NrtR, a remnant regulator of NAD + homeostasis in the zoonotic pathogen Streptococcus suis. FASEB J 2019; 33:6055-6068. [PMID: 30759348 PMCID: PMC8793812 DOI: 10.1096/fj.201802179rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/15/2019] [Indexed: 12/16/2022]
Abstract
NAD+ is an enzyme cofactor required for the 3 domains of life. However, little is known about the NAD+ biosynthesis and salvage pathways in the opportunistic pathogen Streptococcus suis. A genome-wide search allows us to identify the NAD+ salvage pathway encoded by an operon of nadR-pnuC-nrtR (from SSU05_1973 to SSU05_1971 on the reverse strand) in the S. suis 05ZYH33 that causes streptococcal toxin shock-like syndrome. The regulator of this pathway is Nudix-related transcriptional regulator (NrtR), a transcription regulator of the Nudix family comprising an N-terminal Nudix-like effector domain, and a C-terminal DNA-binding winged helix-turn-helix-like domain. Intriguingly, the S. suis NrtR naturally contains a single amino acid substitution (K92E) in the catalytic site of its Nudix domain that renders it catalytically inactive but does not influence its ability to bind DNA. Despite its lack of enzymatic activity, DNA-binding activity of NrtR is antagonized by the effector ADP-ribose. Furthermore, nrtR knockout in S. suis serotype 2 reduces its capacity to form biofilms and attenuates its virulence in a mouse infection model. Genome mining indicates that nrtR appears in a strain-specific manner whose occupancy is correlated to bacterial infectivity. Unlike the paradigmatic member of NrtR family having 2 unrelated functions (Nudix hydrolase and DNA binding), S. suis 2 retains a single regulatory role in the modulation of NAD+ salvage. This control of NAD+ homeostasis contributes to S. suis virulence.-Wang, Q., Hassan, B. H., Lou, N., Merritt, J., Feng, Y. Functional definition of NrtR, a remnant regulator of NAD+ homeostasis in the zoonotic pathogen Streptococcus suis.
Collapse
Affiliation(s)
- Qingjing Wang
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Bachar H. Hassan
- Stony Brook Cancer CenterStony Brook UniversityStony BrookNew YorkUSA
| | - Ningjie Lou
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Justin Merritt
- Department of Restorative DentistryOregon Health and Science UniversityPortlandOregonUSA
| | - Youjun Feng
- Department of Pathogen Biology and MicrobiologyDepartment of General Intensive Care Unit of Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Afzal M, Kuipers OP, Shafeeq S. Niacin-mediated Gene Expression and Role of NiaR as a Transcriptional Repressor of niaX, nadC, and pnuC in Streptococcus pneumoniae. Front Cell Infect Microbiol 2017; 7:70. [PMID: 28337428 PMCID: PMC5343564 DOI: 10.3389/fcimb.2017.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/24/2017] [Indexed: 12/21/2022] Open
Abstract
NAD (Nicotinamide Adenine Dinucleotide) biosynthesis is vital for bacterial physiology and plays an important role in cellular metabolism. A naturally occurring vitamin B complex, niacin (nicotinic acid), is a precursor of coenzymes NAD and NADP. Here, we study the impact of niacin on global gene expression of Streptococcus pneumoniae D39 and elucidate the role of NiaR as a transcriptional regulator of niaX, nadC, and pnuC. Transcriptome comparison of the D39 wild-type grown in chemically defined medium (CDM) with 0 to 10 mM niacin revealed elevated expression of various genes, including niaX, nadC, pnuC, fba, rex, gapN, pncB, gap, adhE, and adhB2 that are putatively involved in the transport and utilization of niacin. Niacin-dependent expression of these genes is confirmed by promoter lacZ-fusion studies. Moreover, the role of transcriptional regulator NiaR in the regulation of these genes is explored by DNA microarray analysis. Our transcriptomic comparison of D39 ΔniaR to D39 wild-type revealed that the transcriptional regulator NiaR acts as a transcriptional repressor of niaX, pnuC, and nadC. NiaR-dependent regulation of niaX, nadC, and pnuC is further confirmed by promoter lacZ-fusion studies. The putative operator site of NiaR (5′-TACWRGTGTMTWKACASYTRWAW-3′) in the promoter regions of niaX, nadC, and pnuC is predicted and further confirmed by promoter mutational experiments.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningen, Netherlands; Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen Groningen, Netherlands
| | - Sulman Shafeeq
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
7
|
Brickman TJ, Suhadolc RJ, McKelvey PJ, Armstrong SK. Essential role of Bordetella NadC in a quinolinate salvage pathway for NAD biosynthesis. Mol Microbiol 2016; 103:423-438. [PMID: 27783449 DOI: 10.1111/mmi.13566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2016] [Indexed: 01/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) is produced via de novo biosynthesis pathways and by salvage or recycling routes. The classical Bordetella bacterial species are known to be auxotrophic for nicotinamide or nicotinic acid. This study confirmed that Bordetella bronchiseptica, Bordetella pertussis and Bordetella parapertussis have the recycling/salvage pathway genes pncA and pncB, for use of nicotinamide or nicotinic acid, respectively, for NAD synthesis. Although these Bordetellae lack the nadA and nadB genes needed for de novo NAD biosynthesis, remarkably, they have one de novo pathway gene, nadC, encoding quinolinate phosphoribosyltransferase. Genomic analyses of taxonomically related Bordetella and Achromobacter species also indicated the presence of an 'orphan' nadC and the absence of nadA and nadB. When supplied as the sole NAD precursor, quinolinate promoted B. bronchiseptica growth, and the ability to use it required nadC. Co-expression of Bordetella nadC with the nadB and nadA genes of Paraburkholderia phytofirmans allowed B. bronchiseptica to grow in the absence of supplied pyridines, indicative of de novo NAD synthesis and functional confirmation of Bordetella NadC activity. Expression of nadC in B. bronchiseptica was influenced by nicotinic acid and by a NadQ family transcriptional repressor, indicating that these organisms prioritize their use of pyridines for NAD biosynthesis.
Collapse
Affiliation(s)
- Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Ryan J Suhadolc
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Pamela J McKelvey
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota Medical School, 3-117 Microbiology Research Facility, 689 23rd Ave. S.E, Minneapolis, MN, 55455-1507, USA
| |
Collapse
|
8
|
Okon E, Dethlefsen S, Pelnikevich A, Barneveld AV, Munder A, Tümmler B. Key role of an ADP - ribose - dependent transcriptional regulator of NAD metabolism for fitness and virulence of Pseudomonas aeruginosa. Int J Med Microbiol 2016; 307:83-94. [PMID: 27865623 DOI: 10.1016/j.ijmm.2016.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 08/31/2016] [Accepted: 09/25/2016] [Indexed: 10/20/2022] Open
Abstract
NAD is an essential co-factor of redox reactions and metabolic conversions of NAD-dependent enzymes. NAD biosynthesis in the opportunistic pathogen Pseudomonas aeruginosa has yet not been experimentally explored. The in silico search for orthologs in the P. aeruginosa PAO1 genome identified the operon pncA - pncB1-nadE (PA4918-PA4920) to encode the nicotinamidase, nicotinate phosporibosyltransferase and Nad synthase of salvage pathway I. The functional role of the preceding genes PA4917 and PA4916 was resolved by the characterization of recombinant protein. PA4917 turned out to encode the nicotinate mononucleotide adenylyltransferase NadD2 and PA4916 was determined to encode the transcriptional repressor NrtR that binds to an intergenic sequence between nadD2 and pncA. Complex formation between the catalytically inactive Nudix protein NrtR and its DNA binding site was suppressed by the antirepressor ADP-ribose. NrtR plasposon mutagenesis abrogated virulence of P. aeruginosa TBCF10839 in a murine acute airway infection model and constrained its metabolite profile. When grown together with other isogenic plasposon mutants, the nrtR knock-out was most compromised in competitive fitness to persist in nutrient-rich medium in vitro or murine airways in vivo. This example demonstrates how tightly metabolism and virulence can be intertwined by key elements of metabolic control.
Collapse
Affiliation(s)
- Elza Okon
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Sarah Dethlefsen
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Anna Pelnikevich
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andrea van Barneveld
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Antje Munder
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Burkhard Tümmler
- Klinische Forschergruppe, OE 6710, Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
9
|
Abstract
Universal and ubiquitous redox cofactors, nicotinamide adenine dinucleotide (NAD) and its phosphorylated analog (NADP), collectively contribute to approximately 12% of all biochemical reactions included in the metabolic model of Escherichia coli K-12. A homeostasis of the NAD pool faithfully maintained by the cells results from a dynamic balance in a network of NAD biosynthesis, utilization, decomposition, and recycling pathways that is subject to tight regulation at various levels. A brief overview of NAD utilization processes is provided in this review, including some examples of nonredox utilization. The review focuses mostly on those aspects of NAD biogenesis and utilization in E. coli and Salmonella that emerged within the past 12 years. The first pyridine nucleotide cycle (PNC) originally identified in mammalian systems and termed the Preiss-Handler pathway includes a single-step conversion of niacin (Na) to NaMN by nicotinic acid phosphoribosyltransferase (PncB). In E. coli and many other prokaryotes, this enzyme, together with nicotinamide deamidase (PncA), compose the major pathway for utilization of the pyridine ring in the form of amidated (Nm) or deamidated (Na) precursors. The existence of various regulatory mechanisms and checkpoints that control the NAD biosynthetic machinery reflects the importance of maintaining NAD homeostasis in a variety of growth conditions. Among the most important regulatory mechanisms at the level of individual enzymes are a classic feedback inhibition of NadB, the first enzyme of NAD de novo biosynthesis, by NAD and a metabolic regulation of NadK by reduced cofactors.
Collapse
|
10
|
PrfA-like transcription factor gene lmo0753 contributes to L-rhamnose utilization in Listeria monocytogenes strains associated with human food-borne infections. Appl Environ Microbiol 2013; 79:5584-92. [PMID: 23835178 DOI: 10.1128/aem.01812-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Listeria monocytogenes is a food-borne bacterial pathogen and the causative agent of human and animal listeriosis. Among the three major genetic lineages of L. monocytogenes (i.e., LI, LII, and LIII), LI and LII are predominantly associated with food-borne listeriosis outbreaks, whereas LIII is rarely implicated in human infections. In a previous study, we identified a Crp/Fnr family transcription factor gene, lmo0753, that was highly specific to outbreak-associated LI and LII but absent from LIII. Lmo0753 shares two conserved functional domains, including a DNA binding domain, with the well-characterized master virulence regulator PrfA in L. monocytogenes. In this study, we constructed lmo0753 deletion and complementation mutants in two fully sequenced L. monocytogenes LII strains, 10403S and EGDe, and compared the flagellar motility, phospholipase C production, hemolysis, and intracellular growth of the mutants and their respective wild types. Our results suggested that lmo0753 plays a role in hemolytic activity in both EGDe and 10403S. More interestingly, we found that deletion of lmo0753 led to the loss of l-rhamnose utilization in EGDe, but not in 10403S. RNA-seq analysis of EGDe Δ0753 incubated in phenol red medium containing l-rhamnose as the sole carbon source revealed that 126 (4.5%) and 546 (19.5%) out of 2,798 genes in the EGDe genome were up- and downregulated more than 2-fold, respectively, compared to the wild-type strain. Genes related to biotin biosynthesis, general stress response, and rhamnose metabolism were shown to be differentially regulated. Findings from this study collectively suggested varied functional roles of lmo0753 in different LII L. monocytogenes strain backgrounds associated with human listeriosis outbreaks.
Collapse
|
11
|
Commichau FM, Pietack N, Stülke J. Essential genes in Bacillus subtilis: a re-evaluation after ten years. MOLECULAR BIOSYSTEMS 2013; 9:1068-75. [PMID: 23420519 DOI: 10.1039/c3mb25595f] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In 2003, an initial study on essential genes in the Gram-positive model bacterium described 271 genes as essential. In the past decade, the functions of many unknown genes and their encoded proteins have been elucidated. Moreover, detailed analyses have revealed that 31 genes that were thought to be essential are in fact non-essential whereas 20 novel essential genes have been described. Thus, 261 genes coding for 259 proteins and two functional RNAs are regarded essential as of January 2013. Among the essential proteins, the largest group is involved in protein synthesis, secretion and protein quality control. Other large sets of essential proteins are involved in lipid biosynthesis, cell wall metabolism and cell division, and DNA replication. Another interesting group of essential proteins protects the cell against endogenous toxic proteins, metabolites, or other intermediates. There are only six essential proteins in B. subtilis, for which no function is known. The functional analysis of these important proteins is predicted to be a key issue in the research on this model organism in the coming years.
Collapse
Affiliation(s)
- Fabian M Commichau
- Department of General Microbiology, Georg-August-Universität Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| | | | | |
Collapse
|
12
|
Teramoto H, Inui M, Yukawa H. NdnR is an NAD-responsive transcriptional repressor of the ndnR operon involved in NAD de novo biosynthesis in Corynebacterium glutamicum. MICROBIOLOGY-SGM 2012; 158:975-982. [PMID: 22301909 DOI: 10.1099/mic.0.057513-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Corynebacterium glutamicum ndnR gene, which is chromosomally located in a gene cluster involved in NAD de novo biosynthesis, negatively regulates expression of the cluster genes, i.e. nadA, nadC, nadS and ndnR itself. Although ndnR encodes a member of the recently identified NrtR family of transcriptional regulators, whether or not the NdnR protein directly regulates these NAD biosynthesis genes remains to be verified. Here, two NdnR binding sites in the promoter region of the ndnR-nadA-nadC-nadS operon in C. glutamicum were confirmed by in vitro DNA binding assay and analysis of in vivo expression of the chromosomally integrated ndnR promoter-lacZ reporter fusion. Electrophoretic mobility shift assay revealed that the NdnR protein binds to the 5'-upstream region of ndnR, and that the binding is significantly enhanced by NAD. Mutation in two 21 bp NdnR binding motifs in the ndnR promoter region inhibited the binding of NdnR in vitro. The mutation also enhanced the promoter activity in cells cultured in the presence of nicotinate, which is utilized in NAD biosynthesis, resulting in the loss of the repression in response to an exogenous NAD precursor; this is consistent with the effect of deletion of ndnR reported in our previous study. These results indicate that NAD acts as a co-repressor for the NdnR protein that directly regulates the ndnR operon involved in NAD de novo biosynthesis; the NAD-NdnR regulatory system likely plays an important role in the control of NAD homeostasis in C. glutamicum.
Collapse
Affiliation(s)
- Haruhiko Teramoto
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan
| |
Collapse
|
13
|
Halbedel S, Hahn B, Daniel RA, Flieger A. DivIVA affects secretion of virulence-related autolysins in Listeria monocytogenes. Mol Microbiol 2012; 83:821-39. [PMID: 22353466 DOI: 10.1111/j.1365-2958.2012.07969.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DivIVA is a well-conserved coiled-coil protein present in most Gram-positive bacteria and has been implicated in division site selection, peptidoglycan biosynthesis and sporulation. DivIVA proteins bind lipid membranes and characteristically accumulate at curved membrane areas, i.e. the cell poles and the division site, to which they recruit various interaction partners. We have studied the role of this morphogen in the human pathogen Listeria monocytogenes and our results suggest a novel mechanism by which DivIVA contributes to cell division. Contrary to expectation a ΔdivIVA mutant exhibited a pronounced chaining phenotype rather than a defect in cell division which we attributed to reduced extracellular levels of the autolytic enzymes p60 and MurA. We demonstrate that this is due to a malfunction in secretion of these autolysins and phenotypic comparison of the ΔdivIVA strain with a ΔsecA2 mutant suggests that DivIVA influences the activity of the SecA2 secretion route in L. monocytogenes. Also from the phenotypic analysis it was clear that divIVA affected swarming motility, biofilm formation, invasiveness and cell-to-cell spread in cell culture infection models. Thus, our experiments show that DivIVA is an important factor for various listerial traits that are essential for the pathogenicity of this organism.
Collapse
Affiliation(s)
- Sven Halbedel
- Robert Koch Institute, FG11 - Division of Bacterial Infections, Burgstrasse 37, 38855 Wernigerode, Germany.
| | | | | | | |
Collapse
|
14
|
Bi J, Wang H, Xie J. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets. J Cell Physiol 2011; 226:331-40. [PMID: 20857400 DOI: 10.1002/jcp.22419] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
NAD(P) is an indispensable cofactor for all organisms and its biosynthetic pathways are proposed as promising novel antibiotics targets against pathogens such as Mycobacterium tuberculosis. Six NAD(P) biosynthetic pathways were reconstructed by comparative genomics: de novo pathway (Asp), de novo pathway (Try), NmR pathway I (RNK-dependent), NmR pathway II (RNK-independent), Niacin salvage, and Niacin recycling. Three enzymes pivotal to the key reactions of NAD(P) biosynthesis are shared by almost all organisms, that is, NMN/NaMN adenylyltransferase (NMN/NaMNAT), NAD synthetase (NADS), and NAD kinase (NADK). They might serve as ideal broad spectrum antibiotic targets. Studies in M. tuberculosis have in part tested such hypothesis. Three regulatory factors NadR, NiaR, and NrtR, which regulate NAD biosynthesis, have been identified. M. tuberculosis NAD(P) metabolism and regulation thereof, potential drug targets and drug development are summarized in this paper.
Collapse
Affiliation(s)
- Jicai Bi
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, China
| | | | | |
Collapse
|
15
|
Regulation of the expression of genes involved in NAD de novo biosynthesis in Corynebacterium glutamicum. Appl Environ Microbiol 2010; 76:5488-95. [PMID: 20601509 DOI: 10.1128/aem.00906-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three genes, nadA, nadB, and nadC, involved in NAD de novo biosynthesis are broadly conserved in the genomes of numerous bacterial species. In the genome of Corynebacterium glutamicum, nadA and nadC but not nadB are annotated. The nadA and nadC genes are located in a gene cluster containing two other genes, designated ndnR and nadS herein. ndnR encodes a member of the Nudix-related transcriptional regulator (NrtR) family. nadS encodes a homologue of cysteine desulfurase involved in Fe-S cluster assembly. The gene cluster ndnR-nadA-nadC-nadS is genetically characterized herein. Mutant strains deficient in nadA, nadC, or nadS required exogenous nicotinate for growth, and the nicotinate auxotrophy was complemented by introduction of the corresponding gene in trans, indicating that each of these genes is essential for growth in the absence of an exogenous source of NAD biosynthesis. The results of reverse transcriptase PCR analyses and ndnR promoter-lacZ expression analyses revealed that the expression of ndnR, nadA, nadC, and nadS genes was markedly and coordinately repressed by nicotinate. The expression of these genes was enhanced by the disruption of ndnR, resulting in the loss of the nicotinate-responsive regulation of gene expression. These results suggest that NdnR acts as a transcriptional repressor of NAD de novo biosynthesis genes and plays an essential role in the regulation of the response to nicotinate.
Collapse
|
16
|
Huang N, De Ingeniis J, Galeazzi L, Mancini C, Korostelev YD, Rakhmaninova AB, Gelfand MS, Rodionov DA, Raffaelli N, Zhang H. Structure and function of an ADP-ribose-dependent transcriptional regulator of NAD metabolism. Structure 2009; 17:939-51. [PMID: 19604474 DOI: 10.1016/j.str.2009.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/21/2009] [Accepted: 05/06/2009] [Indexed: 01/12/2023]
Abstract
Besides its function as an essential redox cofactor, nicotinamide adenine dinucleotide (NAD) also serves as a consumable substrate for several reactions with broad impact on many cellular processes. NAD homeostasis appears to be tightly controlled, but the mechanism of its regulation is little understood. Here we demonstrate that a previously predicted bacterial transcriptional regulator, NrtR, represses the transcription of NAD biosynthetic genes in vitro. The NAD metabolite ADP-ribose functions as an activator suppressing NrtR repressor activity. The presence of high ADP-ribose levels in the cell is indicative of active NAD turnover in bacteria, which could signal the activation of NAD biosynthetic gene expression via inhibiting the repressor function of NrtR. By comparing the crystal structures of NrtR in complex with DNA and with ADP-ribose, we identified a "Nudix switch" element that likely plays a critical role in the allosteric regulation of DNA binding and repressor function of NrtR.
Collapse
Affiliation(s)
- Nian Huang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rodionov DA, Li X, Rodionova IA, Yang C, Sorci L, Dervyn E, Martynowski D, Zhang H, Gelfand MS, Osterman AL. Transcriptional regulation of NAD metabolism in bacteria: genomic reconstruction of NiaR (YrxA) regulon. Nucleic Acids Res 2008; 36:2032-46. [PMID: 18276644 PMCID: PMC2330245 DOI: 10.1093/nar/gkn046] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A comparative genomic approach was used to reconstruct transcriptional regulation of NAD biosynthesis in bacteria containing orthologs of Bacillus subtilis gene yrxA, a previously identified niacin-responsive repressor of NAD de novo synthesis. Members of YrxA family (re-named here NiaR) are broadly conserved in the Bacillus/Clostridium group and in the deeply branching Fusobacteria and Thermotogales lineages. We analyzed upstream regions of genes associated with NAD biosynthesis to identify candidate NiaR-binding DNA motifs and assess the NiaR regulon content in these species. Representatives of the two distinct types of candidate NiaR-binding sites, characteristic of the Firmicutes and Thermotogales, were verified by an electrophoretic mobility shift assay. In addition to transcriptional control of the nadABC genes, the NiaR regulon in some species extends to niacin salvage (the pncAB genes) and includes uncharacterized membrane proteins possibly involved in niacin transport. The involvement in niacin uptake proposed for one of these proteins (re-named NiaP), encoded by the B. subtilis gene yceI, was experimentally verified. In addition to bacteria, members of the NiaP family are conserved in multicellular eukaryotes, including human, pointing to possible NaiP involvement in niacin utilization in these organisms. Overall, the analysis of the NiaR and NrtR regulons (described in the accompanying paper) revealed mechanisms of transcriptional regulation of NAD metabolism in nearly a hundred diverse bacteria.
Collapse
|
18
|
Rodionov DA, De Ingeniis J, Mancini C, Cimadamore F, Zhang H, Osterman AL, Raffaelli N. Transcriptional regulation of NAD metabolism in bacteria: NrtR family of Nudix-related regulators. Nucleic Acids Res 2008; 36:2047-59. [PMID: 18276643 PMCID: PMC2330246 DOI: 10.1093/nar/gkn047] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A novel family of transcription factors responsible for regulation of various aspects of NAD synthesis in a broad range of bacteria was identified by comparative genomics approach. Regulators of this family (here termed NrtR for Nudix-related transcriptional regulators), currently annotated as ADP-ribose pyrophosphatases from the Nudix family, are composed of an N-terminal Nudix-like effector domain and a C-terminal DNA-binding HTH-like domain. NrtR regulons were reconstructed in diverse bacterial genomes by identification and comparative analysis of NrtR-binding sites upstream of genes involved in NAD biosynthetic pathways. The candidate NrtR-binding DNA motifs showed significant variability between microbial lineages, although the common consensus sequence could be traced for most of them. Bioinformatics predictions were experimentally validated by gel mobility shift assays for two NrtR family representatives. ADP-ribose, the product of glycohydrolytic cleavage of NAD, was found to suppress the in vitro binding of NrtR proteins to their DNA target sites. In addition to a major role in the direct regulation of NAD homeostasis, some members of NrtR family appear to have been recruited for the regulation of other metabolic pathways, including sugar pentoses utilization and biogenesis of phosphoribosyl pyrophosphate. This work and the accompanying study of NiaR regulon demonstrate significant variability of regulatory strategies for control of NAD metabolic pathway in bacteria.
Collapse
|
19
|
Affiliation(s)
- Dmitry A Rodionov
- Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| |
Collapse
|
20
|
Weekes D, Miller MD, Krishna SS, McMullan D, McPhillips TM, Acosta C, Canaves JM, Elsliger MA, Floyd R, Grzechnik SK, Jaroszewski L, Klock HE, Koesema E, Kovarik JS, Kreusch A, Morse AT, Quijano K, Spraggon G, van den Bedem H, Wolf G, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Crystal structure of a transcription regulator (TM1602) from Thermotoga maritima at 2.3 A resolution. Proteins 2007; 67:247-52. [PMID: 17256761 DOI: 10.1002/prot.21221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|