1
|
Joshi H, Kandari D, Maitra SS, Bhatnagar R, Banerjee N. Identification of genes associated with persistence in Mycobacterium smegmatis. Front Microbiol 2024; 15:1302883. [PMID: 38410395 PMCID: PMC10894938 DOI: 10.3389/fmicb.2024.1302883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The prevalence of bacterial persisters is related to their phenotypic diversity and is responsible for the relapse of chronic infections. Tolerance to antibiotic therapy is the hallmark of bacterial persistence. In this study, we have screened a transposon library of Mycobacterium smegmatis mc2155 strain using antibiotic tolerance, survival in mouse macrophages, and biofilm-forming ability of the mutants. Out of 10 thousand clones screened, we selected ten mutants defective in all the three phenotypes. Six mutants showed significantly lower persister abundance under different stress conditions. Insertions in three genes belonging to the pathways of oxidative phosphorylation msmeg_3233 (cydA), biotin metabolism msmeg_3194 (bioB), and oxidative metabolism msmeg_0719, a flavoprotein monooxygenase, significantly reduced the number of live cells, suggesting their role in pathways promoting long-term survival. Another group that displayed a moderate reduction in CFU included a glycosyltransferase, msmeg_0392, a hydrogenase subunit, msmeg_2263 (hybC), and a DNA binding protein, msmeg_2211. The study has revealed potential candidates likely to facilitate the long-term survival of M. smegmatis. The findings offer new targets to develop antibiotics against persisters. Further, investigating the corresponding genes in M. tuberculosis may provide valuable leads in improving the treatment of chronic and persistent tuberculosis infections.
Collapse
Affiliation(s)
- Hemant Joshi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| | - Subhrangsu Sundar Maitra
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Nirupama Banerjee
- Divacc Research Laboratories Pvt. Ltd., incubated under Atal Incubation Centre, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Chaudhary V, Pal AK, Singla M, Ghosh A. Elucidating the role of c-di-AMP in Mycobacterium smegmatis: Phenotypic characterization and functional analysis. Heliyon 2023; 9:e15686. [PMID: 37305508 PMCID: PMC10256829 DOI: 10.1016/j.heliyon.2023.e15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Cyclic-di-AMP (c-di-AMP) is an important secondary messenger molecule that plays a critical role in monitoring several important cellular processes, especially in several Gram-positive bacteria. In this study, we seek to unravel the physiological significance of the molecule c-di-AMP in Mycobacterium smegmatis under different conditions, using strains with altered c-di-AMP levels: c-di-AMP null mutant (ΔdisA) and a c-di-AMP over-expression mutant (Δpde). Our thorough analysis of the mutants revealed that the intracellular concentration of c-di-AMP could determine many basic phenotypes such as colony architecture, cell shape, cell size, membrane permeability etc. Additionally, it was shown to play a significant role in multiple stress adaptation pathways in the case of different DNA and membrane stresses. Our study also revealed how the biofilm phenotypes of M. smegmatis cells are altered with high intracellular c-di-AMP concentration. Next, we checked how c-di-AMP contributes to antibiotic resistance or susceptibility characteristics of M. smegmatis, which was followed by a detailed transcriptome profile analysis to reveal key genes and pathways such as translation, arginine biosynthesis, cell wall and plasma membrane are regulated by c-di-AMP in mycobacteria.
Collapse
|
3
|
Pereira MMR, de Oliveira FM, da Costa AC, Junqueira-Kipnis AP, Kipnis A. Ferritin from Mycobacterium abscessus is involved in resistance to antibiotics and oxidative stress. Appl Microbiol Biotechnol 2023; 107:2577-2595. [PMID: 36862179 DOI: 10.1007/s00253-023-12420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 03/03/2023]
Abstract
Mycobacterium abscessus subsp. massiliense (Mycma) is a rapidly growing Mycobacterium belonging to the M. abscessus complex that is often associated with lung and soft tissue infection outbreaks. Mycma is resistant to many antimicrobials, including those used for treating tuberculosis. Therefore, Mycma infections are difficult to treat and may lead to high infectious complication rates. Iron is essential for bacterial growth and establishment of infection. During infection, the host reduces iron concentrations as a defense mechanism. To counteract the host-induced iron deficiency, Mycma produces siderophores to capture iron. Mycma has two ferritins (encoded by mycma_0076 and mycma_0077) modulated by different iron concentrations, which allow the survival of this pathogen during iron scarcity. In this study, we constructed knockout (Mycma 0076KO) and complemented (Mycma 0076KOc) gene strains for mycma_0076 to understand the function of 0076 ferritin. Deletion of mycma_0076 in Mycma led to the transition in colony morphology from smooth to rough, alteration of the glycopeptidolipids spectra, increased permeability of the envelope, reduction in biofilm formation, increased susceptibility to antimicrobials and hydrogen peroxide-induced oxidative stress, and decreased internalization by macrophages. This study shows that Mycma_0076 ferritin in Mycma is involved in resistance to oxidative stress and antimicrobials, and alteration of cell envelope architecture. KEY POINTS: • Deletion of the mycma_0076 gene altered colony morphology to rough; • Mycma 0076KO changed GPL profile; • Absence of Mycma_0076 ferritin results in increased susceptibility to antimicrobials and oxidative stress in Mycma. Legend: a In wild-type M. abscessus subsp. massiliense strain, iron is captured from the environment by carboxymycobactins and mycobactins (1). Iron-dependent regulator (IdeR) proteins bind to ferrous iron (Fe+2) in the bacterial cytoplasm leading to the activation of the IdeR-Fe+2 complex (2). The activated complex binds to the promoter regions of iron-dependent genes, called iron box, which in turn help in the recruitment of RNA polymerase to promote transcription of genes such as mycma_0076 and mycma_0077 ferritin genes (3). Mycma_0076 and Mycma_0077 ferritins bind to excess iron in the medium and promote Fe2+ oxidation into ferric iron (Fe3+) and store iron molecules to be released under iron scarcity conditions. (4) Genes related to biosynthesis and transport of glycopeptidolipids (GPL) are expressed normally and the cell envelope is composed of different GPL species (colored squares represented on the cell surface (GPLs). Consequently, WT Mycma present smooth colony phenotype (5). b In Mycma 0076KO strain, the lack of ferritin 0076 causes overexpression of mycma_0077 (6), but does not restore wild-type iron homeostasis and thus may result in free intracellular iron, even in the presence of miniferritins (MaDps). The excess iron potentiates oxidative stress (7) by generating hydroxyl radicals through Fenton Reaction. During this process, through an unknown mechanism, that could involve Lsr2 (8), the expression of GPL synthesis locus is regulated positively and/or negatively, resulting in alteration of GPL composition in the membrane (as represented by different colors of squares on the cell surface), resulting in a rough colony phenotype (9). The changes of GPL can increase cell wall permeability, contributing to antimicrobial susceptibility (10).
Collapse
Affiliation(s)
- Maria Micaella Rodrigues Pereira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
| | - Fábio Muniz de Oliveira
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
- Tropical Medicine and Public Health Graduate Program at Federal, University of Goiás, Goiânia, GO, Brazil
- Indiana Center for Regenerative Medicine and Engineering, School of Medicine, Indiana University, Indianapolis, IN, USA
| | | | | | - André Kipnis
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
4
|
Daher W, Leclercq LD, Johansen MD, Hamela C, Karam J, Trivelli X, Nigou J, Guérardel Y, Kremer L. Glycopeptidolipid glycosylation controls surface properties and pathogenicity in Mycobacterium abscessus. Cell Chem Biol 2022; 29:910-924.e7. [PMID: 35358417 DOI: 10.1016/j.chembiol.2022.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/17/2021] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Mycobacterium abscessus is an emerging and difficult-to-manage mycobacterial species that exhibits smooth (S) or rough (R) morphotypes. Disruption of glycopeptidolipid (GPL) production results in transition from S to R and severe lung disease. A structure-activity relationship study was undertaken to decipher the role of GPL glycosylation in morphotype transition and pathogenesis. Deletion of gtf3 uncovered the prominent role of the extra rhamnose in enhancing mannose receptor-mediated internalization of M. abscessus by macrophages. In contrast, the absence of the 6-deoxy-talose and the first rhamnose in mutants lacking gtf1 and gtf2, respectively, affected M abscessus phagocytosis but also resulted in the S-to-R transition. Strikingly, gtf1 and gtf2 mutants displayed a strong propensity to form cords and abscesses in zebrafish, leading to robust and lethal infection. Together, these results underscore the importance and differential contribution of GPL monosaccharides in promoting virulence and infection outcomes.
Collapse
Affiliation(s)
- Wassim Daher
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Matt D Johansen
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Claire Hamela
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Jona Karam
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Xavier Trivelli
- Université de Lille, CNRS, INRAE, Centrale Lille, Université d'Artois, FR 2638 - IMEC - Institut Michel-Eugène Chevreul, 59000 Lille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Yann Guérardel
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| | - Laurent Kremer
- CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
5
|
Zhang Z, Yang Z, Zhen J, Xiang X, Liao P, Xie J. Insertion Mutation of MSMEG_0392 Play an Important Role in Resistance of M. smegmatis to Mycobacteriophage SWU1. Infect Drug Resist 2022; 15:347-357. [PMID: 35140480 PMCID: PMC8818766 DOI: 10.2147/idr.s341494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phage is a new choice for the treatment of multi-drug-resistant bacteria, and phage resistance is also an issue of concern. SWU1 is a mycobacteriophage, and the mechanism of its resistance remain poorly understood. Methods The mutant strains which were stably resistant to SWU1 were screened by transposon mutation library. The stage of phage resistance was observed by transmission electron microscope (TEM). The insertion site of transposon was identified by thermal asymmetric interlaced PCR (TAIL-PCR). The possible relationship between insertion site and phage resistance was verified by gene knockout technique. The fatty acid composition of bacterial cell wall was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). Through the amplification and sequencing of target genes and gene complement techniques to find the mechanism of SWU1 resistance. Results The transposon mutant M12 which was stably resistant to mycobacteriophage SWU1 was successfully screened. It was confirmed that resistance occurred in the adsorption stage of bacteriophage. It was verified that the insertion site of the transposon was located in the MSMEG_3705 gene, but after knocking out the gene in the wild type M. smegmatis mc2 155, the resistance of the knockout strain to SWU1 was not observed. Through the amplification and sequencing of the target gene MSMEG_0392, it was found that there was an adenine insertion mutation at position 817. After complementing MSMEG_0392 in M12, it was found that M12 returned to sensitivity to SWU1. Conclusion We confirmed that the resistance of M12 to SWU1 was related to the functional inactivation of MSMEG_0392 and this phenomenon may be caused by the change of cell wall of M. smegmatis.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Zhulan Yang
- Department of Clinical Laboratory, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Junfeng Zhen
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Xiaohong Xiang
- School of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, People’s Republic of China
| | - Pu Liao
- Department of Clinical Laboratory, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, People’s Republic of China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Three Gorges Eco-Environment and Bioresources, Eco-Environment Key Laboratory of the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, People’s Republic of China
- Correspondence: Jianping Xie; Pu Liao, Tel/Fax +8623-68367108, Email ;
| |
Collapse
|
6
|
Liu TY, Tsai SH, Chen JW, Wang YC, Hu ST, Chen YY. Mab_3083c Is a Homologue of RNase J and Plays a Role in Colony Morphotype, Aggregation, and Sliding Motility of Mycobacterium abscessus. Microorganisms 2021; 9:microorganisms9040676. [PMID: 33805851 PMCID: PMC8064342 DOI: 10.3390/microorganisms9040676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium abscessus is an opportunistic pathogen causing human diseases, especially in immunocompromised patients. M. abscessus strains with a rough morphotype are more virulent than those with a smooth morphotype. Morphotype switch may occur during a clinical infection. To investigate the genes involved in colony morphotype switching, we performed transposon mutagenesis in a rough clinical strain of M. abscessus. A morphotype switching mutant (smooth) named mab_3083c::Tn was obtained. This mutant was found to have a lower aggregative ability and a higher sliding motility than the wild type strain. However, its glycopeptidolipid (GPL) content remained the same as those of the wild type. Complementation of the mutant with a functional mab_3083c gene reverted its morphotype back to rough, indicating that mab_3083c is associated with colony morphology of M. abscessus. Bioinformatic analyses showed that mab_3083c has a 75.4% identity in amino acid sequence with the well-characterized ribonuclease J (RNase J) of M. smegmatis (RNase JMsmeg). Complementation of the mutant with the RNase J gene of M. smegmatis also switched its colony morphology from smooth back to rough. These results suggest that Mab_3083c is a homologue of RNase J and involved in regulating M. abscessus colony morphotype switching.
Collapse
Affiliation(s)
- Ting-Yu Liu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
| | - Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan 701, Taiwan
| | - Yu-Ching Wang
- Department of Biochemical Science and Technology, National Chiayi Univeristy, Chiayi City 600, Taiwan;
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei 112, Taiwan; (T.-Y.L.); (S.-H.T.)
- Correspondence: (S.-T.H.); (Y.-Y.C.)
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi Univeristy, Chiayi City 600, Taiwan;
- Correspondence: (S.-T.H.); (Y.-Y.C.)
| |
Collapse
|
7
|
Daher W, Leclercq LD, Viljoen A, Karam J, Dufrêne YF, Guérardel Y, Kremer L. O-Methylation of the Glycopeptidolipid Acyl Chain Defines Surface Hydrophobicity of Mycobacterium abscessus and Macrophage Invasion. ACS Infect Dis 2020; 6:2756-2770. [PMID: 32857488 DOI: 10.1021/acsinfecdis.0c00490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mycobacterium abscessus, an emerging pathogen responsible for severe lung infections in cystic fibrosis patients, displays either smooth (S) or rough (R) morphotypes. The S-to-R transition is associated with reduced levels of glycopeptidolipid (GPL) production and is correlated with increased pathogenicity in animal and human hosts. While the structure of GPL is well established, its biosynthetic pathway is incomplete. In addition, the biological functions of the distinct structural parts of this complex lipid remain elusive. Herein, the fmt gene encoding a putative O-methyltransferase was deleted in the M. abscessus S variant. Subsequent biochemical and structural analyses demonstrated that methoxylation of the fatty acyl chain of GPL was abrogated in the Δfmt mutant, and this defect was rescued upon complementation with a functional fmt gene. In contrast, the introduction of fmt derivatives mutated at residues essential for methyltransferase activity failed to complement GPL defects, indicating that fmt encodes an O-methyltransferase. Unexpectedly, phenotypic analyses showed that Δfmt was more hydrophilic than its parental progenitor, as demonstrated by hexadecane-aqueous buffer partitioning and atomic force microscopy experiments with hydrophobic probes. Importantly, the invasion rate of THP-1 macrophages by Δfmt was reduced by 50% when compared to the wild-type strain. Together, these results indicate that Fmt O-methylates the lipid moiety of GPL and plays a substantial role in conditioning the surface hydrophobicity of M. abscessus as well as in the early steps of the interaction between the bacilli and macrophages.
Collapse
Affiliation(s)
- Wassim Daher
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| | - Louis-David Leclercq
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Jona Karam
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 route de Mende, 34293 Montpellier, France
- INSERM, IRIM, 34293 Montpellier, France
| |
Collapse
|
8
|
Bakli M, Karim L, Mokhtari-Soulimane N, Merzouk H, Vincent F. Biochemical characterization of a glycosyltransferase Gtf3 from Mycobacterium smegmatis: a case study of improved protein solubilization. 3 Biotech 2020; 10:436. [PMID: 32999813 DOI: 10.1007/s13205-020-02431-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Glycosyltransferases (GTs) are widely present in several organisms. These enzymes specifically transfer sugar moieties to a range of substrates. The processes of bacterial glycosylation of the cell wall and their relations with host-pathogen interactions have been studied extensively, yet the majority of mycobacterial GTs involved in the cell wall synthesis remain poorly characterized. Glycopeptidolipids (GPLs) are major class of glycolipids present on the cell wall of various mycobacterial species. They play an important role in drug resistance and host-pathogen interaction virulence. Gtf3 enzyme performs a key step in the biosynthesis of triglycosylated GPLs. Here, we describe a general procedure to achieve expression, purification, and crystallization of recombinant protein Gtf3 from Mycobacterium smegmatis using an E. coli expression system. We reported also a combined bioinformatics and biochemical methods to predict aggregation propensity and improve protein solubilization of recombinant Gtf3. NVoy, a carbohydrate-based polymer reagent, was added to prevent protein aggregation by binding to hydrophobic protein surfaces of Gtf3. Using intrinsic tryptophan fluorescence quenching experiments, we also demonstrated that Gtf3-NVoy enzyme interacted with TDP and UDP nucleotide ligands. This case report proposes useful tools for the study of other glycosyltransferases which are rather difficult to characterize and crystallize.
Collapse
Affiliation(s)
- Mahfoud Bakli
- Department of Science of Nature and Life, Institute of Science, University Center Belhadj Bouchaib of Ain Temouchent, Po Box 284, 46000 Ain Temouchent, Algeria
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Loukmane Karim
- University of Strasbourg, CNRS, Architecture and Reactivity of RNA, UPR9002 Strasbourg, France
| | - Nassima Mokhtari-Soulimane
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Hafida Merzouk
- Laboratory of Physiology, Pathophysiology and Biochemistry of Nutrition, University Abou-Bekr Belkaid of Tlemcen, Tlemcen, Algeria
| | - Florence Vincent
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| |
Collapse
|
9
|
Dong W, Wang R, Li P, Wang G, Ren X, Feng J, Lu H, Lu W, Wang X, Chen H, Tan C. Orphan response regulator Rv3143 increases antibiotic sensitivity by regulating cell wall permeability in Mycobacterium smegmatis. Arch Biochem Biophys 2020; 692:108522. [PMID: 32781051 DOI: 10.1016/j.abb.2020.108522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
About one quarter of people worldwide are infected with tuberculosis, and multi-drug resistant tuberculosis (MDR-TB) remains a health threat. It is known that two-Component Signal Transduction Systems (TCSs) of Mycobacterium tuberculosis are closely related to tuberculosis resistance, but the mechanism by which orphan response protein Rv3143 regulates strain sensitivity to drug is still unclear. This study found that Rv3143 overexpression resulted in approximately two-fold increase in Mycobacterium smegmatis antibiotic sensitivity. Transcriptome sequencing indicated that 198 potential genes were regulated by Rv3143, affecting the sensitivity of the strain to rifampicin (RIF). MSMEG_4740 promoter binding with Rv3143, was screened out by surface plasmon resonance (SPR). Rv1524, the homologous gene of MSMEG_4740, belonging to the glycosyltransferase (Gtf) family, was related to cell wall modification. By measuring ethidium bromide (EB) accumulation, we found when Rv3143 or MSMEG_4740, or Rv1524 was overexpressed, the cell wall permeability of Mycobacterium smegmatis was increased. In addition, a combination of Rv3143 and RIF was observed. Our findings provide a new strategy for treating drug-resistant tuberculosis by increasing the expression of Rv3143 to enhance the strain sensitivity to antibiotics.
Collapse
Affiliation(s)
- Wenqi Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Pei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Department of Gastrointestinal Surgery, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, 518020, China
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xuanxiu Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jiajia Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, Hubei, 430070, China.
| |
Collapse
|
10
|
RelZ-Mediated Stress Response in Mycobacterium smegmatis: pGpp Synthesis and Its Regulation. J Bacteriol 2020; 202:JB.00444-19. [PMID: 31659009 DOI: 10.1128/jb.00444-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/21/2019] [Indexed: 11/20/2022] Open
Abstract
Stringent response is a conserved stress response mechanism in which bacteria employ the second messengers guanosine tetraphosphate and guanosine pentaphosphate [collectively termed (p)ppGpp] to reprogram their cellular processes under stress. In mycobacteria, these alarmones govern a multitude of cellular phenotypes, such as cell division, biofilm formation, antibiotic tolerance, and long-term survival. Mycobacterium smegmatis possesses the bifunctional RelMsm as a (p)ppGpp synthetase and hydrolase. In addition, it contains a short alarmone synthetase MS_RHII-RSD (renamed RelZ), which contains an RNase H domain in tandem with the (p)ppGpp synthetase domain. The physiological functions of RelMsm have been well documented, but there is no clear picture about the cellular functions of RelZ in M. smegmatis RelZ has been implicated in R-loop induced stress response due to its unique domain architecture. In this study, we elucidate the differential substrate utilization pattern of RelZ compared to that of RelMsm We unveil the ability of RelZ to use GMP as a substrate to synthesize pGpp, thereby expanding the repertoire of second messengers known in mycobacteria. We have demonstrated that the pGpp synthesis activity of RelZ is negatively regulated by RNA and pppGpp. Furthermore, we investigated its role in biofilm formation and antibiotic tolerance. Our findings highlight the complex role played by the RelZ in cellular physiology of M. smegmatis and sheds light upon its functions distinct from those of RelMsm IMPORTANCE Bacteria utilize nucleotide messengers to survive the hostile environmental conditions and the onslaught of attacks within the host. The second messengers guanosine tetraphosphate and pentaphosphate [(p)ppGpp] have a profound impact on the long-term survival, biofilm formation, antibiotic tolerance, virulence, and pathogenesis of bacteria. Therefore, understanding the stress response mechanism regulated by (p)ppGpp is essential for discovering inhibitors of stress response and potential drug targets. Mycobacterium smegmatis contains two (p)ppGpp synthetases: RelMsm and RelZ. Our study unravels the novel regulatory mechanisms of RelZ activity and its role in mediating antibiotic tolerance. We further reveal its ability to synthesize novel second messenger pGpp, which may have regulatory roles in mycobacteria.
Collapse
|
11
|
Sun WJ, Liu YJ, Liu HH, Ma JD, Ren YH, Wang FQ, Wei DZ. Enhanced conversion of sterols to steroid synthons by augmenting the peptidoglycan synthesis gene pbpB in Mycobacterium neoaurum. J Basic Microbiol 2019; 59:924-935. [PMID: 31347189 DOI: 10.1002/jobm.201900159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 11/05/2022]
Abstract
Some species of mycobacteria have been modified to transform sterols to valuable steroid synthons. The unique cell wall of mycobacteria has been recognized as an important organelle to absorb sterols. Some cell wall inhibitors (e.g., vancomycin and glycine) have been validated to enhance sterol conversion by interfering with transpeptidation in peptidoglycan biosynthesis. Therefore, two transpeptidase genes, pbpA and pbpB, were selected to rationally modify the cell wall to simulate the enhancement effect of vancomycin and glycine on sterol conversion in a 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) producing strain (WIII). Unexpectedly, the pbpA or pbpB gene augmentation was conducive to the utilization of sterols. The pbpB augmentation strain WIII-pbpB was further investigated for its better performance. Compared to WIII, the morphology of WIII-pbpB was markedly changed from oval to spindle, indicating alterations of the cell wall. Biochemical analysis indicated that the altered cell wall properties of WIII-pbpB might contribute to the positive effect on sterol utilization. The productivity of 4-HBC was enhanced by 28% in the WIII-pbpB strain compared to that of WIII. These results demonstrated that the modification of peptidoglycan synthesis can improve the conversion of sterols to steroid synthons in mycobacteria.
Collapse
Affiliation(s)
- Wan-Ju Sun
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yong-Jun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hao-Hao Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jie-De Ma
- Department of Pharmacy, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | | | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
12
|
Zhao J, Wei W, Yan H, Zhou Y, Li Z, Chen Y, Zhang C, Zeng J, Chen T, Zhou L. Assessing capreomycin resistance on tlyA deficient and point mutation (G695A) Mycobacterium tuberculosis strains using multi-omics analysis. Int J Med Microbiol 2019; 309:151323. [PMID: 31279617 DOI: 10.1016/j.ijmm.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/26/2019] [Accepted: 06/22/2019] [Indexed: 10/26/2022] Open
Abstract
Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40 μg/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10 μg/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.
Collapse
Affiliation(s)
- Jiao Zhao
- Jinan University, Guangzhou 510632, China
| | - Wenjing Wei
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Huimin Yan
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China
| | - Ying Zhou
- School of Stomatology and Medicine, Foshan University, Foshan, Guangdong, 528000, China
| | - Zhenyan Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Yanmei Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Chenchen Zhang
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China
| | - Jincheng Zeng
- Dongguang Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Tao Chen
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; South China Institute of Biomedicine, Guangzhou 510530, China.
| | - Lin Zhou
- Center for Tuberculosis Control of Guangdong Province, Key Laboratory of Translational Medicine of Guangdong, Guangzhou 510630, China; Jinan University, Guangzhou 510632, China.
| |
Collapse
|
13
|
Wei W, Yan H, Zhao J, Li H, Li Z, Guo H, Wang X, Zhou Y, Zhang X, Zeng J, Chen T, Zhou L. Multi-omics comparisons of p-aminosalicylic acid (PAS) resistance in folC mutated and un-mutated Mycobacterium tuberculosis strains. Emerg Microbes Infect 2019; 8:248-261. [PMID: 30866779 PMCID: PMC6455211 DOI: 10.1080/22221751.2019.1568179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
p-Aminosalicylic acid (PAS) is an important second-line antibiotic for treating multidrug-resistant tuberculosis (MDR-TB). Due to gastrointestinal disturbance and intolerance, its potent and efficacy in the treatment of extensively drug-resistant (XDR)-TB commonly are poor. Thus, it is important to reveal the mechanism of susceptibility and resistance of Mycobacterium tuberculosis (Mtb) to this drug. Herein, we screened and established PAS-resistant (PASr) folC mutated and un-mutated Mtb strains, then utilized a multi-omics (genome, proteome, and metabolome) analysis to better characterize the mechanisms of PAS resistance in Mtb. Interestingly, we found that promotion of SAM-dependent methyltransferases and suppression of PAS uptake via inhibiting some drug transport associated membrane proteins were two key pathways for the folC mutated strain evolving into the PASr Mtb strain. However, the folC un-mutated strain was resistant to PAS via uptake of exogenous methionine, mitigating the role of inhibitors, and promoting DfrA, ThyA and FolC expression. Beyond these findings, we also found PAS resistance in Mtb might be associated with the increasing phenylalanine metabolism pathway. Collectively, our findings uncovered the differences of resistant mechanism between folC mutated and un-mutated Mtb strains resistant to PAS using multi-omics analysis and targeting modulators to these pathways may be effective for treatment of PASr Mtb strains.
Collapse
Affiliation(s)
- Wenjing Wei
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Huimin Yan
- c Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Guangdong Medical University , Dongguan , People's Republic of China
| | - Jiao Zhao
- d Jinan University , Guangzhou , People's Republic of China
| | - Haicheng Li
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Zhenyan Li
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Huixin Guo
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Xuezhi Wang
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| | - Ying Zhou
- e School of Stomatology and Medicine , Foshan University , Foshan , People's Republic of China
| | - Xiaoli Zhang
- e School of Stomatology and Medicine , Foshan University , Foshan , People's Republic of China
| | - Jincheng Zeng
- c Dongguan Key Laboratory of Medical Bioactive Molecular Development and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics , Guangdong Medical University , Dongguan , People's Republic of China
| | - Tao Chen
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China.,f South China Institute of Biomedicine , Guangzhou , People's Republic of China
| | - Lin Zhou
- a Center for Tuberculosis Control of Guangdong Province , Guangzhou , People's Republic of China.,b Key Laboratory of Translational Medicine of Guangdong , Guangzhou , People's Republic of China
| |
Collapse
|
14
|
Di Capua CB, Belardinelli JM, Buchieri MV, Bortolotti A, Franceschelli JJ, Morbidoni HR. Deletion of MSMEG_1350 in Mycobacterium smegmatis causes loss of epoxy-mycolic acids, fitness alteration at low temperature and resistance to a set of mycobacteriophages. MICROBIOLOGY-SGM 2018; 164:1567-1582. [PMID: 30311878 DOI: 10.1099/mic.0.000734] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.
Collapse
Affiliation(s)
- Cecilia B Di Capua
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Juan M Belardinelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina.,‡Present address: Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - María V Buchieri
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ana Bortolotti
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Jorgelina J Franceschelli
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Héctor R Morbidoni
- Laboratorio de Microbiología Molecular, Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
15
|
Two dd-Carboxypeptidases from Mycobacterium smegmatis Affect Cell Surface Properties through Regulation of Peptidoglycan Cross-Linking and Glycopeptidolipids. J Bacteriol 2018; 200:JB.00760-17. [PMID: 29735762 DOI: 10.1128/jb.00760-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 04/25/2018] [Indexed: 11/20/2022] Open
Abstract
During the peptidoglycan (PG) maturation of mycobacteria, the glycan strands are interlinked by both 3-3 (between two meso-diaminopimelic acids [meso-DAPs]) and 4-3 cross-links (between d-Ala and meso-DAP), though there is a predominance (60 to 80%) of 3-3 cross-links. The dd-carboxypeptidases (dd-CPases) act on pentapeptides to generate tetrapeptides that are used by ld-transpeptidases as substrates to form 3-3 cross-links. Therefore, dd-CPases play a crucial role in mycobacterial PG cross-link formation. However, the physiology of dd-CPases in mycobacteria is relatively unexplored. In this study, we deleted two dd-CPase genes, msmeg_2433 and msmeg_2432, both individually and in combination, from Mycobacterium smegmatis mc2155. Though the single dd-CPase gene deletions had no significant impact on the mycobacterial physiology, many interesting functional alterations were observed in the double-deletion mutant, viz, a predominance in PG cross-link formation was shifted from 3-3 cross-links to 4-3, cell surface glycopeptidolipid (GPL) expression was reduced, and susceptibility to β-lactams and antitubercular agents was enhanced. Moreover, the survival rate of the double mutant within murine macrophages was higher than that of the parent. Interestingly, the complementation with any one of the dd-CPase genes could restore the wild-type phenotype. In a nutshell, we infer that the altered ratio of 4-3 to 3-3 PG cross-links might have influenced the expression of surface GPLs, colony morphology, biofilm formation, drug susceptibility, and subsistence of the cells within macrophages.IMPORTANCE The glycan strands in mycobacterial peptidoglycan (PG) are interlinked by both 3-3 and 4-3 cross-links. The dd-CPases generate tetrapeptides by acting on the pentapeptides, and ld-transpeptidases use tetrapeptides as substrates to form 3-3 cross-links. In this study, we showed that simultaneous deletions of two dd-CPases alter the nature of PG cross-linking from 3-3 cross-links to 4-3 cross-links. The deletions subsequently decrease the expression of glycopeptidolipids (significant surface lipid present in many nontuberculous mycobacteria, including Mycobacterium smegmatis) and affect other physiological parameters, like cell morphology, growth rate, biofilm formation, antibiotic susceptibility, and survival within murine macrophages. Thus, unraveling the physiology of dd-CPases might help us design antimycobacterial therapeutics in the future.
Collapse
|
16
|
Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034. [PMID: 29662082 PMCID: PMC5902629 DOI: 10.1038/s41598-018-24380-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha’-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.
Collapse
Affiliation(s)
- Cyril Lefebvre
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Richard Boulon
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Manuelle Ducoux
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Sabine Gavalda
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Marie-Pierre Bousquet
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Fabienne Bardou
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Odile Burlet-Schiltz
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
17
|
Zhu L, Peng Y, Ye J, Wang T, Bian Z, Qin Y, Zhang H, Ding J. Isolation, Identification, and Characterization of a New Highly Pathogenic Field Isolate of Mycobacterium avium spp. avium. Front Vet Sci 2018; 4:243. [PMID: 29379790 PMCID: PMC5775284 DOI: 10.3389/fvets.2017.00243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/20/2017] [Indexed: 01/27/2023] Open
Abstract
Avian tuberculosis is a chronic, contagious zoonotic disease affecting birds, mammals, and humans. The disease is most often caused by Mycobacterium avium spp. avium (MAA). Strain resources are important for research on avian tuberculosis and vaccine development. However, there has been little reported about the newly identified MAA strain in recent years in China. In this study, a new strain was isolated from a fowl with symptoms of avian tuberculosis by bacterial culture. The isolated strain was identified to be MAA by culture, staining, and biochemical and genetic analysis, except for different colony morphology. The isolated strain was Ziehl-Zeelsen staining positive, resistant to p-nitrobenzoic acid, and negative for niacin production, Tween-80 hydrolysis, heat stable catalase and nitrate production. The strain had the DnaJ gene, IS1245, and IS901, as well. Serum agglutination indicated that the MAA strain was of serotype 1. The MAA strain showed strong virulence via mortality in rabbits and chickens. The prepared tuberculin of the MAA strain had similar potency compared to the MAA reference strain and standard tuberculin via a tuberculin skin test. Our studies suggested that this MAA strain tends to be a novel subtype, which might enrich the strain resource of avian tuberculosis.
Collapse
Affiliation(s)
- Liangquan Zhu
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yong Peng
- China Institute of Veterinary Drug Control, Beijing, China
| | - Junxian Ye
- China Institute of Veterinary Drug Control, Beijing, China
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Zengjie Bian
- China Institute of Veterinary Drug Control, Beijing, China
| | - Yuming Qin
- China Institute of Veterinary Drug Control, Beijing, China
| | - He Zhang
- China Institute of Veterinary Drug Control, Beijing, China
| | - Jiabo Ding
- China Institute of Veterinary Drug Control, Beijing, China
| |
Collapse
|
18
|
Zanfardino A, Migliardi A, D'Alonzo D, Lombardi A, Varcamonti M, Cordone A. Inactivation of MSMEG_0412 gene drastically affects surface related properties of Mycobacterium smegmatis. BMC Microbiol 2016; 16:267. [PMID: 27825305 PMCID: PMC5101647 DOI: 10.1186/s12866-016-0888-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/04/2016] [Indexed: 01/03/2023] Open
Abstract
Background The outermost layer of mycobacterial cell wall is rich in lipids and glycolipids, surface molecules which differ among species. Mycobacterium smegmatis, an attractive model for the study of both pathogenic and non-pathogenic mycobacteria, presents glycopeptidolipids (GPLs). All the genes necessary for the biosynthesis of such molecules are clustered in a single region of 65 kb and among them, the msmeg_0412 gene has not been characterized yet. Here we report the isolation and subsequent analysis of a MSMEG_0412 null mutant strain. Results The inactivation of the msmeg_0412 gene had a drastic impact on bacterial surface properties which resulted in the lack of sliding motility, altered biofilm formation and enhanced drug susceptibility. The GPLs analysis showed that the observed mutant phenotype was due to GPLs deficiencies on the mycobacterial cell wall. In addition, we report that the expression of the gene is enhanced in the presence of lipidic substrates and that the encoded protein has a membrane localization. Conclusion msmeg_0412 plays a crucial role for GPLs production and translocation on M. smegmatis surface. Its deletion alters the surface properties and the antibiotic permeability of the mycobacterial cell barrier. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0888-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zanfardino
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Adriana Migliardi
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Daniele D'Alonzo
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy
| | - Angela Cordone
- Department of Biology, University of Naples "Federico II", Via Cintia, 80126, Naples, Italy.
| |
Collapse
|
19
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
20
|
Novel functions of (p)ppGpp and Cyclic di-GMP in mycobacterial physiology revealed by phenotype microarray analysis of wild-type and isogenic strains of Mycobacterium smegmatis. Appl Environ Microbiol 2015; 81:2571-8. [PMID: 25636840 DOI: 10.1128/aem.03999-14] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The bacterial second messengers (p)ppGpp and bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) regulate important functions, such as transcription, virulence, biofilm formation, and quorum sensing. In mycobacteria, they regulate long-term survival during starvation, pathogenicity, and dormancy. Recently, a Pseudomonas aeruginosa strain lacking (p)ppGpp was shown to be sensitive to multiple classes of antibiotics and defective in biofilm formation. We were interested to find out whether Mycobacterium smegmatis strains lacking the gene for either (p)ppGpp synthesis (ΔrelMsm) or c-di-GMP synthesis (ΔdcpA) would display similar phenotypes. We used phenotype microarray technology to compare the growth of the wild-type and the knockout strains in the presence of several antibiotics. Surprisingly, the ΔrelMsm and ΔdcpA strains showed enhanced survival in the presence of many antibiotics, but they were defective in biofilm formation. These strains also displayed altered surface properties, like impaired sliding motility, rough colony morphology, and increased aggregation in liquid cultures. Biofilm formation and surface properties are associated with the presence of glycopeptidolipids (GPLs) in the cell walls of M. smegmatis. Thin-layer chromatography analysis of various cell wall fractions revealed that the levels of GPLs and polar lipids were reduced in the knockout strains. As a result, the cell walls of the knockout strains were significantly more hydrophobic than those of the wild type and the complemented strains. We hypothesize that reduced levels of GPLs and polar lipids may contribute to the antibiotic resistance shown by the knockout strains. Altogether, our data suggest that (p)ppGpp and c-di-GMP may be involved in the metabolism of glycopeptidolipids and polar lipids in M. smegmatis.
Collapse
|
21
|
Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 2014; 111:4958-63. [PMID: 24639491 DOI: 10.1073/pnas.1403078111] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mycobacterium species, including the human pathogen Mycobacterium tuberculosis, are unique among Gram-positive bacteria in producing a complex cell wall that contains unusual lipids and functions as a permeability barrier. Lipids in the cell wall were hypothesized to form a bilayer or outer membrane that would prevent the entry of chemotherapeutic agents, but this could not be tested because of the difficulty in extracting only the cell-wall lipids. We used reverse micellar extraction to achieve this goal and carried out a quantitative analysis of both the cell wall and the inner membrane lipids of Mycobacterium smegmatis. We found that the outer leaflet of the outer membrane contains a similar number of hydrocarbon chains as the inner leaflet composed of mycolic acids covalently linked to cell-wall arabinogalactan, thus validating the outer membrane model. Furthermore, we found that preliminary extraction with reverse micelles permitted the subsequent complete extraction of inner membrane lipids with chloroform-methanol-water, revealing that one-half of hydrocarbon chains in this membrane are contributed by an unusual lipid, diacyl phosphatidylinositol dimannoside. The inner leaflet of this membrane likely is composed nearly entirely of this lipid. Because it contains four fatty acyl chains within a single molecule, it may produce a bilayer environment of unusually low fluidity and may slow the influx of drugs, contributing to the general drug resistance phenotype of mycobacteria.
Collapse
|
22
|
Kim BJ, Kim BR, Lee SY, Kook YH, Kim BJ. Rough colony morphology of Mycobacterium massiliense Type II genotype is due to the deletion of glycopeptidolipid locus within its genome. BMC Genomics 2013; 14:890. [PMID: 24341808 PMCID: PMC3878547 DOI: 10.1186/1471-2164-14-890] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/10/2013] [Indexed: 01/15/2023] Open
Abstract
Background Recently, we introduced the complete genome sequence of Mycobacterium massiliense clinical isolates, Asan 50594 belonging to Type II genotype with rough colony morphology. Here, to address the issue of whether the rough colony morphotype of M. massiliense Type II genotype is genetically determined or not, we compared polymorphisms of the glycopeptidolipid (GPL) gene locus between M. massiliense Type II Asan 50594 and other rapidly growing mycobacteria (RGM) strains via analysis of genome databases. Results We found deletions of 10 genes (24.8 kb), in the GPL biosynthesis related gene cluster of Asan 50594 genome, but no deletions in those of other smooth RGMs. To check the presence of deletions of GPL biosynthesis related genes in Mycobacterium abscessus − complex strains, PCRs targeting 12 different GPL genes (10 genes deleted in Asan 50594 genome as well as 2 conserved genes) were applied into 76 clinical strains of the M. abscessus complex strains [54 strains (Type I: 33, and Type II: 21) of M. massiliense and 22 strains (rough morphoype: 11 and smooth morphotype: 11) of M. abscessus]. No strains of the Type II genotype produced PCR amplicons in a total of 10 deleted GPL genes, suggesting loss of GPL biosynthesis genes in the genome of M. massiliense type II genotype strains. Conclusions Our data suggested that the rough colony morphotype of the M. massiliense Type II genotype may be acquired via deletion events at the GPL gene locus for evolutionary adaptation between the host and pathogen.
Collapse
Affiliation(s)
| | | | | | | | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and Seoul National University Medical Research Center (SNUMRC), Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
23
|
Pang L, Tian X, Pan W, Xie J. Structure and function of mycobacterium glycopeptidolipids from comparative genomics perspective. J Cell Biochem 2013; 114:1705-13. [PMID: 23444081 DOI: 10.1002/jcb.24515] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 02/04/2013] [Indexed: 11/08/2022]
Abstract
Glycopeptidolipids (GPLs) attached to the outer surface of the greasy cell envelope, are a class of important glycolipids synthesized by several non-tuberculosis mycobacteria. The deletion or structure change of GPLs confers several phenotypical changes including colony morphology, hydrophobicity, aggregation, sliding motility, and biofilm formation. In addition, GPLs, particular serovar specific GPLs, are important immunomodulators. This review aims to summarize the advance on the structure, function and biosynthesis of mycobacterium GPLs.
Collapse
Affiliation(s)
- Lei Pang
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | | | | | | |
Collapse
|
24
|
Khattak FA, Kumar A, Kamal E, Kunisch R, Lewin A. Illegitimate recombination: an efficient method for random mutagenesis in Mycobacterium avium subsp. hominissuis. BMC Microbiol 2012; 12:204. [PMID: 22966811 PMCID: PMC3511198 DOI: 10.1186/1471-2180-12-204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/07/2012] [Indexed: 01/04/2023] Open
Abstract
Background The genus Mycobacterium (M.) comprises highly pathogenic bacteria such as M. tuberculosis as well as environmental opportunistic bacteria called non-tuberculous mycobacteria (NTM). While the incidence of tuberculosis is declining in the developed world, infection rates by NTM are increasing. NTM are ubiquitous and have been isolated from soil, natural water sources, tap water, biofilms, aerosols, dust and sawdust. Lung infections as well as lymphadenitis are most often caused by M. avium subsp. hominissuis (MAH), which is considered to be among the clinically most important NTM. Only few virulence genes from M. avium have been defined among other things due to difficulties in generating M. avium mutants. More efforts in developing new methods for mutagenesis of M. avium and identification of virulence-associated genes are therefore needed. Results We developed a random mutagenesis method based on illegitimate recombination and integration of a Hygromycin-resistance marker. Screening for mutations possibly affecting virulence was performed by monitoring of pH resistance, colony morphology, cytokine induction in infected macrophages and intracellular persistence. Out of 50 randomly chosen Hygromycin-resistant colonies, four revealed to be affected in virulence-related traits. The mutated genes were MAV_4334 (nitroreductase family protein), MAV_5106 (phosphoenolpyruvate carboxykinase), MAV_1778 (GTP-binding protein LepA) and MAV_3128 (lysyl-tRNA synthetase LysS). Conclusions We established a random mutagenesis method for MAH that can be easily carried out and combined it with a set of phenotypic screening methods for the identification of virulence-associated mutants. By this method, four new MAH genes were identified that may be involved in virulence.
Collapse
Affiliation(s)
- Faisal Asghar Khattak
- Robert Koch-Institute, Division 16 Mycology/Parasitology/Intracellular Pathogens, Nordufer 20, Berlin 13353, Germany
| | | | | | | | | |
Collapse
|
25
|
Klepp LI, Forrellad MA, Osella AV, Blanco FC, Stella EJ, Bianco MV, Santangelo MDLP, Sassetti C, Jackson M, Cataldi AA, Bigi F, Morbidoni HR. Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect 2012; 14:590-9. [PMID: 22353253 PMCID: PMC3615541 DOI: 10.1016/j.micinf.2012.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/28/2011] [Accepted: 01/15/2012] [Indexed: 11/19/2022]
Abstract
The Mycobacterium smegmatis genome contains six operons designated mce (mammalian cell entry). These operons, which encode membrane and exported proteins, are highly conserved in pathogenic and non-pathogenic mycobacteria. Although the function of the Mce protein family has not yet been established in Mycobacterium smegmatis, the requirement of the mce4 operon for cholesterol utilization and uptake by Mycobacterium tuberculosis has recently been demonstrated. In this study, we report the construction of an M. smegmatis knock-out mutant deficient in the expression of all six mce operons. The consequences of these mutations were studied by analyzing physiological parameters and phenotypic traits. Differences in colony morphology, biofilm formation and aggregation in liquid cultures were observed, indicating that mce operons of M. smegmatis are implicated in the maintenance of the surface properties of the cell. Importantly, the mutant strain showed reduced cholesterol uptake when compared to the parental strain. Further cholesterol uptake studies using single mce mutant strains showed that the mutation of operon mce4 was reponsible for the cholesterol uptake failure detected in the sextuple mce mutant. This finding demonstrates that mce4operon is involved in cholesterol transport in M. smegmatis.
Collapse
Affiliation(s)
- Laura I. Klepp
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Marina A. Forrellad
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Ana V. Osella
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Federico C. Blanco
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Emma J. Stella
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Verónica Bianco
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - María de la Paz Santangelo
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Cristopher Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Angel A. Cataldi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Fabiana Bigi
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria (INTA), Castelar, Buenos Aires, Argentina
| | - Héctor R. Morbidoni
- Cátedra de Microbiología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
26
|
Tatham E, Sundaram Chavadi S, Mohandas P, Edupuganti UR, Angala SK, Chatterjee D, Quadri LEN. Production of mycobacterial cell wall glycopeptidolipids requires a member of the MbtH-like protein family. BMC Microbiol 2012; 12:118. [PMID: 22726990 PMCID: PMC3537567 DOI: 10.1186/1471-2180-12-118] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/07/2012] [Indexed: 12/22/2022] Open
Abstract
Background Glycopeptidolipids (GPLs) are among the major free glycolipid components of the outer membrane of several saprophytic and clinically-relevant Mycobacterium species. The architecture of GPLs is based on a constant tripeptide-amino alcohol core of nonribosomal peptide synthetase origin that is N-acylated with a 3-hydroxy/methoxy acyl chain synthesized by a polyketide synthase and further decorated with variable glycosylation patterns built from methylated and acetylated sugars. GPLs have been implicated in many aspects of mycobacterial biology, thus highlighting the significance of gaining an understanding of their biosynthesis. Our bioinformatics analysis revealed that every GPL biosynthetic gene cluster known to date contains a gene (referred herein to as gplH) encoding a member of the MbtH-like protein family. Herein, we sought to conclusively establish whether gplH was required for GPL production. Results Deletion of gplH, a gene clustered with nonribosomal peptide synthetase-encoding genes in the GPL biosynthetic gene cluster of Mycobacterium smegmatis, produced a GPL deficient mutant. Transformation of this mutant with a plasmid expressing gplH restored GPL production. Complementation was also achieved by plasmid-based constitutive expression of mbtH, a paralog of gplH found in the biosynthetic gene cluster for production of the siderophore mycobactin of M. smegmatis. Further characterization of the gplH mutant indicated that it also displayed atypical colony morphology, lack of sliding motility, altered capacity for biofilm formation, and increased drug susceptibility. Conclusions Herein, we provide evidence formally establishing that gplH is essential for GPL production in M. smegmatis. Inactivation of gplH also leads to a pleiotropic phenotype likely to arise from alterations in the cell envelope due to the lack of GPLs. While genes encoding MbtH-like proteins have been shown to be needed for production of siderophores and antibiotics, our study presents the first case of one such gene proven to be required for production of a cell wall component. Furthermore, our results provide the first example of a mbtH-like gene with confirmed functional role in a member of the Mycobacterium genus. Altogether, our findings demonstrate a critical role of gplH in mycobacterial biology and advance our understanding of the genetic requirements for the biosynthesis of an important group of constituents of the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Elizabeth Tatham
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Mukherjee R, Chatterji D. Glycopeptidolipids: immuno-modulators in greasy mycobacterial cell envelope. IUBMB Life 2012; 64:215-25. [PMID: 22252955 DOI: 10.1002/iub.602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 11/10/2011] [Indexed: 11/12/2022]
Abstract
Species of opportunistic mycobacteria are the major causative agent for disseminating pulmonary infections in immuno-compromised individuals. These naturally resistant strains recruit a unique type of glycolipid known as glycopeptidolipids (GPLs), noncovalently attached to the outer surface of their thick lipid rich cell envelope. Species specific GPLs constitute the chemical determinants of most nontuberculous mycobacterial serotypes, and their absence from the cell surface confers altered colony morphology, hydrophobicity, and inability to grow as biofilms. The objective of this review is to present a comprehensive account and highlight the renewed interest on this much neglected group of pleiotropic molecules with respect to their structural diversity and biosynthesis. In addition, the role of GPLs in mycobacterial survival, both intracellular and in the environment is also discussed. It also explores the possibility of identifying new targets for intervening Mycobacterium avium complex-related infections. These antigenic molecules have been considered to play a pivotal role in immune suppression and can also induce various cytokine mediated innate immune responses, the molecular mechanism of which remains obscure.
Collapse
Affiliation(s)
- Raju Mukherjee
- Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | |
Collapse
|
28
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005-2006. MASS SPECTROMETRY REVIEWS 2011; 30:1-100. [PMID: 20222147 DOI: 10.1002/mas.20265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This review is the fourth update of the original review, published in 1999, on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2006. The review covers fundamental studies, fragmentation of carbohydrate ions, method developments, and applications of the technique to the analysis of different types of carbohydrate. Specific compound classes that are covered include carbohydrate polymers from plants, N- and O-linked glycans from glycoproteins, glycated proteins, glycolipids from bacteria, glycosides, and various other natural products. There is a short section on the use of MALDI-TOF mass spectrometry for the study of enzymes involved in glycan processing, a section on industrial processes, particularly the development of biopharmaceuticals and a section on the use of MALDI-MS to monitor products of chemical synthesis of carbohydrates. Large carbohydrate-protein complexes and glycodendrimers are highlighted in this final section.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
29
|
Deshayes C, Bach H, Euphrasie D, Attarian R, Coureuil M, Sougakoff W, Laval F, Av-Gay Y, Daffé M, Etienne G, Reyrat JM. MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol Microbiol 2010; 78:989-1003. [DOI: 10.1111/j.1365-2958.2010.07385.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Jean-Marc Reyrat (29/04/1967-28/10/2009). Mol Microbiol 2010. [PMCID: PMC2848975 DOI: 10.1111/j.1365-2958.2010.07049.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Vissa VD, Sakamuri RM, Li W, Brennan PJ. Defining mycobacteria: Shared and specific genome features for different lifestyles. Indian J Microbiol 2009; 49:11-47. [PMID: 23100749 DOI: 10.1007/s12088-009-0006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 08/16/2008] [Indexed: 11/28/2022] Open
Abstract
During the last decade, the combination of rapid whole genome sequencing capabilities, application of genetic and computational tools, and establishment of model systems for the study of a range of species for a spectrum of biological questions has enhanced our cumulative knowledge of mycobacteria in terms of their growth properties and requirements. The adaption of the corynebacterial surrogate system has simplified the study of cell wall biosynthetic machinery common to actinobacteria. Comparative genomics supported by experimentation reveals that superimposed on a common core of 'mycobacterial' gene set, pathogenic mycobacteria are endowed with multiple copies of several protein families that encode novel secretion and transport systems such as mce and esx; immunomodulators named PE/PPE proteins, and polyketide synthases for synthesis of complex lipids. The precise timing of expression, engagement and interactions involving one or more of these redundant proteins in their host environments likely play a role in the definition and differentiation of species and their disease phenotypes. Besides these, only a few species specific 'virulence' factors i.e., macromolecules have been discovered. Other subtleties may also arise from modifications of shared macromolecules. In contrast, to cope with the broad and changing growth conditions, their saprophytic relatives have larger genomes, in which the excess coding capacity is dedicated to transcriptional regulators, transporters for nutrients and toxic metabolites, biosynthesis of secondary metabolites and catabolic pathways. In this review, we present a sampling of the tools and techniques that are being implemented to tease apart aspects of physiology, phylogeny, ecology and pathology and illustrate the dominant genomic characteristics of representative species. The investigation of clinical isolates, natural disease states and discovery of new diagnostics, vaccines and drugs for existing and emerging mycobacterial diseases, particularly for multidrug resistant strains are the challenges in the coming decades.
Collapse
Affiliation(s)
- Varalakshmi D Vissa
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO-80523-1628 USA
| | | | | | | |
Collapse
|
32
|
Kocíncová D, Winter N, Euphrasie D, Daffé M, Reyrat JM, Etienne G. The cell surface-exposed glycopeptidolipids confer a selective advantage to the smooth variants of Mycobacterium smegmatis in vitro. FEMS Microbiol Lett 2008; 290:39-44. [PMID: 19025562 DOI: 10.1111/j.1574-6968.2008.01396.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cell surface of mycobacteria is quite rich in lipids. Glycopeptidolipids, surface-exposed lipids that typify some mycobacterial species, have been associated with a phenotypic switch between rough and smooth colony morphotypes. This conversion in Mycobacterium smegmatis is correlated with the absence/presence of glycopeptidolipids on the cell surface and is due to insertion sequence mobility. Here, we show that the occurrence of a high amount of glycopeptidolipids in the smooth variant leads to lower invasion abilities and lower internalization by macrophages. We further show that the high production of glycopeptidolipids on the cell surface can confer a selective advantage to the smooth variant when grown in vitro. This higher fitness under the laboratory condition might explain the selection of smooth variants in several independent laboratories. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Dana Kocíncová
- Faculté de Médecine, Université Paris Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
33
|
SigF controls carotenoid pigment production and affects transformation efficiency and hydrogen peroxide sensitivity in Mycobacterium smegmatis. J Bacteriol 2008; 190:7859-63. [PMID: 18805974 DOI: 10.1128/jb.00714-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carotenoids are complex lipids that are known for acting against photodynamic injury and free radicals. We demonstrate here that sigma(F) is required for carotenoid pigment production in Mycobacterium smegmatis. We further show that a sigF mutant exhibits a transformation efficiency 10(4)-fold higher than that of the parental strain, suggesting that sigma(F) regulates the production of components affecting cell wall permeability. In addition, a sigF mutant showed an increased sensitivity to hydrogen peroxide. An in silico search of the M. smegmatis genome identified a number of SigF consensus sites, including sites upstream of the carotenoid synthesis locus, which explains its SigF regulation.
Collapse
|
34
|
Schorey JS, Sweet L. The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 2008; 18:832-41. [PMID: 18723691 DOI: 10.1093/glycob/cwn076] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycopeptidolipids (GPLs) are a class of glycolipids produced by several nontuberculosis-causing members of the Mycobacterium genus including pathogenic and nonpathogenic species. GPLs are expressed in different forms with production of highly antigenic, typeable serovar-specific GPLs in members of the Mycobacterium avium complex (MAC). M. avium and M. intracellulare, which comprise this complex, are slow-growing mycobacteria noted for producing disseminated infections in AIDS patients and pulmonary infections in non-AIDS patients. Previous studies have defined the gene cluster responsible for GPL biosynthesis and more recent work has characterized the function of the individual genes. Current research has also focused on the GPL's role in colony morphology, sliding motility, biofilm formation, immune modulation and virulence. These topics, along with new information on the enzymes involved in GPL biosynthesis, are the subject of this review.
Collapse
Affiliation(s)
- Jeffrey S Schorey
- Department of Biological Sciences, Eck Institute for Global Health and Infectious Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
35
|
Spontaneous transposition of IS1096 or ISMsm3 leads to glycopeptidolipid overproduction and affects surface properties in Mycobacterium smegmatis. Tuberculosis (Edinb) 2008; 88:390-8. [PMID: 18439873 DOI: 10.1016/j.tube.2008.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 01/18/2008] [Accepted: 02/16/2008] [Indexed: 11/20/2022]
Abstract
Natural modification of the colony appearance is a phenomenon that has not been fully understood in mycobacteria. Here, we show that Mycobacterium smegmatis ATCC607 displays a low-frequency spontaneous morphological variation that correlates with the acquisition of a panel of new phenotypes, such as aggregation, biofilm formation and sliding motility. These variants produce larger amounts of glycopeptidolipid (GPL), a cell-surface component, than did the wild-type strain. This conversion results from the transposition of two types of insertion sequences, IS1096 and ISMsm3, into two loci. One locus is the promoter region of the mps operon, the GPL biosynthesis gene cluster, leading to the overexpression of these genes. The other locus is the lsr2 gene, which encodes a small basic histone-like protein that likely plays a regulatory role at the mps promoter and also controls pigment production. This study demonstrates that insertion sequence mobility play a crucial role in the acquisition of new phenotypes.
Collapse
|
36
|
Gopalaswamy R, Narayanan S, Jacobs WR, Av-Gay Y. Mycobacterium smegmatisbiofilm formation and sliding motility are affected by the serine/threonine protein kinase PknF. FEMS Microbiol Lett 2008; 278:121-7. [DOI: 10.1111/j.1574-6968.2007.00989.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
37
|
Mukherjee R, Chatterji D. Proteomics and mass spectrometric studies reveal planktonic growth of Mycobacterium smegmatis in biofilm cultures in the absence of rpoZ. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 861:196-202. [PMID: 17822967 DOI: 10.1016/j.jchromb.2007.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/01/2007] [Accepted: 08/12/2007] [Indexed: 11/25/2022]
Abstract
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the omega subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc(2)155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Collapse
Affiliation(s)
- Raju Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012, India
| | | |
Collapse
|
38
|
Biet F, Bay S, Thibault VC, Euphrasie D, Grayon M, Ganneau C, Lanotte P, Daffé M, Gokhale R, Etienne G, Reyrat JM. Lipopentapeptide induces a strong host humoral response and distinguishes Mycobacterium avium subsp. paratuberculosis from M. avium subsp. avium. Vaccine 2007; 26:257-68. [PMID: 18068277 DOI: 10.1016/j.vaccine.2007.10.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many non-tuberculous mycobacteria synthesize abundant glycopeptidolipids (GPLs). These surface-located GPLs are involved in pathogenicity by interfering with the host immune system. In Mycobacterium avium subsp. avium (Mav), GPLs consist of a lipopeptide core composed of a tetrapeptide O-linked to mono- and oligo-saccharides. The biosynthesis pathway of the simplest GPLs is now relatively well understood and involves probably more than fifteen genes. Whereas it is very obvious that most, if not all, of the Mav isolates produce GPLs, the picture is not as clear for M. avium subsp. paratuberculosis (Map), the etiologic agent of Johne's disease in cattle, and several conflicting data have been produced. METHODS Biochemical analysis of a large set of characterized Map isolates showed that all Map strains tested produce a lipopentapeptide (L5P) instead of GPLs. To provide a genomic basis for the synthesis of this compound, the recently published genome sequence of Map was explored using in silico methods. Even though Map produces a lipopeptide rather than GPL, its genome contains nevertheless a locus highly similar to the GPL biosynthetic pathway of Mav. We showed that the module composition of the non-ribosomal protein synthase (Nrp) of Map, the enzyme involved in the synthesis of the peptidyl moiety, is dramatically different from that of other GPL producers such as M. smegmatis (Ms) and Mav and is in agreement with the amino acid content of the L5P. We also showed that the peptidyl moiety of the L5P is a target for a strong specific humoral response in Map infected animals. CONCLUSIONS These genomic and biochemical differences may help to unambiguously distinguish Map from Mav and also from M. bovis, to reclassify related strains of the Map species and to allow the convenient and specific diagnosis of paratuberculosis.
Collapse
Affiliation(s)
- Franck Biet
- UR1282, Infectiologie Animale, Santé Publique, INRA centre de Tours, F-37380 Nouzilly, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Biosurfactant production and surface translocation are regulated by PlcR in Bacillus cereus ATCC 14579 under low-nutrient conditions. Appl Environ Microbiol 2007; 73:7225-31. [PMID: 17921286 DOI: 10.1128/aem.00690-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.
Collapse
|
40
|
Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae. BMC Genomics 2007; 8:114. [PMID: 17490474 PMCID: PMC1885439 DOI: 10.1186/1471-2164-8-114] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 05/09/2007] [Indexed: 11/22/2022] Open
Abstract
Background The outermost layer of the bacterial surface is of crucial importance because it is in constant interaction with the host. Glycopeptidolipids (GPLs) are major surface glycolipids present on various mycobacterial species. In the fast-grower model organism Mycobacterium smegmatis, GPL biosynthesis involves approximately 30 genes all mapping to a single region of 65 kb. Results We have recently sequenced the complete genomes of two fast-growers causing human infections, Mycobacterium abscessus (CIP 104536T) and M. chelonae (CIP 104535T). We show here that these two species contain genes corresponding to all those of the M. smegmatis "GPL locus", with extensive conservation of the predicted protein sequences consistent with the production of GPL molecules indistinguishable by biochemical analysis. However, the GPL locus appears to be split into several parts in M. chelonae and M. abscessus. One large cluster (19 genes) comprises all genes involved in the synthesis of the tripeptide-aminoalcohol moiety, the glycosylation of the lipopeptide and methylation/acetylation modifications. We provide evidence that a duplicated acetyltransferase (atf1 and atf2) in M. abscessus and M. chelonae has evolved through specialization, being able to transfer one acetyl at once in a sequential manner. There is a second smaller and distant (M. chelonae, 900 kb; M. abscessus, 3 Mb) cluster of six genes involved in the synthesis of the fatty acyl moiety and its attachment to the tripeptide-aminoalcohol moiety. The other genes are scattered throughout the genome, including two genes encoding putative regulatory proteins. Conclusion Although these three species produce identical GPL molecules, the organization of GPL genes differ between them, thus constituting species-specific signatures. An hypothesis is that the compact organization of the GPL locus in M. smegmatis represents the ancestral form and that evolution has scattered various pieces throughout the genome in M. abscessus and M. chelonae.
Collapse
|
41
|
Berg S, Kaur D, Jackson M, Brennan PJ. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 2007; 17:35-56R. [PMID: 17261566 DOI: 10.1093/glycob/cwm010] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several human pathogens are to be found within the bacterial genus Mycobacterium, notably Mycobacterium tuberculosis, the causative agent of tuberculosis, one of the most threatening of human infectious diseases, with an annual lethality of about two million people. The characteristic mycobacterial cell envelope is the dominant feature of the biology of M. tuberculosis and other mycobacterial pathogens, based on sugars and lipids of exceptional structure. The cell wall consists of a peptidoglycan-arabinogalactan-mycolic acid complex beyond the plasma membrane. Free-standing lipids, lipoglycans, and proteins intercalate within this complex, complement the mycolic acid monolayer and may also appear in a capsular-like arrangement. The consequences of these structural oddities are an extremely robust and impermeable cell envelope. This review reflects on these entities from the perspective of their synthesis, particularly the structural and functional aspects of the glycosyltransferases (GTs) of M. tuberculosis, the dominating group of enzymes responsible for the terminal stages of their biosynthesis. Besides the many nucleotide-sugar dependent GTs with orthologs in prokaryotes and eukaryotes, M. tuberculosis and related species of the order Actinomycetales, in light of the highly lipophilic environment prevailing within the cell envelope, carry a significant number of GTs of the GT-C class dependent on polyprenyl-phosphate-linked sugars. These are of special emphasis in this review.
Collapse
Affiliation(s)
- Stefan Berg
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
42
|
Mukherjee R, Chatterji D. Evaluation of the role of sigma B in Mycobacterium smegmatis. Biochem Biophys Res Commun 2005; 338:964-72. [PMID: 16248983 DOI: 10.1016/j.bbrc.2005.10.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Accepted: 10/07/2005] [Indexed: 11/24/2022]
Abstract
The alternate sigma factor, sigB, is known to play a crucial role in maintaining the stationary phase in mycobacteria. In this communication, we have studied the proteomics of Mycobacterium smegmatis mc(2)155 and its two derivatives, one of which has a disrupted sigB gene and the other, PMVSigB, which contains a multicopy plasmid containing sigB. We have identified by two-dimensional gel analyses, several proteins that are over-expressed in PMVSigB compared to mc(2)155. These proteins are either stress proteins or participate actively in different metabolic pathways of the organisms. On the other hand, when sigB deleted mycobacteria were grown until the stationary phase and its two-dimensional protein profile was compared to that of mc(2)155, few DNA binding proteins were found to be up-regulated. We have shown recently that upon over-expressing sigB, the cell surface glycopeptidolipids of M. smegmatis are hyperglycosylated, a situation similar to what was observed for nutritionally starved bacteria. Gene expression profile through quantitative PCR presented here identified a Rhamnosyltransferase responsible for this hyperglycosylation.
Collapse
Affiliation(s)
- Raju Mukherjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|