1
|
Patinios C, de Vries ST, Diallo M, Lanza L, Verbrugge PLJVQ, López-Contreras AM, van der Oost J, Weusthuis RA, Kengen SWM. Multiplex genome engineering in Clostridium beijerinckii NCIMB 8052 using CRISPR-Cas12a. Sci Rep 2023; 13:10153. [PMID: 37349508 PMCID: PMC10287719 DOI: 10.1038/s41598-023-37220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Stijn T de Vries
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Mamou Diallo
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Bioconversion Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Pepijn L J V Q Verbrugge
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ana M López-Contreras
- Bioconversion Group, Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Vamsi Krishna K, Bharathi N, George Shiju S, Alagesan Paari K, Malaviya A. An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47988-48019. [PMID: 35562606 DOI: 10.1007/s11356-022-20637-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
A significant concern of our fuel-dependent era is the unceasing exhaustion of petroleum fuel supplies. In parallel to this, environmental issues such as the greenhouse effect, change in global climate, and increasing global temperature must be addressed on a priority basis. Biobutanol, which has fuel characteristics comparable to gasoline, has attracted global attention as a viable green fuel alternative among the many biofuel alternatives. Renewable biomass could be used for the sustainable production of biobutanol by the acetone-butanol-ethanol (ABE) pathway. Non-extinguishable resources, such as algal and lignocellulosic biomass, and starch are some of the most commonly used feedstock for fermentative production of biobutanol, and each has its particular set of advantages. Clostridium, a gram-positive endospore-forming bacterium that can produce a range of compounds, along with n-butanol is traditionally known for its biobutanol production capabilities. Clostridium fermentation produces biobased n-butanol through ABE fermentation. However, low butanol titer, a lack of suitable feedstock, and product inhibition are the primary difficulties in biobutanol synthesis. Critical issues that are essential for sustainable production of biobutanol include (i) developing high butanol titer producing strains utilizing genetic and metabolic engineering approaches, (ii) renewable biomass that could be used for biobutanol production at a larger scale, and (iii) addressing the limits of traditional batch fermentation by integrated bioprocessing technologies with effective product recovery procedures that have increased the efficiency of biobutanol synthesis. Our paper reviews the current progress in all three aspects of butanol production and presents recent data on current practices in fermentative biobutanol production technology.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | - Natarajan Bharathi
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India
| | - Shon George Shiju
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India
| | | | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, CHRIST (Deemed-to-Be University), Hosur road, Bangalore, Karnataka, India.
- Department of Life Sciences, CHRIST (Deemed to Be University), Bengaluru, India.
| |
Collapse
|
3
|
Liu Y, Zhang Z, Jiang W, Gu Y. Protein acetylation-mediated cross-regulation of acetic acid and ethanol synthesis in the gas-fermenting Clostridium ljungdahlii. J Biol Chem 2021; 298:101538. [PMID: 34954142 PMCID: PMC8814400 DOI: 10.1016/j.jbc.2021.101538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/23/2023] Open
Abstract
The autotrophic acetogen Clostridium ljungdahlii has emerged as a major candidate in the biological conversion of one-carbon gases (CO2/CO) to bulk chemicals and fuels. Nevertheless, the regulatory pathways and downstream metabolic changes responsible for product formation and distribution in this bacterium remain minimally explored. Protein lysine acetylation (PLA), a prevalent posttranslational modification, controls numerous crucial cellular functions. Herein, we revealed a novel cross-regulatory mechanism that uses both the PLA system and transcription factors to regulate the carbon flow distribution for product formation in C. ljungdahlii. The dominant acetylation/deacetylation system (At2/Dat1) in C. ljungdahlii was found to regulate the ratio of two major products, acetic acid and ethanol. Subsequent genetic and biochemical analyses revealed that the activities of Pta and AdhE1, two crucial enzymes responsible for acetic acid and ethanol synthesis, respectively, were greatly affected by their levels of PLA. We found that the acetylation statuses of Pta and AdhE1 underwent significant dynamic changes during the fermentation process, leading to differential synthesis of acetic acid and ethanol. Furthermore, the crucial redox-sensing protein Rex was shown to be regulated by PLA, which subsequently altered its transcriptional regulation on genes responsible for acetic acid and ethanol formation and distribution. Based on our understanding of this cross-regulatory module, we optimized the ethanol synthetic pathway by modifying the acetylation status (deacetylation-mimicked mutations of crucial lysine residues) of the related key enzyme, achieving significantly increased titer and yield of ethanol, an important chemical and fuel, by C. ljungdahlii in gas fermentation.
Collapse
Affiliation(s)
- Yanqiang Liu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwen Zhang
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yang Gu
- Key Laboratory of Synthetic Biology, The State Key Laboratory of Plant Carbon-Nitrogen Assimilation, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
4
|
Diallo M, Kengen SWM, López-Contreras AM. Sporulation in solventogenic and acetogenic clostridia. Appl Microbiol Biotechnol 2021; 105:3533-3557. [PMID: 33900426 PMCID: PMC8102284 DOI: 10.1007/s00253-021-11289-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023]
Abstract
The Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, The Netherlands.
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | |
Collapse
|
5
|
Patinios C, Lanza L, Corino I, Franssen MCR, Van der Oost J, Weusthuis RA, Kengen SWM. Eat1-Like Alcohol Acyl Transferases From Yeasts Have High Alcoholysis and Thiolysis Activity. Front Microbiol 2020; 11:579844. [PMID: 33193208 PMCID: PMC7658179 DOI: 10.3389/fmicb.2020.579844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Esters are important flavor and fragrance compounds that are present in many food and beverage products. Many of these esters are produced by yeasts and bacteria during fermentation. While ester production in yeasts through the alcohol acyl transferase reaction has been thoroughly investigated, ester production through alcoholysis has been completely neglected. Here, we further analyze the catalytic capacity of the yeast Eat1 enzyme and demonstrate that it also has alcoholysis and thiolysis activities. Eat1 can perform alcoholysis in an aqueous environment in vitro, accepting a wide range of alcohols (C2-C10) but only a small range of acyl donors (C2-C4). We show that alcoholysis occurs in vivo in several Crabtree negative yeast species but also in engineered Saccharomyces cerevisiae strains that overexpress Eat1 homologs. The alcoholysis activity of Eat1 was also used to upgrade ethyl esters to butyl esters in vivo by overexpressing Eat1 in Clostridium beijerinckii. Approximately 17 mM of butyl acetate and 0.3 mM of butyl butyrate could be produced following our approach. Remarkably, the in vitro alcoholysis activity is 445 times higher than the previously described alcohol acyl transferase activity. Thus, alcoholysis is likely to affect the ester generation, both quantitatively and qualitatively, in food and beverage production processes. Moreover, mastering the alcoholysis activity of Eat1 may give rise to the production of novel food and beverage products.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Inge Corino
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - John Van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A. Weusthuis
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
6
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
7
|
Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365. Metab Eng 2020; 61:381-388. [DOI: 10.1016/j.ymben.2020.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
|
8
|
Han S, Kim Y, Karanjikar M, San KY, Bennett GN. Genetic sensor-regulators functional in Clostridia. J Ind Microbiol Biotechnol 2020; 47:609-620. [DOI: 10.1007/s10295-020-02303-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Abstract
This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins. These genetic sensor-regulators were found to be transferable to another Clostridium species, such as Clostridium beijerinckii NCIMB 8052. The gradual expression of reporter protein was observed as a function of the carbohydrates of interest. A xylose-inducible promoter allows a titratable and robust expression of a reporter protein with stringency and efficacy. This xylose-inducible circuit was seen to enable induction of the expression of reporter proteins in the presence of actual sugar mixtures incorporated in woody hydrolysate wherein glucose and xylose are present as predominant carbon sources.
Collapse
Affiliation(s)
- SongI Han
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
| | - Younghwan Kim
- grid.427405.0 Technology Holding LLC 84119 West Valley City UT USA
| | | | - Ka-Yiu San
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
| | - George N Bennett
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of BioSciences Rice University 77005 Houston TX USA
| |
Collapse
|
9
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
10
|
Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Methods 2019; 172:51-60. [PMID: 31362039 DOI: 10.1016/j.ymeth.2019.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.
Collapse
|
11
|
Engineering Clostridium for improved solvent production: recent progress and perspective. Appl Microbiol Biotechnol 2019; 103:5549-5566. [DOI: 10.1007/s00253-019-09916-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 01/07/2023]
|
12
|
|
13
|
Xue C, Zhao J, Chen L, Yang ST, Bai F. Recent advances and state-of-the-art strategies in strain and process engineering for biobutanol production by Clostridium acetobutylicum. Biotechnol Adv 2017; 35:310-322. [DOI: 10.1016/j.biotechadv.2017.01.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/06/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
14
|
Wong SS, Mi L, Liao JC. Microbial Production of Butanols. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sio Si Wong
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - Luo Mi
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| | - James C. Liao
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, 5531Boelter Hall Los Angeles CA 90095 USA
| |
Collapse
|
15
|
Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 2016; 100:8255-71. [PMID: 27531513 DOI: 10.1007/s00253-016-7760-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sang Jun Lee
- Biosystems and Bioengineering Program, University of Science and Technology and Microbiomics and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
16
|
Sandoval-Espinola WJ, Chinn M, Bruno-Barcena JM. Inoculum optimization ofClostridium beijerinckiifor reproducible growth. FEMS Microbiol Lett 2015; 362:fnv164. [DOI: 10.1093/femsle/fnv164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
|
17
|
Abstract
Since the first application of high hydrostatic pressure (HHP) for food preservation more than 100 years ago, a wealth of knowledge has been gained on molecular mechanisms underlying the HHP-mediated destruction of microorganisms. However, one observation made back then is still valid, i.e. that HHP alone is not sufficient for the complete inactivation of bacterial endospores. To achieve "commercial sterility" of low-acid foods, i.e. inactivation of spores capable of growing in a specific product under typical storage conditions, a combination of HHP with other hurdles is required (most effectively with heat (HPT)). Although HPT processes are not yet industrially applied, continuous technical progress and increasing consumer demand for minimally processed, additive-free food with long shelf life, makes HPT sterilization a promising alternative to thermal processing.In recent years, considerable progress has been made in understanding the response of spores of the model organism B. subtilis to HPT treatments and detailed insights into some basic mechanisms in Clostridium species shed new light on differences in the HPT-mediated inactivation of Bacillus and Clostridium spores. In this chapter, current knowledge on sporulation and germination processes, which presents the basis for understanding development and loss of the extreme resistance properties of spores, is summarized highlighting commonalities and differences between Bacillus and Clostridium species. In this context, the effect of HPT treatments on spores, inactivation mechanism and kinetics, the role of population heterogeneity, and influence factors on the results of inactivation studies are discussed.
Collapse
Affiliation(s)
- Christian A Lenz
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, 85354, Freising, Germany
| | | |
Collapse
|
18
|
Torto-Alalibo T, Purwantini E, Lomax J, Setubal JC, Mukhopadhyay B, Tyler BM. Genetic resources for advanced biofuel production described with the Gene Ontology. Front Microbiol 2014; 5:528. [PMID: 25346727 PMCID: PMC4193338 DOI: 10.3389/fmicb.2014.00528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/22/2014] [Indexed: 12/12/2022] Open
Abstract
Dramatic increases in research in the area of microbial biofuel production coupled with high-throughput data generation on bioenergy-related microbes has led to a deluge of information in the scientific literature and in databases. Consolidating this information and making it easily accessible requires a unified vocabulary. The Gene Ontology (GO) fulfills that requirement, as it is a well-developed structured vocabulary that describes the activities and locations of gene products in a consistent manner across all kingdoms of life. The Microbial ENergy processes Gene Ontology () project is extending the GO to include new terms to describe microbial processes of interest to bioenergy production. Our effort has added over 600 bioenergy related terms to the Gene Ontology. These terms will aid in the comprehensive annotation of gene products from diverse energy-related microbial genomes. An area of microbial energy research that has received a lot of attention is microbial production of advanced biofuels. These include alcohols such as butanol, isopropanol, isobutanol, and fuels derived from fatty acids, isoprenoids, and polyhydroxyalkanoates. These fuels are superior to first generation biofuels (ethanol and biodiesel esterified from vegetable oil or animal fat), can be generated from non-food feedstock sources, can be used as supplements or substitutes for gasoline, diesel and jet fuels, and can be stored and distributed using existing infrastructure. Here we review the roles of genes associated with synthesis of advanced biofuels, and at the same time introduce the use of the GO to describe the functions of these genes in a standardized way.
Collapse
Affiliation(s)
- Trudy Torto-Alalibo
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Endang Purwantini
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
| | - Jane Lomax
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome CampusCambridge, UK
| | - João C. Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Department of Biological Sciences, Oregon State UniversityCorvallis, OR, USA
| | - Brett M. Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State UniversityBlacksburg, VA, USA
- Center for Genome Research and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| |
Collapse
|
19
|
Abstract
ABSTRACT
Clostridia are Gram-positive, anaerobic, endospore-forming bacteria, incapable of dissimilatory sulfate reduction. Comprising approximately 180 species, the genus
Clostridium
is one of the largest bacterial genera. Physiology is mostly devoted to acid production. Numerous pathways are known, such as the homoacetate fermentation by acetogens, the propionate fermentation by
Clostridium propionicum
, and the butyrate/butanol fermentation by
C. acetobutylicum
, a well-known solvent producer. Clostridia degrade sugars, alcohols, amino acids, purines, pyrimidines, and polymers such as starch and cellulose. Energy conservation can be performed by substrate-level phosphorylation as well as by the generation of ion gradients. Endospore formation resembles the mechanism elucidated in
Bacillus
. Morphology, contents, and properties of spores are very similar to bacilli endospores. Sporulating clostridia usually form swollen mother cells and accumulate the storage substance granulose. However, clostridial sporulation differs by not employing the so-called phosphorelay. Initiation starts by direct phosphorylation of the master regulator Spo0A. The cascade of sporulation-specific sigma factors is again identical to what is known from
Bacillus
. The onset of sporulation is coupled in some species to either solvent (acetone, butanol) or toxin (e.g.,
C. perfringens
enterotoxin) formation. The germination of spores is often induced by various amino acids, often in combination with phosphate and sodium ions. In medical applications,
C. butyricum
spores are used as a
C. difficile
prophylaxis and as treatment against diarrhea. Recombinant spores are currently under investigation and testing as antitumor agents, because they germinate only in hypoxic tissues (i.e., tumor tissue), allowing precise targeting and direct killing of tumor cells.
Collapse
|
20
|
Lütke-Eversloh T. Application of new metabolic engineering tools for Clostridium acetobutylicum. Appl Microbiol Biotechnol 2014; 98:5823-37. [DOI: 10.1007/s00253-014-5785-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/30/2023]
|
21
|
|
22
|
Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. BMC Genomics 2012; 13:349. [PMID: 22846451 PMCID: PMC3507653 DOI: 10.1186/1471-2164-13-349] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Background Clostridium acetobutylicum has been used to produce butanol in industry. Catabolite control protein A (CcpA), known to mediate carbon catabolite repression (CCR) in low GC gram-positive bacteria, has been identified and characterized in C. acetobutylicum by our previous work (Ren, C. et al. 2010, Metab Eng 12:446–54). To further dissect its regulatory function in C. acetobutylicum, CcpA was investigated using DNA microarray followed by phenotypic, genetic and biochemical validation. Results CcpA controls not only genes in carbon metabolism, but also those genes in solvent production and sporulation of the life cycle in C. acetobutylicum: i) CcpA directly repressed transcription of genes related to transport and metabolism of non-preferred carbon sources such as d-xylose and l-arabinose, and activated expression of genes responsible for d-glucose PTS system; ii) CcpA is involved in positive regulation of the key solventogenic operon sol (adhE1-ctfA-ctfB) and negative regulation of acidogenic gene bukII; and iii) transcriptional alterations were observed for several sporulation-related genes upon ccpA inactivation, which may account for the lower sporulation efficiency in the mutant, suggesting CcpA may be necessary for efficient sporulation of C. acetobutylicum, an important trait adversely affecting the solvent productivity. Conclusions This study provided insights to the pleiotropic functions that CcpA displayed in butanol-producing C. acetobutylicum. The information could be valuable for further dissecting its pleiotropic regulatory mechanism in C. acetobutylicum, and for genetic modification in order to obtain more effective butanol-producing Clostridium strains.
Collapse
|
23
|
Cai X, Servinsky M, Kiel J, Sund C, Bennett GN. Analysis of redox responses during TNT transformation by Clostridium acetobutylicum ATCC 824 and mutants exhibiting altered metabolism. Appl Microbiol Biotechnol 2012; 97:4651-63. [PMID: 22843424 DOI: 10.1007/s00253-012-4253-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 11/26/2022]
Abstract
The transformation of trinitrotoluene (TNT) by several mutant strains of Clostridium acetobutylicum has been examined to analyze the maximal rate of initial transformation, determine the effects of metabolic mutations of the host on transformation rate, and to assess the cell metabolic changes brought about during TNT transformation. Little difference in the maximal rate of TNT degradation in early acid phase cultures was found between the parental ATCC 824 strain and strains altered in the acid forming pathways (phosphotransacetylase, or butyrate kinase) or in a high-solvent-producing strain (mutant B). This result is in agreement with the previous findings of a similar degradation rate in a degenerate strain (M5) that had lost the ability to produce solvent. A series of antisense constructs were made that reduced the expression of hydA, encoding the Fe-hydrogenase, or hydE and hydF, genes encoding hydrogenase maturating proteins. While the antisense hydA strain had only ∼30 % of the activity of wild type, the antisense hydE strain exhibited a TNT degradation rate around 70 % that of the parent. Overexpression of hydA modestly increased the TNT degradation rate in acid phase cells, suggesting the amount of reductant flowing into hydrogenase rather than the hydrogenase level itself was a limiting factor in many situations. The redox potential, hydrogen evolution, and organic acid metabolites produced during rapid TNT transformation in early log phase cultures were measured. The redox potential of the acid-producing culture decreased from -370 to -200 mV immediately after addition of TNT and the hydrogen evolution rate decreased, lowering the hydrogen to carbon dioxide ratio from 1.4 to around 1.1 for 15 min. During the time of TNT transformation, the treated acidogenic cells produced less acetate and more butyrate. The results show that during TNT transformation, the cells shift metabolism away from hydrogen formation to reduction of TNT and the resulting effects on cell redox cofactors generate a higher proportion of butyrate.
Collapse
Affiliation(s)
- Xianpeng Cai
- Conagen Inc, Suite 238, 1005 North Warson Road, St. Louis, MO 63132, USA.
| | | | | | | | | |
Collapse
|
24
|
Tracy BP, Jones SW, Fast AG, Indurthi DC, Papoutsakis ET. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotechnol 2012; 23:364-81. [DOI: 10.1016/j.copbio.2011.10.008] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/06/2011] [Accepted: 10/20/2011] [Indexed: 12/19/2022]
|
25
|
SpoIIE is necessary for asymmetric division, sporulation, and expression of sigmaF, sigmaE, and sigmaG but does not control solvent production in Clostridium acetobutylicum ATCC 824. J Bacteriol 2011; 193:5130-7. [PMID: 21784928 DOI: 10.1128/jb.05474-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to better characterize the initial stages of sporulation past Spo0A activation and the associated solventogenesis in the important industrial and model organism Clostridium acetobutylicum, the spoIIE gene was successfully disrupted and its expression was silenced. By silencing spoIIE, sporulation was blocked prior to asymmetric division, and no mature spores or any distinguishable morphogenetic changes developed. Upon plasmid-based complementation of spoIIE, sporulation was restored, although the number of spores formed was below that of the plasmid control strain. To investigate the impact of silencing spoIIE on the regulation of sporulation, transcript levels of sigF, sigE, and sigG were examined by semiquantitative reverse transcription-PCR, and the corresponding σF, σE, and σG protein levels were determined by Western analysis. Expression of sigF was significantly reduced in the inactivation strain, and this resulted in very low σF protein levels. Expression of sigE was barely detected, and no sigG transcript was detected at all; consequently, no σE or σG proteins were detected. These data suggest an autostimulatory role for σF in C. acetobutylicum, in contrast to the model organism for endospore formation, Bacillus subtilis, and confirm that high-level expression of σF is required for expression of σE and σG. Unlike the σF and σE inactivation strains, the SpoIIE inactivation strain did not exhibit inoculum-dependent solvent formation and produced good levels of solvents from both exponential- and stationary-phase inocula. Thus, we concluded that SpoIIE does not control solvent formation.
Collapse
|
26
|
Jia K, Zhu Y, Zhang Y, Li Y. Group II intron-anchored gene deletion in Clostridium. PLoS One 2011; 6:e16693. [PMID: 21304965 PMCID: PMC3031624 DOI: 10.1371/journal.pone.0016693] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 01/10/2011] [Indexed: 11/18/2022] Open
Abstract
Clostridium plays an important role in commercial and medical use, for which targeted gene deletion is difficult. We proposed an intron-anchored gene deletion approach for Clostridium, which combines the advantage of the group II intron "ClosTron" system and homologous recombination. In this approach, an intron carrying a fragment homologous to upstream or downstream of the target site was first inserted into the genome by retrotransposition, followed by homologous recombination, resulting in gene deletion. A functional unknown operon CAC1493-1494 located in the chromosome, and an operon ctfAB located in the megaplasmid of C. acetobutylicum DSM1731 were successfully deleted by using this approach, without leaving antibiotic marker in the genome. We therefore propose this approach can be used for targeted gene deletion in Clostridium. This approach might also be applicable for gene deletion in other bacterial species if group II intron retrotransposition system is established.
Collapse
Affiliation(s)
- Kaizhi Jia
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
27
|
Improving the Clostridium acetobutylicum butanol fermentation by engineering the strain for co-production of riboflavin. J Ind Microbiol Biotechnol 2010; 38:1013-25. [DOI: 10.1007/s10295-010-0875-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/13/2010] [Indexed: 11/25/2022]
|
28
|
Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS. Fermentative butanol production by clostridia. Biotechnol Bioeng 2008; 101:209-28. [DOI: 10.1002/bit.22003] [Citation(s) in RCA: 773] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Papoutsakis ET. Engineering solventogenic clostridia. Curr Opin Biotechnol 2008; 19:420-9. [PMID: 18760360 DOI: 10.1016/j.copbio.2008.08.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 07/23/2008] [Accepted: 08/01/2008] [Indexed: 01/28/2023]
Abstract
Solventogenic clostridia are strictly anaerobic, endospore forming bacteria that produce a large array of primary metabolites, like butanol, by anaerobically degrading simple and complex carbohydrates, including cellulose and hemicellulose. Two genomes have been sequenced and some genetic tools have been developed, but more are now urgently needed. Genomic tools for designing, and assessing the impact of, genetic modifications are well developed. Early efforts to metabolically engineer these organisms suggest that they are promising organisms for biorefinery applications. Pathway engineering efforts have resulted in interesting strains, but global engineering of their transcriptional machinery has produced better outcomes. Future efforts are expected to undertake the development of complex multigenic phenotypes, such as aerotolerance, solvent tolerance, high-cell density fermentations, abolished sporulation without impacting product formation, and genetic stability for continuous bioprocessing.
Collapse
Affiliation(s)
- Eleftherios T Papoutsakis
- Department of Chemical Engineering, University of Delaware, 15 Innovation Way, Newark, DE 19711, USA.
| |
Collapse
|
30
|
The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 2008; 9:R114. [PMID: 18631379 PMCID: PMC2530871 DOI: 10.1186/gb-2008-9-7-r114] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/06/2008] [Accepted: 07/16/2008] [Indexed: 11/26/2022] Open
Abstract
A detailed microarray analysis of transcription during sporulation of the strict anaerobe and endospore former Clostridium acetobutylicum is presented. Background Clostridia are ancient soil organisms of major importance to human and animal health and physiology, cellulose degradation, and the production of biofuels from renewable resources. Elucidation of their sporulation program is critical for understanding important clostridial programs pertaining to their physiology and their industrial or environmental applications. Results Using a sensitive DNA-microarray platform and 25 sampling timepoints, we reveal the genome-scale transcriptional basis of the Clostridium acetobutylicum sporulation program carried deep into stationary phase. A significant fraction of the genes displayed temporal expression in six distinct clusters of expression, which were analyzed with assistance from ontological classifications in order to illuminate all known physiological observations and differentiation stages of this industrial organism. The dynamic orchestration of all known sporulation sigma factors was investigated, whereby in addition to their transcriptional profiles, both in terms of intensity and differential expression, their activity was assessed by the average transcriptional patterns of putative canonical genes of their regulon. All sigma factors of unknown function were investigated by combining transcriptional data with predicted promoter binding motifs and antisense-RNA downregulation to provide a preliminary assessment of their roles in sporulation. Downregulation of two of these sigma factors, CAC1766 and CAP0167, affected the developmental process of sporulation and are apparently novel sporulation-related sigma factors. Conclusion This is the first detailed roadmap of clostridial sporulation, the most detailed transcriptional study ever reported for a strict anaerobe and endospore former, and the first reported holistic effort to illuminate cellular physiology and differentiation of a lesser known organism.
Collapse
|
31
|
Activity of abrB310 promoter in wild type and spo0A-deficient strains of Clostridium acetobutylicum. J Ind Microbiol Biotechnol 2008; 35:743-50. [DOI: 10.1007/s10295-008-0341-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
32
|
Sullivan L, Paredes CJ, Papoutsakis ET, Bennett GN. Analysis of the clostridial hydrophobic with a conserved tryptophan family (ChW) of proteins in Clostridium acetobutylicum with emphasis on ChW14 and ChW16/17. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Paredes CJ, Alsaker KV, Papoutsakis ET. A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005; 3:969-78. [PMID: 16261177 DOI: 10.1038/nrmicro1288] [Citation(s) in RCA: 241] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clostridia are anaerobic, endospore-forming prokaryotes that include strains of importance to human and animal health and physiology, cellulose degradation, solvent production and bioremediation. Their differentiation and related developmental programmes are not well understood at the molecular level. Recent genome sequencing and transcriptional-profiling studies have offered a glimpse of their inner workings and indicate that a better understanding of the orchestration of the molecular events that underlie their unique physiology, capabilities and diversity will pay major dividends.
Collapse
Affiliation(s)
- Carlos J Paredes
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | | | |
Collapse
|
34
|
Alsaker KV, Papoutsakis ET. Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. J Bacteriol 2005; 187:7103-18. [PMID: 16199581 PMCID: PMC1251621 DOI: 10.1128/jb.187.20.7103-7118.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA microarray analysis of Clostridium acetobutylicum was used to examine the genomic-scale gene expression changes during the shift from exponential-phase growth and acidogenesis to stationary phase and solventogenesis. Self-organizing maps were used to identify novel expression patterns of functional gene classes, including aromatic and branched-chain amino acid synthesis, ribosomal proteins, cobalt and iron transporters, cobalamin biosynthesis, and lipid biosynthesis. The majority of pSOL1 megaplasmid genes (in addition to the solventogenic genes aad-ctfA-ctfB and adc) had increased expression at the onset of solventogenesis, suggesting that other megaplasmid genes may play a role in stationary-phase phenomena. Analysis of sporulation genes and comparison with published Bacillus subtilis results indicated conserved expression patterns of early sporulation genes, including spo0A, the sigF operon, and putative canonical genes of the sigma(H) and sigma(F) regulons. However, sigE expression could not be detected within 7.5 h of initial spo0A expression, consistent with the observed extended time between the appearance of clostridial forms and endospore formation. The results were compared with microarray comparisons of the wild-type strain and the nonsolventogenic, asporogenous M5 strain, which lacks the pSOL1 megaplasmid. While some results were similar, the expression of primary metabolism genes and heat shock proteins was higher in M5, suggesting a difference in metabolic regulation or a butyrate stress response in M5. The results of this microarray platform and analysis were further validated by comparing gene expression patterns to previously published Northern analyses, reporter assays, and two-dimensional protein electrophoresis data of metabolic genes (including all major solventogenesis genes), sporulation genes, heat shock proteins, and other solventogenesis-induced gene expression.
Collapse
Affiliation(s)
- Keith V Alsaker
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
35
|
Scotcher MC, Rudolph FB, Bennett GN. Expression of abrB310 and SinR, and effects of decreased abrB310 expression on the transition from acidogenesis to solventogenesis, in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2005; 71:1987-95. [PMID: 15812030 PMCID: PMC1082569 DOI: 10.1128/aem.71.4.1987-1995.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors sinR and abrB are involved in the control of sporulation initiation in Bacillus subtilis. We identified a single homologue to sinR and three highly similar homologues to abrB, designated abrB310, abrB1941, and abrB3647, in Clostridium acetobutylicum ATCC 824. Using reporter vectors, we showed that the promoters of abrB1941 and abrB3647 were not active under the growth conditions tested. The abrB310 promoter was strongly active throughout growth and exhibited a transient elevation of expression at the onset of solventogenesis. Primer extension assays showed that two transcripts of abrB310 and a single, extremely weak transcript for sinR are expressed. Potential -35 and -10 consensus motifs are readily identifiable surrounding the transcription start sites of abrB310 and sinR, with a single putative 0A box present within the promoter of abrB310. In strains of C. acetobutylicum transformed with plasmids to elevate sinR expression or decrease sinR expression, no significant differences in growth or in acid or solvent production were observed compared to the control strains. In C. acetobutylicum strain 824(pAS310), which expressed an antisense RNA construct targeted against abrB310, the acids acetate and butyrate accumulated to approximately twice the normal concentration. This accumulation corresponded to a delay and decrease in acetone and butanol production. It was also found that sporulation in strain 824(pAS310) was delayed but that the morphology of sporulating cells and spores was normal. Based upon these observations, we propose that abrB310 may act as a regulator at the transition between acidogenic and solventogenic growth.
Collapse
Affiliation(s)
- Miles C Scotcher
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | | | |
Collapse
|