1
|
Zeng X, Huang M, Sun QX, Peng YJ, Xu X, Tang YB, Zhang JY, Yang Y, Zhang CC. A c-di-GMP binding effector controls cell size in a cyanobacterium. Proc Natl Acad Sci U S A 2023; 120:e2221874120. [PMID: 36947515 PMCID: PMC10068817 DOI: 10.1073/pnas.2221874120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023] Open
Abstract
Cyclic-di-GMP (c-di-GMP) is a ubiquitous bacterial signaling molecule. It is also a critical player in the regulation of cell size and cell behaviors such as cell aggregation and phototaxis in cyanobacteria, which constitute an important group of prokaryotes for their roles in the ecology and evolution of the Earth. However, c-di-GMP receptors have never been revealed in cyanobacteria. Here, we report the identification of a c-di-GMP receptor, CdgR, from the filamentous cyanobacterium Anabaena PCC 7120. Crystal structural analysis and genetic studies demonstrate that CdgR binds c-di-GMP at the dimer interface and this binding is required for the control of cell size in a c-di-GMP-dependent manner. Different functions of CdgR, in ligand binding and signal transmission, could be separated genetically, allowing us to dissect its molecular signaling functions. The presence of the apo-form of CdgR triggers cell size reduction, consistent with the similar effects observed with a decrease of c-di-GMP levels in cells. Furthermore, we found that CdgR exerts its function by interacting with a global transcription factor DevH, and this interaction was inhibited by c-di-GMP. The lethal effect triggered by conditional depletion of DevH or by the production of several point-mutant proteins of CdgR in cells indicates that this signaling pathway plays critical functions in Anabaena. Our studies revealed a mechanism of c-di-GMP signaling in the control of cell size, an important and complex trait for bacteria. CdgR is highly conserved in cyanobacteria, which will greatly expand our understanding of the roles of c-di-GMP signaling in these organisms.
Collapse
Affiliation(s)
- Xiaoli Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
| | - Min Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Qing-Xue Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Ye-Jun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| | - Xiaomei Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
| | - Yun-Bin Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
| | - Ju-Yuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei430072, People’s Republic of China
- Institut AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei430070, People’s Republic of China
- Innovation Academy for Seed Design Chinese Academy of Sciences, Beijing100049, People’s Republic of China
| |
Collapse
|
2
|
Rapid Transcriptional Reprogramming Triggered by Alteration of the Carbon/Nitrogen Balance Has an Impact on Energy Metabolism in Nostoc sp. PCC 7120. Life (Basel) 2020; 10:life10110297. [PMID: 33233741 PMCID: PMC7699953 DOI: 10.3390/life10110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Nostoc (Anabaena) sp. PCC 7120 is a filamentous cyanobacterial species that fixes N2 to nitrogenous compounds using specialised heterocyst cells. Changes in the intracellular ratio of carbon to nitrogen (C/N balance) is known to trigger major transcriptional reprogramming of the cell, including initiating the differentiation of vegetative cells to heterocysts. Substantial transcriptional analysis has been performed on Nostoc sp. PCC 7120 during N stepdown (low to high C/N), but not during C stepdown (high to low C/N). In the current study, we shifted the metabolic balance of Nostoc sp. PCC 7120 cultures grown at 3% CO2 by introducing them to atmospheric conditions containing 0.04% CO2 for 1 h, after which the changes in gene expression were measured using RNAseq transcriptomics. This analysis revealed strong upregulation of carbon uptake, while nitrogen uptake and metabolism and early stages of heterocyst development were downregulated in response to the shift to low CO2. Furthermore, gene expression changes revealed a decrease in photosynthetic electron transport and increased photoprotection and reactive oxygen metabolism, as well a decrease in iron uptake and metabolism. Differential gene expression was largely attributed to change in the abundances of the metabolites 2-phosphoglycolate and 2-oxoglutarate, which signal a rapid shift from fluent photoassimilation to glycolytic metabolism of carbon after transition to low CO2. This work shows that the C/N balance in Nostoc sp. PCC 7120 rapidly adjusts the metabolic strategy through transcriptional reprogramming, enabling survival in the fluctuating environment.
Collapse
|
3
|
Kurio Y, Koike Y, Kanesaki Y, Watanabe S, Ehira S. The CRP-family transcriptional regulator DevH regulates expression of heterocyst-specific genes at the later stage of differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2020; 114:553-562. [PMID: 32564445 DOI: 10.1111/mmi.14558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Abstract
Heterocysts are terminally differentiated cells of filamentous cyanobacteria, which are specialized for nitrogen fixation. Because nitrogenase is easily inactivated by oxygen, the intracellular environment of heterocysts is kept microoxic. In heterocysts, the oxygen-evolving photosystem II is inactivated, a heterocyst-specific envelope with an outer polysaccharide layer and an inner glycolipid layer is formed to limit oxygen entry, and oxygen consumption is activated. Heterocyst differentiation, which is accompanied by drastic morphological and physiological changes, requires strictly controlled gene expression systems. Here, we investigated the functions of a CRP-family transcriptional regulator, DevH, in the process of heterocyst differentiation. A devH-knockdown strain, devH-kd, was created by replacing the original promoter with the gifA promoter, which is repressed during heterocyst differentiation. Although devH-kd formed morphologically distinct cells with the heterocyst envelope polysaccharide layer, it was unable to grow diazotrophically. Genes involved in construction of the microoxic environment, such as cox operons and the hgl island, were not upregulated in devH-kd. Moreover, expression of the nif gene cluster was completely abolished. Although CnfR was expressed in devH-kd, the nif gene cluster was not induced even under microoxic conditions. Thus, DevH is necessary for the establishment of a microoxic environment and induction of nitrogenase in heterocysts.
Collapse
Affiliation(s)
- Yohei Kurio
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yosuke Koike
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Yu Kanesaki
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
4
|
Harish, Seth K. Molecular circuit of heterocyst differentiation in cyanobacteria. J Basic Microbiol 2020; 60:738-745. [DOI: 10.1002/jobm.202000266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023]
Affiliation(s)
- Harish
- Plant Biotechnology Laboratory, Department of Botany; Mohanlal Sukhadia University; Udaipur Rajasthan India
| | - Kunal Seth
- Department of Botany; Government Science College; Pardi Valsad Gujarat India
| |
Collapse
|
5
|
Flores E, Picossi S, Valladares A, Herrero A. Transcriptional regulation of development in heterocyst-forming cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:673-684. [DOI: 10.1016/j.bbagrm.2018.04.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
|
6
|
Kaushik MS, Mishra AK. Iron deficiency influences NtcA-dependent regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120. PHYSIOLOGIA PLANTARUM 2019; 166:570-584. [PMID: 30035317 DOI: 10.1111/ppl.12806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
In Anabaena sp. PCC 7120, iron is an essential trace element and its availability determines proper functioning of several kinds of metabolisms. Iron deficiency leads to several unavoidable consequences including membrane damage. In the present study, we dealt with the impact of iron deficiency on NtcA (global nitrogen regulator)-dependent regulation of two important processes, i.e. fatty acid desaturation and heterocyte envelop formation in cyanobacterium Anabaena sp. PCC 7120. In Anabaena sp. PCC 7120, NtcA regulates fatty acid desaturation by regulating enzyme fatty acid desaturases. The NtcA-based regulation of fatty acid desaturation may be direct or indirect. Furthermore, the expression of genes involved in the heterocyte envelope polysaccharide (HEP) layer formation (hepABCK) and heterocyte-specific glycolipids (HGLs) synthesis (devH, hglEA , prpJ and devB) were also under the control of NtcA and reduced under iron deficiency background. The enhanced expression of furA and early downregulation of ntcA under iron deficiency is responsible for reduction in fatty acid desaturation as well as decrease in the expression of genes involved in HEP layer formation and HGL synthesis. Overall results confirmed that iron deficiency influences the NtcA-based regulation of fatty acid desaturation and heterocyte envelop formation in Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Manish S Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun K Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
7
|
Brenes‐Álvarez M, Mitschke J, Olmedo‐Verd E, Georg J, Hess WR, Vioque A, Muro‐Pastor AM. Elements of the heterocyst‐specific transcriptome unravelled by co‐expression analysis inNostocsp. PCC 7120. Environ Microbiol 2019; 21:2544-2558. [DOI: 10.1111/1462-2920.14647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/06/2019] [Accepted: 05/01/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Manuel Brenes‐Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jan Mitschke
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Elvira Olmedo‐Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
| | - Wolfgang R. Hess
- Genetics and Experimental Bioinformatics, Faculty of BiologyUniversity of Freiburg D‐79104 Freiburg Germany
- Freiburg Institute for Advanced Studies, University of Freiburg D‐79104 Freiburg Germany
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| | - Alicia M. Muro‐Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla E‐41092 Sevilla Spain
| |
Collapse
|
8
|
Driscoll CB, Meyer KA, Šulčius S, Brown NM, Dick GJ, Cao H, Gasiūnas G, Timinskas A, Yin Y, Landry ZC, Otten TG, Davis TW, Watson SB, Dreher TW. A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. HARMFUL ALGAE 2018; 77:93-107. [PMID: 30005805 DOI: 10.1016/j.hal.2018.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.
Collapse
Affiliation(s)
- Connor B Driscoll
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kevin A Meyer
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Nathan M Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Gregory J Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Giedrius Gasiūnas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43402, USA
| | - Susan B Watson
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
9
|
Higo A, Isu A, Fukaya Y, Ehira S, Hisabori T. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120. PLANT & CELL PHYSIOLOGY 2018; 59:119-127. [PMID: 29112727 DOI: 10.1093/pcp/pcx166] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Anabaena sp. PCC 7120 (A. 7120) is a heterocyst-forming multicellular cyanobacterium that performs nitrogen fixation. This cyanobacterium has been extensively studied as a model for multicellularity in prokaryotic cells. We have been interested in photosynthetic production of nitrogenous compounds using A. 7120. However, the lack of efficient gene repression tools has limited its usefulness. We originally developed an artificial endogenous gene repression method in this cyanobacterium using small antisense RNA. However, the narrow dynamic range of repression of this method needs to be improved. Recently, clustered regularly interspaced short palindromic repeat (CRISPR) interference (CRISPRi) technology was developed and was successfully applied in some unicellular cyanobacteria. The technology requires expression of nuclease-deficient CRISPR-associated protein 9 (dCas9) and a single guide RNA (sgRNA) that is complementary to a target sequence, to repress expression of the target gene. In this study, we employed CRISPRi technology for photosynthetic production of ammonium through repression of glnA, the only gene encoding glutamine synthetase that is essential for nitrogen assimilation in A. 7120. By strictly regulating dCas9 expression using the TetR gene induction system, we succeeded in fine-tuning the GlnA protein in addition to the level of glnA transcripts. Expression of sgRNA by the heterocyst-specific nifB promoter led to efficient repression of GlnA in heterocysts, as well as in vegetative cells. Finally, we showed that ammonium is excreted into the medium only when inducers of expression of dCas9 were added. In conclusion, CRISPRi enables temporal control of desired products and will be a useful tool for basic science.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397 Japan
| | - Atsuko Isu
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Yuki Fukaya
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Shigeki Ehira
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397 Japan
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
10
|
D'Agostino PM, Song X, Neilan BA, Moffitt MC. Proteogenomics of a saxitoxin-producing and non-toxic strain ofAnabaena circinalis(cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 2016; 18:461-76. [DOI: 10.1111/1462-2920.13131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Paul M. D'Agostino
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| | - Xiaomin Song
- Australian Proteomics Analysis Facility; Macquarie University; Macquarie Park NSW 2109 Australia
| | - Brett A. Neilan
- School of Biotechnology and Biomolecular Sciences; University of New South Wales; NSW 2052 Australia
| | - Michelle C. Moffitt
- School of Science and Health; Western Sydney University; Campbelltown NSW 2560 Australia
| |
Collapse
|
11
|
Sandh G, Ramström M, Stensjö K. Analysis of the early heterocyst Cys-proteome in the multicellular cyanobacterium Nostoc punctiforme reveals novel insights into the division of labor within diazotrophic filaments. BMC Genomics 2014; 15:1064. [PMID: 25476978 PMCID: PMC4363197 DOI: 10.1186/1471-2164-15-1064] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/12/2014] [Indexed: 01/30/2023] Open
Abstract
Background In the filamentous cyanobacterium Nostoc punctiforme ATCC 29133, removal of combined nitrogen induces the differentiation of heterocysts, a cell-type specialized in N2 fixation. The differentiation involves genomic, structural and metabolic adaptations. In cyanobacteria, changes in the availability of carbon and nitrogen have also been linked to redox regulated posttranslational modifications of protein bound thiol groups. We have here employed a thiol targeting strategy to relatively quantify the putative redox proteome in heterocysts as compared to N2-fixing filaments, 24 hours after combined nitrogen depletion. The aim of the study was to expand the coverage of the cell-type specific proteome and metabolic landscape of heterocysts. Results Here we report the first cell-type specific proteome of newly formed heterocysts, compared to N2-fixing filaments, using the cysteine-specific selective ICAT methodology. The data set defined a good quantitative accuracy of the ICAT reagent in complex protein samples. The relative abundance levels of 511 proteins were determined and 74% showed a cell-type specific differential abundance. The majority of the identified proteins have not previously been quantified at the cell-type specific level. We have in addition analyzed the cell-type specific differential abundance of a large section of proteins quantified in both newly formed and steady-state diazotrophic cultures in N. punctiforme. The results describe a wide distribution of members of the putative redox regulated Cys-proteome in the central metabolism of both vegetative cells and heterocysts of N. punctiforme. Conclusions The data set broadens our understanding of heterocysts and describes novel proteins involved in heterocyst physiology, including signaling and regulatory proteins as well as a large number of proteins with unknown function. Significant differences in cell-type specific abundance levels were present in the cell-type specific proteomes of newly formed diazotrophic filaments as compared to steady-state cultures. Therefore we conclude that by using our approach we are able to analyze a synchronized fraction of newly formed heterocysts, which enabled a better detection of proteins involved in the heterocyst specific physiology. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1064) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Science for Life Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
12
|
Halimatul HSM, Ehira S, Awai K. Fatty alcohols can complement functions of heterocyst specific glycolipids in Anabaena sp. PCC 7120. Biochem Biophys Res Commun 2014; 450:178-83. [DOI: 10.1016/j.bbrc.2014.05.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 05/20/2014] [Indexed: 11/26/2022]
|
13
|
Tom SK, Callahan SM. The putative phosphatase All1758 is necessary for normal growth, cell size and synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. MICROBIOLOGY-SGM 2011; 158:380-389. [PMID: 22053007 DOI: 10.1099/mic.0.054783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocysts arranged in a periodic pattern when deprived of a fixed source of nitrogen. In a genetic screen for mutations that prevent diazotrophic growth, open reading frame all1758, which encodes a putative serine/threonine phosphatase, was identified. Mutation of all1758 resulted in a number of seemingly disparate phenotypes that included a delay in the morphological differentiation of heterocysts, reduced cell size, and lethality under certain conditions. The mutant was incapable of fixing nitrogen under either oxic or anoxic conditions, and lacked the minor heterocyst-specific glycolipid. Pattern formation, as indicated by the timing and pattern of expression from the promoters of hetR and patS fused transcriptionally to the gene for green fluorescent protein (GFP), was unaffected by mutation of all1758, suggesting that its role in the formation of heterocysts is limited to morphological differentiation. Transcription of all1758 was constitutive with respect to both cell type and conditions of growth, but required a functional copy of all1758. The reduced cell size of the all1758 mutant and the location of all1758 between the cell division genes ftsX and ftsY may be indicative of a role for all1758 in cell division. Taken together, these results suggest that the protein encoded by all1758 may represent a link between cell growth, division and regulation of the morphological differentiation of heterocysts.
Collapse
Affiliation(s)
- Sasa K Tom
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - Sean M Callahan
- Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
14
|
Staron P, Forchhammer K, Maldener I. Novel ATP-driven pathway of glycolipid export involving TolC protein. J Biol Chem 2011; 286:38202-38210. [PMID: 21917923 DOI: 10.1074/jbc.m111.269332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Upon depletion of combined nitrogen, N(2)-fixing heterocysts are formed from vegetative cells in the case of the filamentous cyanobacterium Anabaena sp. strain PCC 7120. A heterocyst-specific layer composed of glycolipids (heterocyst envelope glycolipids (HGLs)) that functions as an O(2) diffusion barrier is deposited over the heterocyst outer membrane and is surrounded by an outermost heterocyst polysaccharide envelope. Mutations in any gene of the devBCA operon or tolC result in the absence of the HGL layer, preventing growth on N(2) used as the sole nitrogen source. However, those mutants do not have impaired HGL synthesis. In this study, we show that DevBCA and TolC form an ATP-driven efflux pump required for the export of HGLs across the Gram-negative cell wall. By performing protein-protein interaction studies (in vivo formaldehyde cross-linking, surface plasmon resonance, and isothermal titration calorimetry), we determined the kinetics and stoichiometric relations for the transport process. For sufficient glycolipid export, the membrane fusion protein DevB had to be in a hexameric form to connect the inner membrane factor DevC and the outer membrane factor TolC. A mutation that impaired the ability of DevB to form a hexameric arrangement abolished the ability of DevC to recognize its substrate. The physiological relevance of a hexameric DevB is shown in complementation studies. We provide insights into a novel pathway of glycolipid export across the Gram-negative cell wall.
Collapse
Affiliation(s)
- Peter Staron
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany
| | - Iris Maldener
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
15
|
Mella-Herrera RA, Neunuebel MR, Kumar K, Saha SK, Golden JW. The sigE gene is required for normal expression of heterocyst-specific genes in Anabaena sp. strain PCC 7120. J Bacteriol 2011; 193:1823-32. [PMID: 21317330 PMCID: PMC3133031 DOI: 10.1128/jb.01472-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 produces specialized cells for nitrogen fixation called heterocysts. Previous work showed that the group 2 sigma factor sigE (alr4249; previously called sigF) is upregulated in differentiating heterocysts 16 h after nitrogen step-down. We now show that the sigE gene is required for normal heterocyst development and normal expression levels of several heterocyst-specific genes. Mobility shift assays showed that the transcription factor NtcA binds to sites in the upstream region of sigE and that this binding is enhanced by 2-oxoglutarate (2-OG). Deletions of the region containing the NtcA binding sites in P(sigE)-gfp reporter plasmids showed that the sites contribute to normal developmental regulation but are not essential for upregulation in heterocysts. Northern RNA blot analysis of nifH mRNA revealed delayed and reduced transcript levels during heterocyst differentiation in a sigE mutant background. Quantitative reverse transcription-PCR (qRT-PCR) analyses of the sigE mutant showed lower levels of transcripts for nifH, fdxH, and hglE2 but normal levels for hupL. We developed a P(nifHD)-gfp reporter construct that showed strong heterocyst-specific expression. Time-lapse microscopy of the P(nifHD)-gfp reporter in a sigE mutant background showed delayed development and undetectable green fluorescent protein (GFP) fluorescence. Overexpression of sigE caused accelerated heterocyst development, an increased heterocyst frequency, and premature expression of GFP fluorescence from the P(nifHD)-gfp reporter.
Collapse
Affiliation(s)
- Rodrigo A. Mella-Herrera
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - M. Ramona Neunuebel
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Krithika Kumar
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258
| | - Sushanta K. Saha
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| | - James W. Golden
- Division of Biological Sciences, University of California—San Diego, La Jolla, California 92093-0116
| |
Collapse
|
16
|
RNA processing of nitrogenase transcripts in the cyanobacterium Anabaena variabilis. J Bacteriol 2010; 192:3311-20. [PMID: 20435734 DOI: 10.1128/jb.00278-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the regulation of nitrogenase genes in cyanobacteria. Transcription of the nifH1 and vnfH genes, encoding dinitrogenase reductases for the heterocyst-specific Mo-nitrogenase and the alternative V-nitrogenase, respectively, was studied by using a lacZ reporter. Despite evidence for a transcription start site just upstream of nifH1 and vnfH, promoter fragments that included these start sites did not drive the transcription of lacZ and, for nifH1, did not drive the expression of nifHDK1. Further analysis using larger regions upstream of nifH1 indicated that a promoter within nifU1 and a promoter upstream of nifB1 both contributed to expression of nifHDK1, with the nifB1 promoter contributing to most of the expression. Similarly, while the region upstream of vnfH, containing the putative transcription start site, did not drive expression of lacZ, the region that included the promoter for the upstream gene, ava4055, did. Characterization of the previously reported nifH1 and vnfH transcriptional start sites by 5'RACE (5' rapid amplification of cDNA ends) revealed that these 5' ends resulted from processing of larger transcripts rather than by de novo transcription initiation. The 5' positions of both the vnfH and nifH1 transcripts lie at the base of a stem-loop structure that may serve to stabilize the nifHDK1 and vnfH specific transcripts compared to the transcripts for other genes in the operons providing the proper stoichiometry for the Nif proteins for nitrogenase synthesis.
Collapse
|
17
|
Abstract
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
Collapse
Affiliation(s)
- Krithika Kumar
- Department of Biology, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
18
|
Flores E, Herrero A. Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 2010; 8:39-50. [PMID: 19966815 DOI: 10.1038/nrmicro2242] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the wide biodiversity that is found in the bacterial world, Cyanobacteria represents a unique phylogenetic group that is responsible for a key metabolic process in the biosphere - oxygenic photosynthesis - and that includes representatives exhibiting complex morphologies. Many cyanobacteria are multicellular, growing as filaments of cells in which some cells can differentiate to carry out specialized functions. These differentiated cells include resistance and dispersal forms as well as a metabolically specialized form that is devoted to N(2) fixation, known as the heterocyst. In this Review we address cyanobacterial intercellular communication, the supracellular structure of the cyanobacterial filament and the basic principles that govern the process of heterocyst differentiation.
Collapse
Affiliation(s)
- Enrique Flores
- Instituto de Bioqumica Vegetal y Fotosntesis, CSIC and Universidad de Sevilla, Amrico Vespucio 49, E41092 Seville, Spain.
| | | |
Collapse
|
19
|
Mutual regulation of ntcA and hetR during heterocyst differentiation requires two similar PP2C-type protein phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. strain PCC 7120. J Bacteriol 2009; 191:6059-66. [PMID: 19633087 DOI: 10.1128/jb.01271-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can form heterocysts for N(2) fixation. Initiation of heterocyst differentiation depends on mutual regulation of ntcA and hetR. Control of hetR expression by NtcA is partially mediated by nrrA, but other factors must be involved in this regulation. Anabaena has two closely related PP2C-type protein phosphatases, PrpJ1 (formerly PrpJ) and PrpJ2; PrpJ1 is involved in heterocyst maturation. In this study, we show that PrpJ2, like PrpJ1, has Mn(2+)-dependent phosphatase activity. We further demonstrate that whereas prpJ2 is dispensable for cell growth under different nitrogen regimens tested, a double mutant with both prpJ1 and prpJ2 disrupted did not initiate heterocyst differentiation. Ectopic expression of hetR in the double mutant could rescue the failure to initiate heterocyst development, but the heterocysts formed, like those of a prpJ1 single mutant, were not mature. The expression of prpJ2 was enhanced during heterocyst development, and the upregulation of the gene was directly under the control of NtcA. Upregulation of both ntcA and hetR was affected in the double mutant. We propose that PrpJ1 and PrpJ2 together are required for mutual regulation of ntcA and hetR and are thus involved in regulation of the initiation of heterocyst differentiation.
Collapse
|
20
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
21
|
|
22
|
Rachid S, Gerth K, Müller R. NtcA: a negative regulator of secondary metabolite biosynthesis in Sorangium cellulosum. J Biotechnol 2008; 140:135-42. [PMID: 19041909 DOI: 10.1016/j.jbiotec.2008.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/22/2008] [Accepted: 10/21/2008] [Indexed: 12/12/2022]
Abstract
Microorganisms continue to be a source of novel, bioactive natural products for the treatment of human diseases. Notable among them are the myxobacteria, with some 50% of metabolites isolated from strains of a single species, Sorangium cellulosum. As native production in myxobacteria is often low, however, research has begun to address the regulatory systems governing the pathways, with the aim of increasing fermentation titers. These efforts are significantly enabled by whole genome sequencing data. We previously identified ChiR as a positive regulator of chivosazol biosynthesis in the genome sequencing strain S. cellulosum So ce56, only the second regulatory function known from myxobacterial secondary metabolism. As So ce56 is known to produce two additional compounds, the mixed polyketide etnangien (Irschik et al., 2007; Menche et al., 2008), and the siderophore myxochelin (Schneiker et al., 2007), we set out to further exploit the genome data to discover additional regulators of secondary metabolite biosynthesis. Here we report a novel function for a member of the NtcA family of nitrogen-responsive transcriptional regulators, as a negative transcriptional regulator of chivosazol biosynthesis. NtcA is a promoter binding protein (PBP), which recognizes a conserved sequence within the chivosazol promoter. Inactivation of ntcA enhanced the production of chivosazol by 4-fold, but also increased the yield of etnangien by 3.5-fold. The ammonia-induced repression of biosynthesis observed in wild type So ce56 was significantly attenuated in a ntcA mutant. Taken together, these data suggest that inhibition of chivosazol biosynthesis by environmental nitrogen is mediated, at least in part, by the NtcA protein. Our results also reinforce the idea that genomics-guided engineering of regulatory pathways is a viable strategy for improving metabolite yields through fermentation.
Collapse
Affiliation(s)
- S Rachid
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | | | |
Collapse
|
23
|
Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 2007; 73:4751-9. [PMID: 17557856 PMCID: PMC1951016 DOI: 10.1128/aem.02945-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have taken a phylogeographic approach to investigate the demographic and evolutionary processes that have shaped the geographic patterns of genetic diversity for a sample of isolates of the cosmopolitan thermophilic cyanobacterial Mastigocladus laminosus morphotype collected from throughout most of its range. Although M. laminosus is found in thermal areas throughout the world, our observation that populations are typically genetically differentiated on local geographic scales suggests the existence of dispersal barriers, a conclusion corroborated by evidence for genetic isolation by distance. Genealogies inferred using nitrogen metabolism gene sequence data suggest that a significant amount of the extant global diversity of M. laminosus can be traced back to a common ancestor associated with the western North American hot spot currently located below Yellowstone National Park. Estimated intragenic recombination rates are comparable to those of pathogenic bacteria known for their capacity to exchange DNA, indicating that genetic exchange has played an important role in generating novel variation during M. laminosus diversification. Selection has constrained protein changes at loci involved in the assimilation of both dinitrogen and nitrate, suggesting the historic use of both nitrogen sources in this heterocystous cyanobacterium. Lineage-specific differences in thermal performance were also observed.
Collapse
Affiliation(s)
- Scott R Miller
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.
| | | | | |
Collapse
|
24
|
Shi L, Li JH, Cheng Y, Wang L, Chen WL, Zhang CC. Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:5075-81. [PMID: 17513480 PMCID: PMC1951881 DOI: 10.1128/jb.00323-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can fix N(2) under oxic conditions, and the activity of nitrogen fixation occurs exclusively in heterocysts, cells differentiated from vegetative cells in response to a limitation of a combined-nitrogen source in the growth medium. At the late stages of heterocyst differentiation, an envelope layer composed of two glycolipids is formed to limit the entry of oxygen so that the oxygen-sensitive nitrogenase can function. The genome of Anabaena sp. strain PCC 7120 possesses a family of 13 genes (the hstK family), all encoding proteins with a putative Ser/Thr kinase domain at their N termini and a His-kinase domain at their C termini. In this study, we showed that the double mutant D4.3 strain, in which two members of this gene family, pkn44 (all1625) and pkn30 (all3691), were both inactivated, failed to fix N(2) in the presence of oxygen (Fox(-)). In an environment without oxygen, a low level of nitrogenase activity was detectable (Fix(+)). Heterocyst development in the mutant D4.3 was delayed by 24 h and arrested at a relatively early stage without the formation of the glycolipid layer (Hgl(-)). Only the minor species of the two heterocyst-specific glycolipids (HGLs) was missing in the mutant. We propose that DevH, a putative transcription factor, coordinates the synthesis of both HGLs, while Pkn44/Pkn30 and the previously characterized PrpJ may represent two distinct regulatory pathways involved in the synthesis of the minor HGL and the major HGL, respectively.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Jang J, Wang L, Jeanjean R, Zhang CC. PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 2007; 64:347-58. [PMID: 17371502 DOI: 10.1111/j.1365-2958.2007.05654.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.
Collapse
Affiliation(s)
- Jichan Jang
- Laboratoire de Chimie Bactérienne, CNRS-UPR9043, Institut de Biologie Structurale et Microbiologie, 31 chemin Joseph Aiguier, 13402 Marseille cedex 20, France
| | | | | | | |
Collapse
|
26
|
Fan Q, Lechno-Yossef S, Ehira S, Kaneko T, Ohmori M, Sato N, Tabata S, Wolk CP. Signal transduction genes required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:6688-93. [PMID: 16952961 PMCID: PMC1595475 DOI: 10.1128/jb.01669-05] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How heterocyst differentiation is regulated, once particular cells start to differentiate, remains largely unknown. Using near-saturation transposon mutagenesis and testing of transposon-tagged loci, we identified three presumptive regulatory genes not previously recognized as being required specifically for normal heterocyst maturation. One of these genes has a hitherto unreported mutant phenotype. Two previously identified regulatory genes were further characterized.
Collapse
Affiliation(s)
- Qing Fan
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lechno-Yossef S, Fan Q, Ehira S, Sato N, Wolk CP. Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:7387-95. [PMID: 16936023 PMCID: PMC1636280 DOI: 10.1128/jb.00974-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.
Collapse
Affiliation(s)
- Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, 48824-1312, USA
| | | | | | | | | |
Collapse
|
28
|
Miller SR, Purugganan MD, Curtis SE. Molecular population genetics and phenotypic diversification of two populations of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol 2006; 72:2793-800. [PMID: 16597984 PMCID: PMC1449082 DOI: 10.1128/aem.72.4.2793-2800.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the distributions of genetic and phenotypic variation for two Yellowstone National Park populations of the heterocyst-forming cyanobacterium Mastigocladus (Fischerella) laminosus that exhibit dramatic phenotypic differences as a result of environmental differences in nitrogen availability. One population develops heterocysts and fixes nitrogen in situ in response to a deficiency of combined nitrogen in its environment, whereas the other population does neither due to the availability of a preferred nitrogen source. Slowly evolving molecular markers, including the 16S rRNA gene and the downstream internal transcribed spacer, are identical among all laboratory isolates from both populations but belie considerable genetic and phenotypic diversity. The total nucleotide diversity at six nitrogen metabolism loci was roughly three times greater than that observed for the human global population. The two populations are genetically differentiated, although variation in performance on different nitrogen sources among genotypes could not be explained by local adaptation to available nitrogen in the respective environments. Population genetic models suggest that local adaptation is mutation limited but also that the populations are expected to continue to diverge due to low migratory gene flow.
Collapse
Affiliation(s)
- Scott R Miller
- Division of Biological Sciences, The University of Montana, 32 Campus Drive #4824, Missoula, MT 59812-4824, USA.
| | | | | |
Collapse
|
29
|
Ehira S, Ohmori M. NrrA, a nitrogen-responsive response regulator facilitates heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 2006; 59:1692-703. [PMID: 16553876 DOI: 10.1111/j.1365-2958.2006.05049.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterocyst is a specialized cell for nitrogen fixation in the filamentous cyanobacteria, and its development is triggered by limitation of combined nitrogen in the medium. During heterocyst development, patterns of gene expression change dramatically. We identified seven genes encoding transcriptional regulators that were upregulated by nitrogen deprivation in Anabaena PCC 7120, using an Anabaena oligonucleotide microarray. Among them, the nrrA gene, which encodes a response regulator of the OmpR family with a DNA-binding domain, has shown the most prominent induction after nitrogen deprivation. Expression of nrrA increased all through the filaments within 3 h of nitrogen deprivation and became higher in proheterocysts than in vegetative cells after 12 h. Sequence analysis of the promoter region of nrrA indicated that the induction of nrrA depended on NtcA, which is the global nitrogen regulator in cyanobacteria. In the nrrA deletion mutant, heterocyst development was delayed and the induction of hetR, which is the master gene in regulation of heterocyst development, was diminished up to 24 h nitrogen deprivation. It is concluded that nrrA facilitates heterocyst development.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Sakura, Japan
| | | |
Collapse
|
30
|
Johnson MA, Peti W, Herrmann T, Wilson IA, Wüthrich K. Solution structure of Asl1650, an acyl carrier protein from Anabaena sp. PCC 7120 with a variant phosphopantetheinylation-site sequence. Protein Sci 2006; 15:1030-41. [PMID: 16597827 PMCID: PMC2242512 DOI: 10.1110/ps.051964606] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cyanobacteria, such as Anabaena, produce a variety of bioactive natural products via polyketide synthases (PKS), nonribosomal peptide synthetases (NRPS), and hybrid peptide/polyketide pathways. The protein Asl1650, which is a member of the acyl carrier protein family from the cyanobacterium Anabaena sp. PCC 7120, is encoded in a region of the Anabaena genome that is rich in PKS and NRPS genes. To gain new insight into the physiological role of acyl carriers in Anabaena, the solution structure of Asl1650 has been solved by NMR spectroscopy. The protein adopts a twisted antiparallel four-helix bundle fold, with a variant phosphopantetheine-attachment motif positioned at the start of the second helix. Structure comparisons with proteins from other organisms suggest a likely physiological function as a discrete peptidyl carrier protein.
Collapse
Affiliation(s)
- Margaret A Johnson
- The Scripps Research Institute (TSRI), Department of Molecular Biology and Joint Center for Structural Genomics (JCSG), La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|