1
|
Macgregor-Fairlie M, De Gomes P, Weston D, Rickard JJS, Goldberg Oppenheimer P. Hybrid use of Raman spectroscopy and artificial neural networks to discriminate Mycobacterium bovis BCG and other Mycobacteriales. PLoS One 2023; 18:e0293093. [PMID: 38079400 PMCID: PMC10712843 DOI: 10.1371/journal.pone.0293093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/05/2023] [Indexed: 12/18/2023] Open
Abstract
Even in the face of the COVID-19 pandemic, Tuberculosis (TB) continues to be a major public health problem and the 2nd biggest infectious cause of death worldwide. There is, therefore, an urgent need to develop effective TB diagnostic methods, which are cheap, portable, sensitive and specific. Raman spectroscopy is a potential spectroscopic technique for this purpose, however, so far, research efforts have focused primarily on the characterisation of Mycobacterium tuberculosis and other Mycobacteria, neglecting bacteria within the microbiome and thus, failing to consider the bigger picture. It is paramount to characterise relevant Mycobacteriales and develop suitable analytical tools to discriminate them from each other. Herein, through the combined use of Raman spectroscopy and the self-optimising Kohonen index network and further multivariate tools, we have successfully undertaken the spectral analysis of Mycobacterium bovis BCG, Corynebacterium glutamicum and Rhodoccocus erythropolis. This has led to development of a useful tool set, which can readily discern spectral differences between these three closely related bacteria as well as generate a unique spectral barcode for each species. Further optimisation and refinement of the developed method will enable its application to other bacteria inhabiting the microbiome and ultimately lead to advanced diagnostic technologies, which can save many lives.
Collapse
Affiliation(s)
- Michael Macgregor-Fairlie
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paulo De Gomes
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Weston
- School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Healthcare Technologies Institute, Institute of Translational Medicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Hwangbo M, Gill JJ, Young R, Chu KH. Dual-function oleaginous biocatalysts for non-sterile cultivation and solvent-free biolipid bioextraction to reduce biolipid-based biofuel production costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143969. [PMID: 33333303 PMCID: PMC8061307 DOI: 10.1016/j.scitotenv.2020.143969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Triacylglycerols (TAGs) are starting materials for the production of biolipid-based fuels such as biodiesel and biojet fuel. While various microorganisms can produce TAGs from renewable resources, the cultivation of TAG-producing microorganisms under sterilization conditions to avoid microbial contamination and application of solvent to extract TAGs from the TAG-filled microorganisms are costly. To overcome these challenges, this study reports the feasibility of a non-sterile cultivation of an oleaginous bacterium Rhodococcus opacus PD631SpAHB under saline conditions, followed by the use of a solvent-free, phage-lysis-protein-based bioextraction approach for TAGs release. The engineered strain PD631SpAHB was developed by introducing a recombinant plasmid carrying a phage lytic gene cassette (pAHB) into Rhodococcus opacus PD631 via transformation, followed by adaptive evolution under saline conditions. This newly developed strain is a salt-tolerant strain with the inducible plasmid pAHB to enable TAGs release into the supernatant upon induction. Cell lysis of PD631SpAHB was confirmed by the decrease of the optical density of cell suspension, by the loss of cell membrane integrity, and by the detection of TAGs in the culture medium. Up to 38% of the total TAGs accumulated in PD631SpAHB was released into supernatant after the expression of the lytic genes. PD631SpAHB strain is a promising candidate to produce TAGs from non-sterile growth medium and release of its TAGs without solvent extraction - a new approach to reduce the overall cost of biolipid-based biofuel production.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States; Center for Phage Technology, Texas A&M University, College Station, TX 77843, United States
| | - Ry Young
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, United States; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
3
|
Kumagai Y, Hirasawa T, Wachi M. Requirement of the LtsA Protein for Formation of the Mycolic Acid-Containing Layer on the Cell Surface of Corynebacterium glutamicum. Microorganisms 2021; 9:microorganisms9020409. [PMID: 33669405 PMCID: PMC7920481 DOI: 10.3390/microorganisms9020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022] Open
Abstract
The ltsA gene of Corynebacterium glutamicum encodes a purF-type glutamine-dependent amidotransferase, and mutations in this gene result in increased susceptibility to lysozyme. Recently, it was shown that the LtsA protein catalyzes the amidation of diaminopimelate residues in the lipid intermediates of peptidoglycan biosynthesis. In this study, intracellular localization of wild-type and mutant LtsA proteins fused with green fluorescent protein (GFP) was investigated. The GFP-fused wild-type LtsA protein showed a peripheral localization pattern characteristic of membrane-associated proteins. The GFP-fusions with a mutation in the N-terminal domain of LtsA, which is necessary for the glutamine amido transfer reaction, exhibited a similar localization to the wild type, whereas those with a mutation or a truncation in the C-terminal domain, which is not conserved among the purF-type glutamine-dependent amidotransferases, did not. These results suggest that the C-terminal domain is required for peripheral localization. Differential staining of cell wall structures with fluorescent dyes revealed that formation of the mycolic acid-containing layer at the cell division planes was affected in the ltsA mutant cells. This was also confirmed by observation that bulge formation was induced at the cell division planes in the ltsA mutant cells upon lysozyme treatment. These results suggest that the LtsA protein function is required for the formation of a mycolic acid-containing layer at the cell division planes and that this impairment results in increased susceptibility to lysozyme.
Collapse
Affiliation(s)
- Yutaro Kumagai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Takashi Hirasawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
| | - Masaaki Wachi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; (Y.K.); (T.H.)
- Correspondence:
| |
Collapse
|
4
|
Apostolos AJ, Nelson JM, Silva JRA, Lameira J, Achimovich AM, Gahlmann A, Alves CN, Pires MM. Facile Synthesis and Metabolic Incorporation of m-DAP Bioisosteres Into Cell Walls of Live Bacteria. ACS Chem Biol 2020; 15:2966-2975. [PMID: 33078931 DOI: 10.1021/acschembio.0c00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial cell walls contain peptidoglycan (PG), a scaffold that provides proper rigidity to resist lysis from internal osmotic pressure and a barrier to protect cells against external stressors. It consists of repeating sugar units with a linkage to a stem peptide that becomes cross-linked by cell wall transpeptidases (TP). While synthetic PG fragments containing l-lysine in the third position on the stem peptide are easier to access, those with meso-diaminopimelic acid (m-DAP) pose a severe synthetic challenge. Herein, we describe a solid phase synthetic scheme based on widely available building blocks to assemble meso-cystine (m-CYT), which mimics key structural features of m-DAP. To demonstrate proper mimicry of m-DAP, cell wall probes were synthesized with m-CYT in place of m-DAP and evaluated for their metabolic processing in live bacterial cells. We found that m-CYT-based cell wall probes were properly processed by TPs in various bacterial species that endogenously contain m-DAP in their PG. Additionally, we have used hybrid quantum mechanical/molecular mechanical (QM/MM) and molecular dynamics (MD) simulations to explore the influence of m-DAP analogs on the PG cross-linking. The results showed that the cross-linking mechanism of transpeptidases occurred through a concerted process. We anticipate that this strategy, which is based on the use of inexpensive and commercially available building blocks, can be widely adopted to provide greater accessibility of PG mimics for m-DAP containing organisms.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Julia M. Nelson
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - José Rogério A. Silva
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Jerônimo Lameira
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Alecia M. Achimovich
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andreas Gahlmann
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine and Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Cláudio N. Alves
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais Universidade Federal do Pará, Belém, Pará 66075-110, Brazil
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Hwangbo M, Chu KH. Recent advances in production and extraction of bacterial lipids for biofuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139420. [PMID: 32464391 DOI: 10.1016/j.scitotenv.2020.139420] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Lipid-based biofuel is a clean and renewable energy that has been recognized as a promising replacement for petroleum-based fuels. Lipid-based biofuel can be made from three different types of intracellular biolipids; triacylglycerols (TAGs), wax esters (WEs), and polyhydroxybutyrate (PHB). Among many lipid-producing prokaryotes and eukaryotes, biolipids from prokaryotes have been recently highlighted due to simple cultivation of lipid-producing prokaryotes and their ability to accumulate high biolipid contents. However, the cost of lipid-based biofuel production remains high, in part, because of high cost of lipid extraction processes. This review summarizes the production mechanisms of these different types of biolipids from prokaryotes and extraction methods for these biolipids. Traditional and improved physical/chemical approaches for biolipid extraction remain costly, and these methods are summarized and compared in this review. Recent advances in biological lipid extraction including phage-based cell lysis or secretion of biolipids are also discussed. These new techniques are promising for bacterial biolipids extraction. Challenges and future research needs for cost-effective lipid extraction are identified in this review.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843-3136, USA.
| |
Collapse
|
6
|
Saito Y, Kitagawa W, Kumagai T, Tajima N, Nishimiya Y, Tamano K, Yasutake Y, Tamura T, Kameda T. Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci Rep 2019; 9:8338. [PMID: 31171855 PMCID: PMC6554278 DOI: 10.1038/s41598-019-44500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Codon optimization by synonymous substitution is widely used for recombinant protein expression. Recent studies have investigated sequence features for codon optimization based on large-scale expression analyses. However, these studies have been limited to common host organisms such as Escherichia coli. Here, we develop a codon optimization method for Rhodococcus erythropolis, a gram-positive GC-rich actinobacterium attracting attention as an alternative host organism. We evaluate the recombinant protein expression of 204 genes in R. erythropolis with the same plasmid vector. The statistical analysis of these expression data reveals that the mRNA folding energy at 5’ regions as well as the codon frequency are important sequence features for codon optimization. Intriguingly, other sequence features such as the codon repetition rate show a different tendency from the previous study on E. coli. We optimize the coding sequences of 12 genes regarding these sequence features, and confirm that 9 of them (75%) achieve increased expression levels compared with wild-type sequences. Especially, for 5 genes whose expression levels for wild-type sequences are small or not detectable, all of them are improved by optimized sequences. These results demonstrate the effectiveness of our codon optimization method in R. erythropolis, and possibly in other actinobacteria.
Collapse
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Wataru Kitagawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | | | - Naoyuki Tajima
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan. .,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
7
|
Genome Sequence of Rhodococcus erythropolis Type Strain JCM 3201. Microbiol Resour Announc 2019; 8:8/14/e01730-18. [PMID: 30948473 PMCID: PMC6449564 DOI: 10.1128/mra.01730-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli. It is used as one of the hosts for protein expression and bioconversion. Rhodococcus erythropolis JCM 3201 can express several recombinant proteins that are difficult to express in Escherichia coli. It is used as one of the hosts for protein expression and bioconversion. Here, we report the draft genome sequence of R. erythropolis JCM 3201.
Collapse
|
8
|
Koppel N, Bisanz JE, Pandelia ME, Turnbaugh PJ, Balskus EP. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife 2018; 7:33953. [PMID: 29761785 PMCID: PMC5953540 DOI: 10.7554/elife.33953] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/11/2018] [Indexed: 12/21/2022] Open
Abstract
Although the human gut microbiome plays a prominent role in xenobiotic transformation, most of the genes and enzymes responsible for this metabolism are unknown. Recently, we linked the two-gene 'cardiac glycoside reductase' (cgr) operon encoded by the gut Actinobacterium Eggerthella lenta to inactivation of the cardiac medication and plant natural product digoxin. Here, we compared the genomes of 25 E. lenta strains and close relatives, revealing an expanded 8-gene cgr-associated gene cluster present in all digoxin metabolizers and absent in non-metabolizers. Using heterologous expression and in vitro biochemical characterization, we discovered that a single flavin- and [4Fe-4S] cluster-dependent reductase, Cgr2, is sufficient for digoxin inactivation. Unexpectedly, Cgr2 displayed strict specificity for digoxin and other cardenolides. Quantification of cgr2 in gut microbiomes revealed that this gene is widespread and conserved in the human population. Together, these results demonstrate that human-associated gut bacteria maintain specialized enzymes that protect against ingested plant toxins.
Collapse
Affiliation(s)
- Nitzan Koppel
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Jordan E Bisanz
- Department of Microbiology & Immunology, University of California, San Francisco, United States
| | | | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Broad Institute, Cambridge, United States
| |
Collapse
|
9
|
Mitani Y, Oshima Y, Mitsuda N, Tomioka A, Sukegawa M, Fujita M, Kaji H, Ohmiya Y. Efficient production of glycosylated Cypridina luciferase using plant cells. Protein Expr Purif 2017; 133:102-109. [DOI: 10.1016/j.pep.2017.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/28/2017] [Accepted: 03/08/2017] [Indexed: 11/30/2022]
|
10
|
Kasuga K, Sasaki A, Matsuo T, Yamamoto C, Minato Y, Kuwahara N, Fujii C, Kobayashi M, Agematu H, Tamura T, Komatsu M, Ishikawa J, Ikeda H, Kojima I. Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Appl Microbiol Biotechnol 2017; 101:4259-4268. [PMID: 28243709 DOI: 10.1007/s00253-017-8189-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/05/2017] [Accepted: 02/12/2017] [Indexed: 11/28/2022]
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic isolated from Streptomyces kasugaensis cultures, has been used against rice blast disease for more than 50 years. We cloned the KSM biosynthetic gene (KBG) cluster from S. kasugaensis MB273-C4 and constructed three KBG cassettes (i.e., cassettes I-III) to enable heterologous production of KSM in many actinomycetes by constitutive expression of KBGs. Cassette I comprised all putative transcriptional units in the cluster, but it was placed under the control of the P neo promoter from Tn5. It was not maintained stably in Streptomyces lividans and did not transform Rhodococcus erythropolis. Cassette II retained the original arrangement of KBGs, except that the promoter of kasT, the specific activator gene for KBG, was replaced with P rpsJ , the constitutive promoter of rpsJ from Streptomyces avermitilis. To enhance the intracellular concentration of myo-inositol, an expression cassette of ino1 encoding the inositol-1-phosphate synthase from S. avermitilis was inserted into cassette II to generate cassette III. These two cassettes showed stable maintenance in S. lividans and R. erythropolis to produce KSM. Particularly, the transformants of S. lividans induced KSM production up to the same levels as those produced by S. kasugaensis. Furthermore, cassette III induced more KSM accumulation than cassette II in R. erythropolis, suggesting an exogenous supply of myo-inositol by the ino1 expression in the host. Cassettes II and III appear to be useful for heterologous KSM production in actinomycetes. Rhodococcus exhibiting a spherical form in liquid cultivation is also a promising heterologous host for antibiotic fermentation.
Collapse
Affiliation(s)
- Kano Kasuga
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan.
| | - Akira Sasaki
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Takashi Matsuo
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Chika Yamamoto
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Yuiko Minato
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Naoya Kuwahara
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Chikako Fujii
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Masayuki Kobayashi
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| | - Hitosi Agematu
- Department of Applied Chemistry, National Institute of Technology, Akita College, Akita, 011-8511, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Mamoru Komatsu
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ikuo Kojima
- Department of Biotechnology, Akita Prefectural University, 241-438 Kaidobata-Nishi, Akita City, Nakano Shimoshinjo, 010-0195, Japan
| |
Collapse
|
11
|
Vallecillo AJ, Parada C, Morales P, Espitia C. Rhodococcus erythropolis as a host for expression, secretion and glycosylation of Mycobacterium tuberculosis proteins. Microb Cell Fact 2017; 16:12. [PMID: 28103877 PMCID: PMC5248525 DOI: 10.1186/s12934-017-0628-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Background Glycosylation is one of the most abundant posttranslational polypeptide chain modification in nature. Although carbohydrate modification of protein antigens from many microbial pathogens constitutes important components of B cell epitopes, the role in T cell immunity is not completely understood. There is growing evidence about the importance of these modifications in host bacteria interactions in tuberculosis. It is known, that the sugars present in some Mycobacterium tuberculosis glycoproteins play an important role in both humoral and cellular immune response against the pathogen. Since this modification is lost in the recombinant proteins expressed in Escherichia coli, it is fundamental to search for host bacteria with the capacity to modify the foreign proteins. Amongst the bacteria that are likely to have this possibility are some members of Rhodococcus genus which are Gram-positive bacteria, with high GC-content and genetically very close related to M. tuberculosis. Results In this work, apa, pstS1 and lprG genes that coding for M. tuberculosis glycoproteins were cloned and expressed in Rhodococcus erythropolis. All recombinant proteins were mannosylated as demonstrated by their interaction with mannose binding lectin Concanavalin A. In addition, as native proteins recombinants Apa and PstS1 were secreted to the culture medium in contrast with LprG that was retained in the cell wall. Conclusions Together these results, point out R. erythropolis, as a new host for expression of M. tuberculosis glycoproteins.
Collapse
Affiliation(s)
- Antonio J Vallecillo
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.,Escuela de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad de Cuenca, C.P. 010220, Cuenca, Azu., Ecuador
| | - Cristina Parada
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Pedro Morales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, C.P. 04510, Mexico, D.F., Mexico.
| |
Collapse
|
12
|
Usuki S, Tamura N, Sakai S, Tamura T, Mukai K, Igarashi Y. Chemoenzymatically prepared konjac ceramide inhibits NGF-induced neurite outgrowth by a semaphorin 3A-like action. Biochem Biophys Rep 2015; 5:160-167. [PMID: 28955819 PMCID: PMC5600454 DOI: 10.1016/j.bbrep.2015.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/04/2015] [Accepted: 11/17/2015] [Indexed: 11/17/2022] Open
Abstract
Dietary sphingolipids such as glucosylceramide (GlcCer) are potential nutritional factors associated with prevention of metabolic syndrome. Our current understanding is that dietary GlcCer is degraded to ceramide and further metabolized to sphingoid bases in the intestine. However, ceramide is only found in trace amounts in food plants and thus is frequently taken as GlcCer in a health supplement. In the present study, we successfully prepared konjac ceramide (kCer) using endoglycoceramidase I (EGCase I). Konjac, a plant tuber, is an enriched source of GlcCer (kGlcCer), and has been commercialized as a dietary supplement to improve dry skin and itching that are caused by a deficiency of epidermal ceramide. Nerve growth factor (NGF) produced by skin cells is one of the itch factors in the stratum corneum of the skin. Semaphorin 3A (Sema 3A) has been known to inhibit NGF-induced neurite outgrowth of epidermal nerve fibers. It is well known that the itch sensation is regulated by the balance between NGF and Sema 3A. In the present study, while kGlcCer did not show an in vitro inhibitory effect on NGF-induced neurite outgrowth of PC12 cells, kCer was demonstrated to inhibit a remarkable neurite outgrowth. In addition, the effect of kCer was similar to that of Sema 3A in cell morphological changes and neurite retractions, but different from C2-Ceramide. kCer showed a Sema 3A-like action, causing CRMP2 phosphorylation, which results in a collapse of neurite growth cones. Thus, it is expected that kCer is an advanced konjac ceramide material that may have neurite outgrowth-specific action to relieve uncontrolled and serious itching, in particular, from atopic eczema.
Collapse
Key Words
- BSA, bovine serum albumin
- C16Cer, N-hexadecanoyl-D-erythro-sphingosine
- C18Cer, N-octadecanoyl-D-erythro-sphingosine
- C24Cer, N-tetracosanoyl-D-erythro-sphingosine
- C2Cer, N-acetyl-D-erythro-sphingosine
- CBB, Coomassie Briliant Blue
- CCK-8, cell counting kit 8
- CRMP2
- CRMP2, collapsin response mediator protein 2
- Cer, ceramide
- Ceramide
- DMEM, Dulbecco’s modified Eagle's medium
- EGCase I, endoglycoceramidase I
- GlcCer, glucosylceramide
- Konjac
- LDH, lactate dehydrogenase
- NGF
- NGF, nerve growth factor
- Neurite outgrowth
- PBS, phosphate-buffered saline
- Sema 3A, semaphorin 3A
- Semaphorin 3A
- TBEA, trypan blue exclusion assay
- kCer, konjac ceramide
- pCRMP2, phospho-collapsin response mediator protein 2
Collapse
Affiliation(s)
- Seigo Usuki
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
- Corresponding author.
| | - Noriko Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
| | - Tomohiro Tamura
- National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Hokkaido, Japan
| | | | - Yasuyuki Igarashi
- Laboratory of Biomembrane and Biofunctional Chemistry, Graduate School of Advanced Life Science, Frontier Research Center for Post-Genome Science and Technology, Hokkaido University, Kita 21, Nishi 11, Kita Ward, Sapporo, Hokkaido 011-0021, Japan
| |
Collapse
|
13
|
Levefaudes M, Patin D, de Sousa-d'Auria C, Chami M, Blanot D, Hervé M, Arthur M, Houssin C, Mengin-Lecreulx D. Diaminopimelic Acid Amidation in Corynebacteriales: NEW INSIGHTS INTO THE ROLE OF LtsA IN PEPTIDOGLYCAN MODIFICATION. J Biol Chem 2015; 290:13079-94. [PMID: 25847251 DOI: 10.1074/jbc.m115.642843] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Indexed: 11/06/2022] Open
Abstract
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4(+) could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.
Collapse
Affiliation(s)
- Marjorie Levefaudes
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Delphine Patin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Célia de Sousa-d'Auria
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mohamed Chami
- the Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Didier Blanot
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Mireille Hervé
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Michel Arthur
- INSERM, UMR S1138, Centre de Recherche des Cordeliers, Equipe 12, F-75006 Paris, France, the Sorbonne Universités, UPMC Université Paris 06, UMR S1138, Centre de Recherche des Cordeliers, F-75006 Paris, France, and the Université Paris-Descartes, Sorbonne Paris Cité, UMR S1138, Centre de Recherche des Cordeliers, F-75006, Paris, France
| | - Christine Houssin
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| | - Dominique Mengin-Lecreulx
- From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France,
| |
Collapse
|
14
|
Kanno M, Tamaki H, Mitani Y, Kimura N, Hanada S, Kamagata Y. pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:69. [PMID: 25904984 PMCID: PMC4405824 DOI: 10.1186/s13068-015-0251-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/02/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND Though butanol is considered as a potential biofuel, its toxicity toward microorganisms is the main bottleneck for the biological butanol production. Recently, butanol-tolerant bacteria have been proposed as alternative butanol production hosts overcoming the end product inhibition. One remaining key issue to be addressed is how physicochemical properties such as pH and temperature affect microbial butanol tolerance during cultivation and fermentation. RESULTS We investigated the pH effect on butanol tolerance of a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. The strain grew over a broad pH range (pH 4.0 to 12.0) and preferred alkaline pH (pH 8.0 and 10.0) in the absence of butanol. However, in the presence of butanol, strain CM4A grew better under acidic and neutral pH conditions (pH 6.0 and 6.8). Membrane fatty acid analysis revealed that the cells exposed to butanol exhibited increased cyclopropane and saturated fatty acids, which contribute to butanol tolerance of the strain by decreasing membrane fluidity, more evidently at acidic and neutral pH than at alkaline pH. Meanwhile, the strain grown under alkaline pH without butanol increased short chain fatty acids, which is involved in increasing membrane fluidity for alkaline adaptation. Such a change was not observed in the cells grown under alkaline pH with butanol. These results suggested that strain CM4A simultaneously exposed to butanol and alkali stresses was not likely able to properly adjust membrane fluidity due to the opposite response to each stress and thereby showed low butanol tolerance under alkaline pH. Indeed, the cells exposed to butanol at alkaline pH showed an irregular shape with disrupted membrane structure under transmission electron microscopy observation, which also indicated the impact of butanol and alkali stresses on functioning of cellular membrane. CONCLUSION The study clearly demonstrated the alkaline pH-induced increase of cell susceptibility to butanol in the tested strain. Our findings indicate the non-negligible impact of pH on microbial butanol tolerance, providing a new insight into efficient butanol production.
Collapse
Affiliation(s)
- Manabu Kanno
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| | - Nobutada Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| | - Satoshi Hanada
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 Japan
| |
Collapse
|
15
|
Kosaka T, Toh H, Fujiyama A, Sakaki Y, Watanabe K, Meng XY, Hanada S, Toyoda A. Physiological and genetic basis for self-aggregation of a thermophilic hydrogenotrophic methanogen, Methanothermobacter strain CaT2. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:268-277. [PMID: 24983531 DOI: 10.1111/1758-2229.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/05/2013] [Indexed: 06/03/2023]
Abstract
Several thermophilic hydrogenotrophic methanogens naturally aggregate in their habitats in association with hydrogen-producing bacteria for efficient transfer of the methane fermentation intermediates to produce methane. However, physiology of aggregation and the identity of aggregation-specific genes remain to be elucidated. Here, we isolated and characterized a hydrogen and formate-utilizing Methanothermobacter sp. CaT2 that is capable of self-aggregation and utilizing formate. CaT2 produced methane from propionate oxidation in association with a syntrophic propionate-oxidizing bacterium faster than other methanogens, including Methanothermobacter thermautotrophicus ΔH and Methanothermobacter thermautotrophicus Z-245. CaT2 also aggregated throughout the culture period and was coated with polysaccharides, which was not found on the ΔH and Z-245 cells. Sugar content (particularly of rhamnose and mannose) was also higher in the CaT2 cells than the ΔH and Z-245 cells. Comparative genomic analysis of CaT2 indicated that four candidate genes, all of which encode glycosyltransferase, were involved in aggregation of CaT2. Transcriptional analysis showed that one glycosyltransferase gene was expressed at relatively high levels under normal growth conditions. The polysaccharide layer on the CaT2 cell surface, which is probably assembled by these glycosyltransferases, may be involved in cell aggregation.
Collapse
Affiliation(s)
- Tomoyuki Kosaka
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan; Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim WS, Shimazaki KI, Tamura T. Expression of Bovine Lactoferrin C-lobe inRhodococcus erythropolisand Its Purification and Characterization. Biosci Biotechnol Biochem 2014; 70:2641-5. [PMID: 17090917 DOI: 10.1271/bbb.60245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 degrees C with shaking, and expression of the rBLF C-lobe was induced by adding 1 microg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.
Collapse
Affiliation(s)
- Woan-Sub Kim
- Dairy Science Laboratory, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | |
Collapse
|
17
|
Ito M, Kim YG, Tsuji H, Takahashi T, Kiwaki M, Nomoto K, Danbara H, Okada N. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity. PLoS One 2014; 9:e83876. [PMID: 24416179 PMCID: PMC3885529 DOI: 10.1371/journal.pone.0083876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/08/2013] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus casei ATCC 27139 enhances host innate immunity, and the J1 phage-resistant mutants of this strain lose the activity. A transposon insertion mutant library of L. casei ATCC 27139 was constructed, and nine J1 phage-resistant mutants out of them were obtained. Cloning and sequencing analyses identified three independent genes that were disrupted by insertion of the transposon element: asnH, encoding asparagine synthetase, and dnaJ and dnaK, encoding the molecular chaperones DnaJ and DnaK, respectively. Using an in vivo mouse model of Listeria infection, only asnH mutant showed deficiency in their ability to enhance host innate immunity, and complementation of the mutation by introduction of the wild-type asnH in the mutant strain recovered the immuno-augmenting activity. AsnH protein exhibited asparagine synthetase activity when the lysozyme-treated cell wall extracts of L. casei ATCC 27139 was added as substrate. The asnH mutants lost the thick and rigid peptidoglycan features that are characteristic to the wild-type cells, indicating that AsnH of L. casei is involved in peptidoglycan biosynthesis. These results indicate that asnH is required for the construction of the peptidoglycan composition involved in the immune-activating capacity of L. casei ATCC 27139.
Collapse
Affiliation(s)
- Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Hirokazu Tsuji
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Takuya Takahashi
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Mayumi Kiwaki
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Koji Nomoto
- Yakult Central Institute for Microbiological Research, Kunitachi, Tokyo, Japan
| | - Hirofumi Danbara
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
18
|
Matsumoto Y, Yasutake Y, Takeda Y, Tamura T, Yokota A, Wada M. Crystallization and preliminary X-ray diffraction studies of D-threo-3-hydroxyaspartate dehydratase isolated from Delftia sp. HT23. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1131-4. [PMID: 24100565 PMCID: PMC3792673 DOI: 10.1107/s1744309113023956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022]
Abstract
D-threo-3-Hydroxyaspartate dehydratase (D-THA DH) isolated from the soil bacterium Delftia sp. HT23 is a novel enzyme consisting of 380 amino-acid residues which catalyzes the conversion of D-threo-3-hydroxyaspartate to oxaloacetate and ammonia. D-THA DH also catalyzes the dehydration of L-threo-3-hydroxyaspartate, L-erythro-3-hydroxyaspartate and D-serine. The amino-acid sequence of D-THA DH shows significant similarity to that of two eukaryotic D-serine dehydratases derived from Saccharomyces cerevisiae and chicken kidney. D-THA DH is classified into the fold-type III group of pyridoxal enzymes and is the first example of a fold-type III dehydratase derived from a prokaryote. Overexpression of recombinant D-THA DH was carried out using a Rhodococcus erythropolis expression system and the obtained protein was subsequently purified and crystallized. The crystals of D-THA DH belonged to space group I4₁22, with unit-cell parameters a=b=157.3, c=157.9 Å. Single-wavelength anomalous diffraction data were collected to a resolution of 2.0 Å using synchrotron radiation at the wavelength of the Br K absorption edge.
Collapse
Affiliation(s)
- Yu Matsumoto
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Yuki Takeda
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Atsushi Yokota
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Masaru Wada
- Laboratory of Microbial Physiology, Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
19
|
Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. SCO4008, a putative TetR transcriptional repressor from Streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. J Mol Biol 2013; 425:3289-300. [PMID: 23831227 DOI: 10.1016/j.jmb.2013.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
SCO4008 from Streptomyces coelicolor A3(2) is a member of the TetR family. However, its precise function is not yet clear. In this study, the crystal structure of SCO4008 was determined at a resolution of 2.3Å, and its DNA-binding properties were analyzed. Crystal structure analysis showed that SCO4008 forms an Ω-shaped homodimer in which the monomer is composed of an N-terminal DNA-binding domain containing a helix-turn-helix and a C-terminal dimerization and regulatory domain possessing a ligand-binding cavity. The genomic systematic evolution of ligands by exponential enrichment and electrophoretic mobility shift assay revealed that four SCO4008 dimers bind to the two operator regions located between sco4008 and sco4007, a secondary transporter belonging to the major facilitator superfamily. Ligand screening analysis showed that SCO4008 recognizes a wide range of structurally dissimilar cationic and hydrophobic compounds. These results suggested that SCO4008 is a transcriptional repressor of sco4007 responsible for the multidrug resistance system in S. coelicolor A3(2).
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Food and Fermentation Science, Faculty of Food and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan; Food Science and Nutrition, Graduate School of Food Science and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hayashi T, Tanaka Y, Sakai N, Watanabe N, Tamura T, Tanaka I, Yao M. Structural and genomic DNA analysis of a putative transcription factor SCO5550 from Streptomyces coelicolor A3(2): regulating the expression of gene sco5551 as a transcriptional activator with a novel dimer shape. Biochem Biophys Res Commun 2013; 435:28-33. [PMID: 23618855 DOI: 10.1016/j.bbrc.2013.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
SCO5550 from the model actinomycete Streptomyces coelicolor A3(2) was identified as a putative transcriptional regulator, and classified into the MerR family by sequence analysis. Recombined SCO5550 was successfully produced in Rhodococcus erythropolis, which can be used to stably express recombinant protein by optimizing the temperature over a wide range (4-35 °C). Crystal structure analysis showed that the dimerization domain (C-terminal domain) of SCO5550 has a novel fold and forms a new dimer shape, whereas the DNA-binding domain (N-terminal domain) is very similar to those of MerR family members. Such the new dimer form suggests that SCO5550 may define a new subfamily as a new member of the MerR family. Binding DNA sequence analysis of SCO5550 using the genomic systematic evolution of ligands by exponential enrichment (gSELEX) and electrophoretic mobility shift assay (EMSA) indicated that SCO5550 regulates the expression of the immediately upstream gene sco5551 encoding a putative protein, probably as a transcriptional activator.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Food and Fermentation Science, Faculty of Food and Nutrition, Beppu University, Beppu 874-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Characterization of a rifampin-inactivating glycosyltransferase from a screen of environmental actinomycetes. Antimicrob Agents Chemother 2012; 56:5061-9. [PMID: 22802246 DOI: 10.1128/aac.01166-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Identifying and understanding the collection of all antibiotic resistance determinants presented in the global microbiota, the antibiotic resistome, provides insight into the evolution of antibiotic resistance and critical information for the development of future antimicrobials. The rifamycins are broad-spectrum antibiotics that target bacterial transcription by inhibition of RNA polymerase. Although mutational alteration of the drug target is the predominant mechanism of resistance to this family of antibiotics in the clinic, a number of diverse inactivation mechanisms have also been reported. In this report, we investigate a subset of environmental rifampin-resistant actinomycete isolates and identify a diverse collection of rifampin inactivation mechanisms. We describe a single isolate, WAC1438, capable of inactivating rifampin by glycosylation. A draft genome sequence of WAC1438 (most closely related to Streptomyces speibonae, according to a 16S rRNA gene comparison) was assembled, and the associated rifampin glycosyltransferase open reading frame, rgt1438, was identified. The role of rgt1438 in rifampin resistance was confirmed by its disruption in the bacterial chromosome, resulting in a loss of antibiotic inactivation and a 4-fold decrease in MIC. Interestingly, examination of the RNA polymerase β-subunit sequence of WAC1438 suggests that it harbors a resistant target and thus possesses dual mechanisms of rifamycin resistance. Using an in vitro assay with purified enzyme, Rgt1438 could inactivate a variety of rifamycin antibiotics with comparable steady-state kinetics constants. Our results identify rgt1438 as a rifampin resistance determinant from WAC1438 capable of inactivating an assortment of rifamycins, adding a new element to the rifampin resistome.
Collapse
|
22
|
Kagawa Y, Mitani Y, Yun HY, Nakashima N, Tamura N, Tamura T. Identification of a methanol-inducible promoter from Rhodococcus erythropolis PR4 and its use as an expression vector. J Biosci Bioeng 2012; 113:596-603. [DOI: 10.1016/j.jbiosc.2011.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/26/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
|
23
|
One-component styrene monooxygenases: an evolutionary view on a rare class of flavoproteins. Appl Biochem Biotechnol 2012; 167:931-44. [PMID: 22528652 DOI: 10.1007/s12010-012-9659-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/22/2012] [Indexed: 10/28/2022]
Abstract
Styrene monooxygenases (SMOs) are catalysts for the enantioselective epoxidation of terminal alkenes. Most representatives comprise a reductase and a monooxygenase which are encoded by separate genes (styA, styB). Only six presumed self-sufficient one-component SMOs (styA2B) have previously been submitted to databases, and one has so far been characterized. StyA2B can be supported by another epoxidase (StyA1) encoded by styA1, a gene in direct neighborhood of styA2B. The present report describes the identification of a further styA1/styA2B-like SMO, which was detected in Rhodococcus opacus MR11. Based on the initially available sequences of styA2B-type SMOs, primers directed at conserved sequences were designed and a 7,012-bp genomic fragment from strain MR11 was obtained after PCRs and subsequent genome walking. Six open reading frames (ORFs) were detected and compared to genomic fragments of strains comprising either two- or one-component SMOs. Among the proteins encoded by the ORFs, the monooxygenase StyA1/StyA2B showed the highest divergence on amino acid level when comparing proteins from different sources. That finding, a rare distribution of styA2B genes among bacteria, and the general observation of evolution from simple to complex systems indicate that one-component SMOs evolved from two-component ancestors. Analysis of gene products from styA/styB- and styA1/styA2B-like SMOs revealed that a fusion of styA/styB to styA2B might have happened at least twice among microorganisms. This points to a convergent evolution of one-component SMOs.
Collapse
|
24
|
Yasutake Y, Ota H, Hino E, Sakasegawa SI, Tamura T. Structures of Burkholderia thailandensis nucleoside kinase: implications for the catalytic mechanism and nucleoside selectivity. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:945-56. [PMID: 22101821 DOI: 10.1107/s0907444911038777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/21/2011] [Indexed: 11/10/2022]
Abstract
The nucleoside kinase (NK) from the mesophilic Gram-negative bacterium Burkholderia thailandensis (BthNK) is a member of the phosphofructokinase B (Pfk-B) family and catalyzes the Mg(2+)- and ATP-dependent phosphorylation of a broad range of nucleosides such as inosine (INO), adenosine (ADO) and mizoribine (MZR). BthNK is currently used in clinical practice to measure serum MZR levels. Here, crystal structures of BthNK in a ligand-free form and in complexes with INO, INO-ADP, MZR-ADP and AMP-Mg(2+)-AMP are described. The typical homodimeric architecture of Pfk-B enzymes was detected in three distinct conformational states: an asymmetric dimer with one subunit in an open conformation and the other in a closed conformation (the ligand-free form), a closed conformation (the binary complex with INO) and a fully closed conformation (the other ternary and quaternary complexes). The previously unreported fully closed structures suggest the possibility that Mg(2+) might directly interact with the β- and γ-phosphates of ATP to maintain neutralization of the negative charge throughout the reaction. The nucleoside-complex structures also showed that the base moiety of the bound nucleoside is partly exposed to the solvent, thereby enabling the recognition of a wide range of nucleoside bases. Gly170 is responsible for the solvent accessibility of the base moiety and is assumed to be a key residue for the broad nucleoside recognition of BthNK. Remarkably, the G170Q mutation increases the specificity of BthNK for ADO. These findings provide insight into the conformational dynamics, catalytic mechanism and nucleoside selectivity of BthNK and related enzymes.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
25
|
Yasutake Y, Fujii Y, Nishioka T, Cheon WK, Arisawa A, Tamura T. Structural evidence for enhancement of sequential vitamin D3 hydroxylation activities by directed evolution of cytochrome P450 vitamin D3 hydroxylase. J Biol Chem 2010; 285:31193-201. [PMID: 20667833 DOI: 10.1074/jbc.m110.147009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vitamin D(3) hydroxylase (Vdh) isolated from actinomycete Pseudonocardia autotrophica is a cytochrome P450 (CYP) responsible for the biocatalytic conversion of vitamin D(3) (VD(3)) to 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)VD(3)) by P. autotrophica. Although its biological function is unclear, Vdh is capable of catalyzing the two-step hydroxylation of VD(3), i.e. the conversion of VD(3) to 25-hydroxyvitamin D(3) (25(OH)VD(3)) and then of 25(OH)VD(3) to 1α,25(OH)(2)VD(3), a hormonal form of VD(3). Here we describe the crystal structures of wild-type Vdh (Vdh-WT) in the substrate-free form and of the highly active quadruple mutant (Vdh-K1) generated by directed evolution in the substrate-free, VD(3)-bound, and 25(OH)VD(3)-bound forms. Vdh-WT exhibits an open conformation with the distal heme pocket exposed to the solvent both in the presence and absence of a substrate, whereas Vdh-K1 exhibits a closed conformation in both the substrate-free and substrate-bound forms. The results suggest that the conformational equilibrium was largely shifted toward the closed conformation by four amino acid substitutions scattered throughout the molecule. The substrate-bound structure of Vdh-K1 accommodates both VD(3) and 25(OH)VD(3) but in an anti-parallel orientation. The occurrence of the two secosteroid binding modes accounts for the regioselective sequential VD(3) hydroxylation activities. Moreover, these structures determined before and after directed evolution, together with biochemical and spectroscopic data, provide insights into how directed evolution has worked for significant enhancement of both the VD(3) 25-hydroxylase and 25(OH)VD(3) 1α-hydroxylase activities.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo 062-8517, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Miranzo D, Seco EM, Cuesta T, Malpartida F. Isolation and characterization of pcsB, the gene for a polyene carboxamide synthase that tailors pimaricin into AB-400. Appl Microbiol Biotechnol 2009; 85:1809-19. [PMID: 19707754 DOI: 10.1007/s00253-009-2195-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/25/2022]
Abstract
From cell-free extracts of Streptomyces RGU5.3, a tailoring activity of pimaricin, leading to the biosynthesis of its natural carboxamide derivative AB-400, was recently identified. The two polyene macrolides, pimaricin and AB-400, were produced in almost equal quantities and can be detected in the fermentation broth of the producer strain. This report concerns the isolation and partial characterization of the gene, polyene carboxamide synthase (pcsB), responsible for the bioconversion. The gene encoded an asparagine synthase-like protein, belonging to the type II glutamine amidotransferase family, and was named pcsB. The fermentation broth of a recombinant strain carrying the engineered pcsB gene under the control of the inducible tipA promoter within an integrative vector produces the carboxamide AB-400 as the main polyene macrolide.
Collapse
Affiliation(s)
- Domingo Miranzo
- Centro Nacional de Biotecnología del CSIC, Campus de la UAM, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Yasutake Y, Fujii Y, Cheon WK, Arisawa A, Tamura T. Crystallization and preliminary X-ray diffraction studies of vitamin D3 hydroxylase, a novel cytochrome P450 isolated from Pseudonocardia autotrophica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:372-5. [PMID: 19342783 DOI: 10.1107/s1744309109007829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 03/04/2009] [Indexed: 01/08/2023]
Abstract
Vitamin D(3) hydroxylase (Vdh) is a novel cytochrome P450 monooxygenase isolated from the actinomycete Pseudonocardia autotrophica and consisting of 403 amino-acid residues. Vdh catalyzes the activation of vitamin D(3) via sequential hydroxylation reactions: these reactions involve the conversion of vitamin D(3) (cholecalciferol or VD3) to 25-hydroxyvitamin D(3) [25(OH)VD3] and the subsequent conversion of 25(OH)VD3 to 1alpha,25-dihydroxyvitamin D(3) [calciferol or 1alpha,25(OH)(2)VD3]. Overexpression of recombinant Vdh was carried out using a Rhodococcus erythropolis expression system and the protein was subsequently purified and crystallized. Two different crystal forms were obtained by the hanging-drop vapour-diffusion method at 293 K using polyethylene glycol as a precipitant. The form I crystal belonged to the trigonal space group P3(1), with unit-cell parameters a = b = 61.7, c = 98.8 A. There is one Vdh molecule in the asymmetric unit, with a solvent content of 47.6%. The form II crystal was grown in the presence of 25(OH)VD3 and belonged to the orthorhombic system P2(1)2(1)2(1), with unit-cell parameters a = 63.4, b = 65.6 c = 102.2 A. There is one Vdh molecule in the asymmetric unit, with a solvent content of 46.7%. Native data sets were collected to resolutions of 1.75 and 3.05 A for form I and form II crystals, respectively, using synchrotron radiation. The structure solution was obtained by the molecular-replacement method and model refinement is in progress for the form I crystal.
Collapse
Affiliation(s)
- Yoshiaki Yasutake
- Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
28
|
Ota H, Sakasegawa SI, Yasuda Y, Imamura S, Tamura T. A novel nucleoside kinase from Burkholderia thailandensis: a member of the phosphofructokinase B-type family of enzymes. FEBS J 2009; 275:5865-72. [PMID: 19021762 DOI: 10.1111/j.1742-4658.2008.06716.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The genome of the mesophilic Gram-negative bacterium Burkholderia thailandensis contains an open reading frame (i.e. the Bth_I1158 gene) that has been annotated as a putative ribokinase and PFK-B family member. Notably, although the deduced amino acid sequence of the gene showed only 29% similarity to the recently identified nucleoside kinase from hyperthermophilic archaea Methanocaldococcus jannaschii, 15 of 17 residues reportedly involved in the catalytic activity of M. jannaschii nucleoside kinase were conserved. The gene was cloned and functionally overexpressed in Rhodococcus erythropolis, and the purified enzyme was characterized biochemically. The substrate specificity of the enzyme was unusually broad for a bacterial PFK-B protein, and the specificity extended not only to purine and purine-analog nucleosides but also to uridine. Inosine was the most effective phosphoryl acceptor, with the highest k(cat)/K(m) value (80 s(-1).mm(-1)) being achieved when ATP served as the phosphoryl donor. By contrast, this enzyme exhibited no activity toward ribose, indicating that the recombinant enzyme was a nucleoside kinase rather than a ribokinase. To our knowledge, this is the first detailed analysis of a bacterial nucleoside kinase in the PFK-B family.
Collapse
Affiliation(s)
- Hiroko Ota
- Asahi Kasei Pharma Corporation, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
29
|
Kang Z, Yeung A, Foght JM, Gray MR. Mechanical properties of hexadecane–water interfaces with adsorbed hydrophobic bacteria. Colloids Surf B Biointerfaces 2008; 62:273-9. [PMID: 18093811 DOI: 10.1016/j.colsurfb.2007.10.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2007] [Revised: 09/18/2007] [Accepted: 10/25/2007] [Indexed: 11/27/2022]
Affiliation(s)
- Zhewen Kang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
30
|
Sallam KI, Tamura N, Tamura T. A multipurpose transposon-based vector system mediates protein expression in Rhodococcus erythropolis. Gene 2006; 386:173-82. [PMID: 17098379 DOI: 10.1016/j.gene.2006.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 09/07/2006] [Accepted: 09/07/2006] [Indexed: 11/29/2022]
Abstract
In the current study we developed two transposon-based vectors; namely pTNR-KA and pTNR-TA and utilized them for expression of proteasome complex, derived from Streptomyces coelicolor, in Rhodococcus erythropolis. The two vectors can be transposed into Rhodococcus cells by means of electroporation, either individually in two consecutive processes or in combinations by a single step. During transposition, each of the two vectors liberates its transposable-marker gene, which integrated in a single copy into a random site in the Rhodococcus chromosomal DNA. Southern blot analysis indicated that the two transposable-marker genes of both vectors does not alter or knock out each other. To utilize these vectors for Streptomyces proteasome expression, two expression cassettes were constructed; each cassette comprised a constitutive promoter (P(nit)), the DNA fragment, prcA or prcB that encodes alpha- or beta-subunits of Streptomyces proteasome, and T(thcA) transcriptional terminator. The cassettes were then individually introduced into the multiple cloning sites that are located in the transposable-marker gene of the two vectors. The two cassettes-harboring vectors were subsequently co-transposed, in combinations, into the Rhodococcus genome by a single electroporation step and the Streptomyces proteasome was successfully expressed in the rodococcal host cell. The isolated proteasome was further characterized and the peptidase activity was confirmed and indicated that it was biologically active. The present study concluded that both pTNR-KA and pTNR-TA can be used as transposon-based protein expression systems in Rhodococcus species.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
31
|
Mitani Y, Suzuki K, Kondo K, Okumura K, Tamura T. Gene expression analysis using a modified HiCEP method applicable to prokaryotes: A study of the response of Rhodococcus to isoniazid and ethambutol. J Biotechnol 2006; 123:259-72. [PMID: 16360900 DOI: 10.1016/j.jbiotec.2005.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 10/21/2005] [Accepted: 11/09/2005] [Indexed: 11/21/2022]
Abstract
We established a novel method to analyze the gene expression of prokaryotes by modifying and optimizing the HiCEP (high coverage gene expression analysis) method, which was originally developed for eukaryotic gene expression profiling. Following the removal of abundant rRNA, the mRNA of prokaryotic cells was enzymatically polyadenylated and subjected to HiCEP analysis. This method was highly reproducible due to selective PCR that was performed by using adaptor specific primers. We confirmed induction of tipA and induction or suppression of cspA, which are genes that are obtained from distinctive actinomycetes and responded to thiostrepton and temperature stress, respectively. Further, we applied this method to explore the gene expression profile of Rhodococcus erythropolis in response to drugs that inhibit cell wall synthetic pathways, and we were able to identify 35 upregulated genes. Among these genes, we confirmed the upregulation of 22 genes by using RT-PCR (reverse transcriptase-polymerase chain reaction). Some of these genes are involved in the synthesis of mycolic acid and arabinogalactan, suggesting a cell response to drug treatment by regulation of the genes involved in cell wall synthesis. This method could prove to be a useful technique for gene expression analysis of prokaryotes, particularly nonmodel strains with unknown genome sequences.
Collapse
Affiliation(s)
- Yasuo Mitani
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukisamu-Higashi, Sapporo 062-8517, Japan
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Sallam KI, Mitani Y, Tamura T. Construction of random transposition mutagenesis system in Rhodococcuserythropolis using IS1415. J Biotechnol 2005; 121:13-22. [PMID: 16107286 DOI: 10.1016/j.jbiotec.2005.07.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 06/23/2005] [Accepted: 07/04/2005] [Indexed: 11/19/2022]
Abstract
Recent studies on the metabolic activities of genus Rhodococcus have shown rhodococci to be of important use in industrial, pharmaceutical and environmental biotechnology. The increasing economic significance of Rhodococcus encourages renewed efforts to characterize their genetic systems, as Rhodococcus genetics are still poorly understood. The goal of this study is to adapt a transposon system for use in creating random mutagenesis in Rhodococcus erythropolis. A plasmid carrying IS1415, a member of IS21 family identified from Rerythropolis, has been constructed and designated as pTNR. pTNR is a non-replicating transposon tool introduced into target cells by electroporation. During its transposition, the transposable-marker gene is separated from the open reading frames (istAB) of IS1415, which should avoid secondary transposition. Transposition of pTNR into wild-type R. erythropolis created mutagenesis with a high efficiency of 1.23x10(6)mutants per microgram plasmid DNA. However, it could also be transposed into other Rhodococcus spp. at lower frequencies in comparison with that of R. erythropolis. It has been indicated by Southern hybridization that the generated kanamycin-resistant mutants were resulted from single transposition event of pTNR. The results also revealed that the transposable-marker gene of pTNR was randomly inserted into the chromosomal DNA of R. erythropolis. The affected DNA regions carrying the transposed DNA element could be conveniently recovered for further characterization using a plasmid rescue procedure. Sequence data of the insertion sites of 40 random mutants analyzed indicated that transposition of pTNR generated 6-bp direct target duplications in 36 cases, while in the remaining four mutants; it generated 5- or 7-bp target duplications (two cases each). This study concluded that pTNR could be served as an efficient genetic tool for construction of random mutagenesis system in Rhodococcus species.
Collapse
Affiliation(s)
- Khalid Ibrahim Sallam
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | | |
Collapse
|
34
|
Nakashima N, Mitani Y, Tamura T. Actinomycetes as host cells for production of recombinant proteins. Microb Cell Fact 2005; 4:7. [PMID: 15788099 PMCID: PMC1079934 DOI: 10.1186/1475-2859-4-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Accepted: 03/23/2005] [Indexed: 11/23/2022] Open
Abstract
Actinomycetes (Actinobacteria) are highly attractive as cell factories or bioreactors for applications in industrial, agricultural, environmental, and pharmaceutical fields. Genome sequencing of several species of actinomycetes has paved the way for biochemical and structural analysis of important proteins and the production of such proteins as recombinants on a commercial scale. In this regard, there is a need for improved expression vectors that will be applicable to actinomycetes. Recent advancements in gene expression systems, knowledge regarding the intracellular environment, and identification and characterization of plasmids has made it possible to develop practicable recombinant expression systems in actinomycetes as described in this review.
Collapse
Affiliation(s)
- Nobutaka Nakashima
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Center for Genomics and Bioinformatics (CGB), Karolinska Institute, Berzelius väg 35, Stockholm 171 77, Sweden
| | - Yasuo Mitani
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Tomohiro Tamura
- Proteolysis and Protein Turnover Research Group, Research Institute of Genome-based Biofactory, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
- Laboratory of Molecular Environmental Microbiology, Graduate School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|