1
|
Buljubašić M, Hlevnjak A, Repar J, Đermić D, Filić V, Weber I, Zahradka K, Zahradka D. RecBCD- RecFOR-independent pathway of homologous recombination in Escherichia coli. DNA Repair (Amst) 2019; 83:102670. [PMID: 31378505 DOI: 10.1016/j.dnarep.2019.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
The RecA protein is a key bacterial recombination enzyme that catalyzes pairing and strand exchange between homologous DNA duplexes. In Escherichia coli, RecA protein assembly on DNA is mediated either by the RecBCD or RecFOR protein complexes. Correspondingly, two recombination pathways, RecBCD and RecF (or RecFOR), are distinguished in E. coli. Inactivation of both pathways in recB(CD) recF(OR) mutants results in severe recombination deficiency. Here we describe a novel, RecBCD- RecFOR-independent (RecBFI) recombination pathway that is active in ΔrecBCD sbcB15 sbcC(D) ΔrecF(OR) mutants of E. coli. In transductional crosses, these mutants show only four-fold decrease of recombination frequency relative to the wild-type strain. At the same time they recombine 40- to 90-fold better than their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. The RecBFI pathway strongly depends on recA, recJ and recQ gene functions, and moderately depends on recG and lexA functions. Inactivation of dinI, helD, recX, recN, radA, ruvABC and uvrD genes has a slight effect on RecBFI recombination. After exposure to UV and gamma irradiation, the ΔrecBCD sbcB15 sbcC ΔrecF mutants show moderately increased DNA repair proficiency relative to their sbcB+ sbcC+ and ΔsbcB sbcC counterparts. However, introduction of recA730 allele (encoding RecA protein with enhanced DNA binding properties) completely restores repair proficiency to ΔrecBCD sbcB15 sbcC ΔrecF mutants, but not to their sbcB+ sbcC+ and ΔsbcB sbcC derivatives. Fluorescence microscopy with UV-irradiated recA-gfp fusion mutants suggests that the kinetics of RecA filament formation might be slowed down in the RecBFI pathway. Inactivation of 3'-5' exonucleases ExoVII, ExoIX and ExoX cannot activate the RecBFI pathway in ΔrecBCD ΔsbcB sbcC ΔrecF mutants. Taken together, our results show that the product of the sbcB15 allele is crucial for RecBFI pathway. Besides protecting 3' overhangs, SbcB15 protein might play an additional, more active role in formation of the RecA filament.
Collapse
Affiliation(s)
- Maja Buljubašić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Hlevnjak
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Damir Đermić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Igor Weber
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ksenija Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Davor Zahradka
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
2
|
Brown LT, Sutera VA, Zhou S, Weitzel CS, Cheng Y, Lovett ST. Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein. PLoS Genet 2015; 11:e1005651. [PMID: 26544712 PMCID: PMC4636137 DOI: 10.1371/journal.pgen.1005651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022] Open
Abstract
Elongating DNA polymerases frequently encounter lesions or structures that impede progress and require repair before DNA replication can be completed. Therefore, directing repair factors to a blocked fork, without interfering with normal replication, is important for proper cell function, and it is a process that is not well understood. To study this process, we have employed the chain-terminating nucleoside analog, 3’ azidothymidine (AZT) and the E. coli genetic system, for which replication and repair factors have been well-defined. By using high-expression suppressor screens, we identified yoaA, encoding a putative helicase, and holC, encoding the Chi component of the replication clamp loader, as genes that promoted tolerance to AZT. YoaA is a putative Fe-S helicase in the XPD/RAD3 family for which orthologs can be found in most bacterial genomes; E. coli has a paralog to YoaA, DinG, which possesses 5’ to 3’ helicase activity and an Fe-S cluster essential to its activity. Mutants in yoaA are sensitive to AZT exposure; dinG mutations cause mild sensitivity to AZT and exacerbate the sensitivity of yoaA mutant strains. Suppression of AZT sensitivity by holC or yoaA was mutually codependent and we provide evidence here that YoaA and Chi physically interact. Interactions of Chi with single-strand DNA binding protein (SSB) and with Psi were required to aid AZT tolerance, as was the proofreading 3’ exonuclease, DnaQ. Our studies suggest that repair is coupled to blocked replication through these interactions. We hypothesize that SSB, through Chi, recruits the YoaA helicase to replication gaps and that unwinding of the nascent strand promotes repair and AZT excision. This recruitment prevents the toxicity of helicase activity and aids the handoff of repair with replication factors, ensuring timely repair and resumption of replication. During the replication of the cell’s genetic material, difficulties are often encountered. These problems require the recruitment of special proteins to repair DNA so that replication can be completed. The failure to do so causes cell death or deleterious changes to the cell’s genetic material. In humans, these genetic changes can promote cancer formation. Our study identifies a repair protein that is recruited to problem sites by interactions with the replication machinery. These interactions provide a means by which the cell can sense, respond to and repair damage that interferes with the completion of DNA replication.
Collapse
Affiliation(s)
- Laura T. Brown
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Vincent A. Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Shen Zhou
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Christopher S. Weitzel
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Yisha Cheng
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
| | - Susan T. Lovett
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
3
|
Abstract
DNA exonucleases, enzymes that hydrolyze phosphodiester bonds in DNA from a free end, play important cellular roles in DNA repair, genetic recombination and mutation avoidance in all organisms. This article reviews the structure, biochemistry, and biological functions of the 17 exonucleases currently identified in the bacterium Escherichia coli. These include the exonucleases associated with DNA polymerases I (polA), II (polB), and III (dnaQ/mutD); Exonucleases I (xonA/sbcB), III (xthA), IV, VII (xseAB), IX (xni/xgdG), and X (exoX); the RecBCD, RecJ, and RecE exonucleases; SbcCD endo/exonucleases; the DNA exonuclease activities of RNase T (rnt) and Endonuclease IV (nfo); and TatD. These enzymes are diverse in terms of substrate specificity and biochemical properties and have specialized biological roles. Most of these enzymes fall into structural families with characteristic sequence motifs, and members of many of these families can be found in all domains of life.
Collapse
|
4
|
Repar J, Briški N, Buljubašić M, Zahradka K, Zahradka D. Exonuclease VII is involved in "reckless" DNA degradation in UV-irradiated Escherichia coli. Mutat Res 2012; 750:96-104. [PMID: 23123979 DOI: 10.1016/j.mrgentox.2012.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 09/17/2012] [Accepted: 10/10/2012] [Indexed: 01/06/2023]
Abstract
The recA mutants of Escherichia coli exhibit an abnormal DNA degradation that starts at sites of double-strand DNA breaks (DSBs), and is mediated by RecBCD exonuclease (ExoV). This "reckless" DNA degradation occurs spontaneously in exponentially growing recA cells, and is stimulated by DNA-damaging agents. We have previously found that the xonA and sbcD mutations, which inactivate exonuclease I (ExoI) and SbcCD nuclease, respectively, markedly suppress "reckless" DNA degradation in UV-irradiated recA cells. In the present work, we show that inactivation of exonuclease VII (ExoVII) by an xseA mutation contributes to attenuation of DNA degradation in UV-irradiated recA mutants. The xseA mutation itself has only a weak effect, however, it acts synergistically with the xonA or sbcD mutations in suppressing "reckless" DNA degradation. The quadruple xseA xonA sbcD recA mutants show no sign of DNA degradation during post-irradiation incubation, suggesting that ExoVII, together with ExoI and SbcCD, plays a crucial role in regulating RecBCD-catalyzed chromosome degradation. We propose that these nucleases act on DSBs to create blunt DNA ends, the preferred substrates for the RecBCD enzyme. In addition, our results show that in UV-irradiated recF recA(+) cells, the xseA, xonA, and sbcD mutations do not affect RecBCD-mediated DNA repair, suggesting that ExoVII, ExoI and SbcCD nucleases are not essential for the initial targeting of RecBCD to DSBs. It is possible that the DNA-blunting activity provided by ExoVII, ExoI and SbcCD is required for an exchange of RecBCD molecules on dsDNA ends during ongoing "reckless" DNA degradation.
Collapse
Affiliation(s)
- Jelena Repar
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
5
|
Poleszak K, Kaminska KH, Dunin-Horkawicz S, Lupas A, Skowronek KJ, Bujnicki JM. Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII. Nucleic Acids Res 2012; 40:8163-74. [PMID: 22718974 PMCID: PMC3439923 DOI: 10.1093/nar/gks547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII.
Collapse
Affiliation(s)
- Katarzyna Poleszak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
6
|
Buljubašić M, Repar J, Zahradka K, Dermić D, Zahradka D. RecF recombination pathway in Escherichia coli cells lacking RecQ, UvrD and HelD helicases. DNA Repair (Amst) 2012; 11:419-30. [PMID: 22342069 DOI: 10.1016/j.dnarep.2012.01.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
In recBCD sbcB sbcC(D) mutants of Escherichia coli homologous recombination proceeds via RecF pathway, which is thought to require RecQ, UvrD and HelD helicases at its initial stage. It was previously suggested that depletion of all three helicases totally abolishes the RecF pathway. The present study (re)examines the roles of these helicases in transductional recombination, and in recombinational repair of UV-induced DNA damage in the RecF pathway. The study has employed the ΔrecBCD ΔsbcB sbcC201 and ΔrecBCD sbcB15 sbcC201 strains, carrying combinations of mutations in recQ, uvrD, and helD genes. We show that in ΔrecBCD ΔsbcB sbcC201 strains, recombination requires exclusively the RecQ helicase. In ΔrecBCD sbcB15 sbcC201 strains, RecQ may be partially substituted by UvrD helicase. The HelD helicase is dispensable for recombination in both backgrounds. Our results also suggest that significant portion of recombination events in the RecF pathway is independent of RecQ, UvrD and HelD. These events are initiated either by RecJ nuclease alone or by RecJ nuclease associated with an unknown helicase. Inactivation of exonuclease VII by a xseA mutation further decreases the requirement for helicase activity in the RecF pathway. We suggest that elimination of nucleases acting on 3' single-strand DNA ends reduces the necessity for helicases in initiation of recombination.
Collapse
Affiliation(s)
- Maja Buljubašić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
7
|
Larrea AA, Pedroso IM, Malhotra A, Myers RS. Identification of two conserved aspartic acid residues required for DNA digestion by a novel thermophilic Exonuclease VII in Thermotoga maritima. Nucleic Acids Res 2008; 36:5992-6003. [PMID: 18812402 PMCID: PMC2566859 DOI: 10.1093/nar/gkn588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exonuclease VII was first identified in 1974 as a DNA exonuclease that did not require any divalent cations for activity. Indeed, Escherichia coli ExoVII was identified in partially purified extracts in the presence of EDTA. ExoVII is comprised of two subunits (XseA and XseB) that are highly conserved and present in most sequenced prokaryotic genomes, but are not seen in eukaryotes. To better understand this exonuclease family, we have characterized an ExoVII homolog from Thermotoga maritima. Thermotoga maritima XseA/B homologs TM1768 and TM1769 were co-expressed and purified, and show robust nuclease activity at 80°C. This activity is magnesium dependent and is inhibited by phosphate ions, which distinguish it from E. coli ExoVII. Nevertheless, both E. coli and T. maritima ExoVII share a similar putative active site motif with two conserved aspartate residues in the large (XseA/TM1768) subunit. We show that these residues, Asp235 and Asp240, are essential for the nuclease activity of T. maritima ExoVII. We hypothesize that the ExoVII family of nucleases can be sub-divided into two sub-families based on EDTA resistance and that T. maritima ExoVII is the first member of the branch that is characterized by EDTA sensitivity and inhibition by phosphate.
Collapse
Affiliation(s)
- Andres A Larrea
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | |
Collapse
|