1
|
Ma D, Du G, Fang H, Li R, Zhang D. Advances and prospects in microbial production of biotin. Microb Cell Fact 2024; 23:135. [PMID: 38735926 PMCID: PMC11089781 DOI: 10.1186/s12934-024-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Biotin, serving as a coenzyme in carboxylation reactions, is a vital nutrient crucial for the natural growth, development, and overall well-being of both humans and animals. Consequently, biotin is widely utilized in various industries, including feed, food, and pharmaceuticals. Despite its potential advantages, the chemical synthesis of biotin for commercial production encounters environmental and safety challenges. The burgeoning field of synthetic biology now allows for the creation of microbial cell factories producing bio-based products, offering a cost-effective alternative to chemical synthesis for biotin production. This review outlines the pathway and regulatory mechanism involved in biotin biosynthesis. Then, the strategies to enhance biotin production through both traditional chemical mutagenesis and advanced metabolic engineering are discussed. Finally, the article explores the limitations and future prospects of microbial biotin production. This comprehensive review not only discusses strategies for biotin enhancement but also provides in-depth insights into systematic metabolic engineering approaches aimed at boosting biotin production.
Collapse
Affiliation(s)
- Donghan Ma
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Guangqing Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Rong Li
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Xu Y, Yang J, Li W, Song S, Shi Y, Wu L, Sun J, Hou M, Wang J, Jia X, Zhang H, Huang M, Lu T, Gan J, Feng Y. Three enigmatic BioH isoenzymes are programmed in the early stage of mycobacterial biotin synthesis, an attractive anti-TB drug target. PLoS Pathog 2022; 18:e1010615. [PMID: 35816546 PMCID: PMC9302846 DOI: 10.1371/journal.ppat.1010615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/21/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Tuberculosis (TB) is one of the leading infectious diseases of global concern, and one quarter of the world’s population are TB carriers. Biotin metabolism appears to be an attractive anti-TB drug target. However, the first-stage of mycobacterial biotin synthesis is fragmentarily understood. Here we report that three evolutionarily-distinct BioH isoenzymes (BioH1 to BioH3) are programmed in biotin synthesis of Mycobacterium smegmatis. Expression of an individual bioH isoform is sufficient to allow the growth of an Escherichia coli ΔbioH mutant on the non-permissive condition lacking biotin. The enzymatic activity in vitro combined with biotin bioassay in vivo reveals that BioH2 and BioH3 are capable of removing methyl moiety from pimeloyl-ACP methyl ester to give pimeloyl-ACP, a cognate precursor for biotin synthesis. In particular, we determine the crystal structure of dimeric BioH3 at 2.27Å, featuring a unique lid domain. Apart from its catalytic triad, we also dissect the substrate recognition of BioH3 by pimeloyl-ACP methyl ester. The removal of triple bioH isoforms (ΔbioH1/2/3) renders M. smegmatis biotin auxotrophic. Along with the newly-identified Tam/BioC, the discovery of three unusual BioH isoforms defines an atypical ‘BioC-BioH(3)’ paradigm for the first-stage of mycobacterial biotin synthesis. This study solves a long-standing puzzle in mycobacterial nutritional immunity, providing an alternative anti-TB drug target.
Collapse
Affiliation(s)
- Yongchang Xu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jie Yang
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, The People’s Republic of China
| | - Shuaijie Song
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Yu Shi
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Lihan Wu
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jingdu Sun
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
| | - Mengyun Hou
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Jinzi Wang
- Guangxi Key Laboratory of Utilization of Microbial and Botanical Resources & Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, The People’s Republic of China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
| | - Huimin Zhang
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Man Huang
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Science, Fudan University, Shanghai, The People’s Republic of China
- * E-mail: (JG); (YF)
| | - Youjun Feng
- Departments of Microbiology, and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, The People’s Republic of China
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, The People’s Republic of China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, The People’s Republic of China
- * E-mail: (JG); (YF)
| |
Collapse
|
3
|
Song X, Cronan JE. A conserved and seemingly redundant Escherichia coli biotin biosynthesis gene expressed only during anaerobic growth. Mol Microbiol 2021; 116:1315-1327. [PMID: 34597430 PMCID: PMC8599648 DOI: 10.1111/mmi.14826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Biotin is an essential metabolic cofactor and de novo biotin biosynthetic pathways are widespread in microorganisms and plants. Biotin synthetic genes are generally found clustered into bio operons to facilitate tight regulation since biotin synthesis is a metabolically expensive process. Dethiobiotin synthetase (DTBS) catalyzes the penultimate step of biotin biosynthesis, the formation of 7,8-diaminononanoate (DAPA). In Escherichia coli, DTBS is encoded by the bio operon gene bioD. Several studies have reported transcriptional activation of ynfK a gene of unknown function, under anaerobic conditions. Alignments of YnfK with BioD have led to suggestions that YnfK has DTBS activity. We report that YnfK is a functional DTBS, although an enzyme of poor activity that is poorly expressed. Supplementation of growth medium with DAPA or substitution of BioD active site residues for the corresponding YnfK residues greatly improved the DTBS activity of YnfK. We confirmed that FNR activates transcriptional level of ynfK during anaerobic growth and identified the FNR binding site of ynfK. The ynfK gene is well conserved in γ-proteobacteria.
Collapse
Affiliation(s)
- Xuejiao Song
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
4
|
Hu Y, Cronan JE. α-proteobacteria synthesize biotin precursor pimeloyl-ACP using BioZ 3-ketoacyl-ACP synthase and lysine catabolism. Nat Commun 2020; 11:5598. [PMID: 33154364 PMCID: PMC7645780 DOI: 10.1038/s41467-020-19251-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/28/2020] [Indexed: 11/09/2022] Open
Abstract
Pimelic acid, a seven carbon α,ω-dicarboxylic acid (heptanedioic acid), is known to provide seven of the ten biotin carbon atoms including all those of the valeryl side chain. Distinct pimelate synthesis pathways were recently elucidated in Escherichia coli and Bacillus subtilis where fatty acid synthesis plus dedicated biotin enzymes produce the pimelate moiety. In contrast, the α-proteobacteria which include important plant and mammalian pathogens plus plant symbionts, lack all of the known pimelate synthesis genes and instead encode bioZ genes. Here we report a pathway in which BioZ proteins catalyze a 3-ketoacyl-acyl carrier protein (ACP) synthase III-like reaction to produce pimeloyl-ACP with five of the seven pimelate carbon atoms being derived from glutaryl-CoA, an intermediate in lysine degradation. Agrobacterium tumefaciens strains either deleted for bioZ or which encode a BioZ active site mutant are biotin auxotrophs, as are strains defective in CaiB which catalyzes glutaryl-CoA synthesis from glutarate and succinyl-CoA.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Bockman MR, Mishra N, Aldrich CC. The Biotin Biosynthetic Pathway in Mycobacterium tuberculosis is a Validated Target for the Development of Antibacterial Agents. Curr Med Chem 2020; 27:4194-4232. [PMID: 30663561 DOI: 10.2174/0929867326666190119161551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis, responsible for Tuberculosis (TB), remains the leading cause of mortality among infectious diseases worldwide from a single infectious agent, with an estimated 1.7 million deaths in 2016. Biotin is an essential cofactor in M. tuberculosis that is required for lipid biosynthesis and gluconeogenesis. M. tuberculosis relies on de novo biotin biosynthesis to obtain this vital cofactor since it cannot scavenge sufficient biotin from a mammalian host. The biotin biosynthetic pathway in M. tuberculosis has been well studied and rigorously genetically validated providing a solid foundation for medicinal chemistry efforts. This review examines the mechanism and structure of the enzymes involved in biotin biosynthesis and ligation, summarizes the reported genetic validation studies of the pathway, and then analyzes the most promising inhibitors and natural products obtained from structure-based drug design and phenotypic screening.
Collapse
Affiliation(s)
- Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Neeraj Mishra
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, United States
| |
Collapse
|
6
|
Eggers J, Strittmatter CS, Küsters K, Biller E, Steinbüchel A. Biotin Synthesis in Ralstonia eutropha H16 Utilizes Pimeloyl Coenzyme A and Can Be Regulated by the Amount of Acceptor Protein. Appl Environ Microbiol 2020; 86:e01512-20. [PMID: 32680858 PMCID: PMC7480372 DOI: 10.1128/aem.01512-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
The biotin metabolism of the Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha (syn. Cupriavidus necator), which is used for biopolymer production in industry, was investigated. A biotin auxotroph mutant lacking bioF was generated, and biotin depletion in the cells and the minimal biotin demand of a biotin-auxotrophic R. eutropha strain were determined. Three consecutive cultivations in biotin-free medium were necessary to prevent growth of the auxotrophic mutant, and 40 ng/ml biotin was sufficient to promote cell growth. Nevertheless, 200 ng/ml biotin was necessary to ensure growth comparable to that of the wild type, which is similar to the demand of biotin-auxotrophic mutants among other prokaryotic and eukaryotic microbes. A phenotypic complementation of the R. eutropha ΔbioF mutant was only achieved by homologous expression of bioF of R. eutropha or heterologous expression of bioF of Bacillus subtilis but not by bioF of Escherichia coli Together with the results from bioinformatic analysis of BioFs, this leads to the assumption that the intermediate of biotin synthesis in R. eutropha is pimeloyl-CoA instead of pimeloyl-acyl carrier protein (ACP) like in the Gram-positive B. subtilis Internal biotin content was enhanced by homologous expression of accB, whereas homologous expression of accB and accC2 in combination led to decreased biotin concentrations in the cells. Although a DNA-binding domain of the regulator protein BirA is missing, biotin synthesis seemed to be influenced by the amount of acceptor protein present.IMPORTANCERalstonia eutropha is applied in industry for the production of biopolymers and serves as a research platform for the production of diverse fine chemicals. Due to its ability to grow on hydrogen and carbon dioxide as the sole carbon and energy source, R. eutropha is often utilized for metabolic engineering to convert inexpensive resources into value-added products. The understanding of the metabolic pathways in this bacterium is mandatory for further bioengineering of the strain and for the development of new strategies for biotechnological production.
Collapse
Affiliation(s)
- Jessica Eggers
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Carl Simon Strittmatter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kira Küsters
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Emre Biller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Kowalski K. Recent developments in the chemistry of ferrocenyl secondary natural product conjugates. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Baidya AK, Bhattacharya S, Dubey GP, Mamou G, Ben-Yehuda S. Bacterial nanotubes: a conduit for intercellular molecular trade. Curr Opin Microbiol 2018; 42:1-6. [DOI: 10.1016/j.mib.2017.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/01/2022]
|
9
|
Manandhar M, Cronan JE. A Canonical Biotin Synthesis Enzyme, 8-Amino-7-Oxononanoate Synthase (BioF), Utilizes Different Acyl Chain Donors in Bacillus subtilis and Escherichia coli. Appl Environ Microbiol 2018; 84:e02084-17. [PMID: 29054876 PMCID: PMC5734022 DOI: 10.1128/aem.02084-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/15/2017] [Indexed: 12/24/2022] Open
Abstract
BioF (8-amino-7-oxononanoate synthase) is a strictly conserved enzyme that catalyzes the first step in assembly of the fused heterocyclic rings of biotin. The BioF acyl chain donor has long been thought to be pimeloyl-CoA. Indeed, in vitro the Escherichia coli and Bacillus sphaericus enzymes have been shown to condense pimeloyl-CoA with l-alanine in a pyridoxal 5'-phosphate-dependent reaction with concomitant CoA release and decarboxylation of l-alanine. However, recent in vivo studies of E. coli and Bacillus subtilis suggested that the BioF proteins of the two bacteria could have different specificities for pimelate thioesters in that E. coli BioF may utilize either pimeloyl coenzyme A (CoA) or the pimelate thioester of the acyl carrier protein (ACP) of fatty acid synthesis. In contrast, B. subtilis BioF seemed likely to be specific for pimeloyl-CoA and unable to utilize pimeloyl-ACP. We now report genetic and in vitro data demonstrating that B. subtilis BioF specifically utilizes pimeloyl-CoA.IMPORTANCE Biotin is an essential vitamin required by mammals and birds because, unlike bacteria, plants, and some fungi, these organisms cannot make biotin. Currently, the biotin included in vitamin tablets and animal feeds is made by chemical synthesis. This is partly because the biosynthetic pathways in bacteria are incompletely understood. This paper defines an enzyme of the Bacillus subtilis pathway and shows that it differs from that of Escherichia coli in the ability to utilize specific precursors. These bacteria have been used in biotin production and these data may aid in making biotin produced by biotechnology commercially competitive with that produced by chemical synthesis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Cramer JD, Jarrett JT. Purification, Characterization, and Biochemical Assays of Biotin Synthase From Escherichia coli. Methods Enzymol 2018; 606:363-388. [DOI: 10.1016/bs.mie.2018.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Interspecies nutrient extraction and toxin delivery between bacteria. Nat Commun 2017; 8:315. [PMID: 28827522 PMCID: PMC5566331 DOI: 10.1038/s41467-017-00344-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/22/2017] [Indexed: 11/23/2022] Open
Abstract
Bacteria have developed various mechanisms by which they sense, interact, and kill other bacteria, in an attempt to outcompete one another and survive. Here we show that Bacillus subtilis can kill and prey on Bacillus megaterium. We find that Bacillus subtilis rapidly inhibits Bacillus megaterium growth by delivering the tRNase toxin WapA. Furthermore, utilizing the methionine analogue L-azidohomoalanine as a nutrient reporter, we provide evidence of nutrient extraction from Bacillus megaterium by Bacillus subtilis. Toxin delivery and nutrient extraction occur in a contact-dependent manner, and both activities are abolished in the absence of the phosphodiestrase YmdB, shown previously to mediate intercellular nanotube formation. Furthermore, we detect the localization of WapA molecules to nanotubes. Thus, we propose that Bacillus subtilis utilizes the same nanotube apparatus in a bidirectional manner, delivering toxin and acquiring beneficial cargo, thereby maximally exploiting potential niche resources. Bacteria can exchange nutrients and macromolecules through tubular membranous structures called nanotubes. Here, the authors show that Bacillus subtilis can kill and prey on Bacillus megaterium by delivering a toxin and extracting nutrients in a nanotube-dependent manner.
Collapse
|
12
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
13
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
14
|
Solitary BioY proteins mediate biotin transport into recombinant Escherichia coli. J Bacteriol 2013; 195:4105-11. [PMID: 23836870 DOI: 10.1128/jb.00350-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Energy-coupling factor (ECF) transporters form a large group of vitamin uptake systems in prokaryotes. They are composed of highly diverse, substrate-specific, transmembrane proteins (S units), a ubiquitous transmembrane protein (T unit), and homo- or hetero-oligomeric ABC ATPases. Biotin transporters represent a special case of ECF-type systems. The majority of the biotin-specific S units (BioY) is known or predicted to interact with T units and ABC ATPases. About one-third of BioY proteins, however, are encoded in organisms lacking any recognizable T unit. This finding raises the question of whether these BioYs function as transporters in a solitary state, a feature ascribed to certain BioYs in the past. To address this question in living cells, an Escherichia coli K-12 derivative deficient in biotin synthesis and devoid of its endogenous high-affinity biotin transporter was constructed as a reference strain. This organism is particularly suited for this purpose because components of ECF transporters do not naturally occur in E. coli K-12. The double mutant was viable in media containing either high levels of biotin or a precursor of the downstream biosynthetic path. Importantly, it was nonviable on trace levels of biotin. Eight solitary bioY genes of proteobacterial origin were individually expressed in the reference strain. Each of the BioYs conferred biotin uptake activity on the recombinants, which was inferred from uptake assays with [(3)H]biotin and growth of the cells on trace levels of biotin. The results underscore that solitary BioY transports biotin across the cytoplasmic membrane.
Collapse
|
15
|
Fugate CJ, Jarrett JT. Biotin synthase: insights into radical-mediated carbon-sulfur bond formation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:1213-22. [PMID: 22326745 DOI: 10.1016/j.bbapap.2012.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
Abstract
The enzyme cofactor and essential vitamin biotin is biosynthesized in bacteria, fungi, and plants through a pathway that culminates with the addition of a sulfur atom to generate the five-membered thiophane ring. The immediate precursor, dethiobiotin, has methylene and methyl groups at the C6 and C9 positions, respectively, and formation of a thioether bridging these carbon atoms requires cleavage of unactivated CH bonds. Biotin synthase is an S-adenosyl-l-methionine (SAM or AdoMet) radical enzyme that catalyzes reduction of the AdoMet sulfonium to produce 5'-deoxyadenosyl radicals, high-energy carbon radicals that can directly abstract hydrogen atoms from dethiobiotin. The available experimental and structural data suggest that a [2Fe-2S](2+) cluster bound deep within biotin synthase provides a sulfur atom that is added to dethiobiotin in a stepwise reaction, first at the C9 position to generate 9-mercaptodethiobiotin, and then at the C6 position to close the thiophane ring. The formation of sulfur-containing biomolecules through a radical reaction involving an iron-sulfur cluster is an unprecedented reaction in biochemistry; however, recent enzyme discoveries suggest that radical sulfur insertion reactions may be a distinct subgroup within the burgeoning Radical SAM superfamily. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.
Collapse
Affiliation(s)
- Corey J Fugate
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | |
Collapse
|
16
|
Magliano P, Flipphi M, Arpat BA, Delessert S, Poirier Y. Contributions of the peroxisome and β-oxidation cycle to biotin synthesis in fungi. J Biol Chem 2011; 286:42133-42140. [PMID: 21998305 PMCID: PMC3234907 DOI: 10.1074/jbc.m111.279687] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/04/2011] [Indexed: 12/22/2022] Open
Abstract
The first step in the synthesis of the bicyclic rings of D-biotin is mediated by 8-amino-7-oxononanoate (AON) synthase, which catalyzes the decarboxylative condensation of l-alanine and pimelate thioester. We found that the Aspergillus nidulans AON synthase, encoded by the bioF gene, is a peroxisomal enzyme with a type 1 peroxisomal targeting sequence (PTS1). Localization of AON to the peroxisome was essential for biotin synthesis because expression of a cytosolic AON variant or deletion of pexE, encoding the PTS1 receptor, rendered A. nidulans a biotin auxotroph. AON synthases with PTS1 are found throughout the fungal kingdom, in ascomycetes, basidiomycetes, and members of basal fungal lineages but not in representatives of the Saccharomyces species complex, including Saccharomyces cerevisiae. A. nidulans mutants defective in the peroxisomal acyl-CoA oxidase AoxA or the multifunctional protein FoxA showed a strong decrease in colonial growth rate in biotin-deficient medium, whereas partial growth recovery occurred with pimelic acid supplementation. These results indicate that pimeloyl-CoA is the in vivo substrate of AON synthase and that it is generated in the peroxisome via the β-oxidation cycle in A. nidulans and probably in a broad range of fungi. However, the β-oxidation cycle is not essential for biotin synthesis in S. cerevisiae or Escherichia coli. These results suggest that alternative pathways for synthesis of the pimelate intermediate exist in bacteria and eukaryotes and that Saccharomyces species use a pathway different from that used by the majority of fungi.
Collapse
Affiliation(s)
- Pasqualina Magliano
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Michel Flipphi
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, E-46100 Burjassot, Valencia, Spain
| | - Bulak A Arpat
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Syndie Delessert
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Yves Poirier
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
17
|
Lin S, Cronan JE. Closing in on complete pathways of biotin biosynthesis. MOLECULAR BIOSYSTEMS 2011; 7:1811-21. [PMID: 21437340 DOI: 10.1039/c1mb05022b] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biotin is an enzyme cofactor indispensable to metabolic fixation of carbon dioxide in all three domains of life. Although the catalytic and physiological roles of biotin have been well characterized, the biosynthesis of biotin remains to be fully elucidated. Studies in microbes suggest a two-stage biosynthetic pathway in which a pimelate moiety is synthesized and used to begin assembly of the biotin bicyclic ring structure. The enzymes involved in the bicyclic ring assembly have been studied extensively. In contrast the synthesis of pimelate, a seven carbon α,ω-dicarboxylate, has long been an enigma. Support for two different routes of pimelate synthesis has recently been obtained in Escherichia coli and Bacillus subtilis. The E. coli BioC-BioH pathway employs a methylation and demethylation strategy to allow elongation of a temporarily disguised malonate moiety to a pimelate moiety by the fatty acid synthetic enzymes whereas the B. subtilis BioI-BioW pathway utilizes oxidative cleavage of fatty acyl chains. Both pathways produce the pimelate thioester precursor essential for the first step in assembly of the fused rings of biotin. The enzymatic mechanisms and biochemical strategies of these pimelate synthesis models will be discussed in this review.
Collapse
Affiliation(s)
- Steven Lin
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 S. Goodwin Ave, Urbana, Illinois 61801, USA
| | | |
Collapse
|
18
|
Klitgord N, Segrè D. Environments that induce synthetic microbial ecosystems. PLoS Comput Biol 2010; 6:e1001002. [PMID: 21124952 PMCID: PMC2987903 DOI: 10.1371/journal.pcbi.1001002] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/20/2010] [Indexed: 11/18/2022] Open
Abstract
Interactions between microbial species are sometimes mediated by the exchange of small molecules, secreted by one species and metabolized by another. Both one-way (commensal) and two-way (mutualistic) interactions may contribute to complex networks of interdependencies. Understanding these interactions constitutes an open challenge in microbial ecology, with applications ranging from the human microbiome to environmental sustainability. In parallel to natural communities, it is possible to explore interactions in artificial microbial ecosystems, e.g. pairs of genetically engineered mutualistic strains. Here we computationally generate artificial microbial ecosystems without re-engineering the microbes themselves, but rather by predicting their growth on appropriately designed media. We use genome-scale stoichiometric models of metabolism to identify media that can sustain growth for a pair of species, but fail to do so for one or both individual species, thereby inducing putative symbiotic interactions. We first tested our approach on two previously studied mutualistic pairs, and on a pair of highly curated model organisms, showing that our algorithms successfully recapitulate known interactions, robustly predict new ones, and provide novel insight on exchanged molecules. We then applied our method to all possible pairs of seven microbial species, and found that it is always possible to identify putative media that induce commensalism or mutualism. Our analysis also suggests that symbiotic interactions may arise more readily through environmental fluctuations than genetic modifications. We envision that our approach will help generate microbe-microbe interaction maps useful for understanding microbial consortia dynamics and evolution, and for exploring the full potential of natural metabolic pathways for metabolic engineering applications.
Collapse
Affiliation(s)
- Niels Klitgord
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- Department of Biology and Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
19
|
Lin S, Hanson RE, Cronan JE. Biotin synthesis begins by hijacking the fatty acid synthetic pathway. Nat Chem Biol 2010; 6:682-8. [PMID: 20693992 PMCID: PMC2925990 DOI: 10.1038/nchembio.420] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 07/09/2010] [Indexed: 11/20/2022]
Abstract
Although biotin is an essential enzyme cofactor found in all three domains of life, our knowledge of its biosynthesis remains fragmentary. Most of the carbon atoms of biotin are derived from pimelic acid, a seven-carbon dicarboxylic acid, but the mechanism whereby this intermediate is assembled remains unknown. Genetic analysis in Escherichia coli identified only two genes of unknown function required for pimelate synthesis, bioC and bioH. We report in vivo and in vitro evidence that the pimeloyl moiety is synthesized by a modified fatty acid synthetic pathway in which the omega-carboxyl group of a malonyl-thioester is methylated by BioC, which allows recognition of this atypical substrate by the fatty acid synthetic enzymes. The malonyl-thioester methyl ester enters fatty acid synthesis as the primer and undergoes two reiterations of the fatty acid elongation cycle to give pimeloyl-acyl carrier protein (ACP) methyl ester, which is hydrolyzed to pimeloyl-ACP and methanol by BioH.
Collapse
Affiliation(s)
- Steven Lin
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Ryan E. Hanson
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - John E. Cronan
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
- Department of Biochemistry, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
20
|
Directed evolution of angiotensin II-inhibiting peptides using a microbead display. J Biosci Bioeng 2009; 109:411-7. [PMID: 20226387 DOI: 10.1016/j.jbiosc.2009.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/10/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ang II), an octapeptide (DRVYVHPF), can regulate blood pressure by binding specifically to its receptor, AT1. A peptide (VVIVIY) in the first transmembrane of AT1 has been found, via peptide array technology, to have an affinity for ang II. In this study, the peptide P2, which contained the VVIVIY sequence, was mutated and screened using microbead display technology that utilized emulsion PCR and cell-free protein synthesis. After one round of screening, the binding activities of collected mutants were estimated using flow cytometry and a peptide array. Two of these exhibited improved association rate constants to ang II, compared to the P2 peptide.
Collapse
|
21
|
Pontes MH, Babst M, Lochhead R, Oakeson K, Smith K, Dale C. Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS One 2008; 3:e3541. [PMID: 18958153 PMCID: PMC2568817 DOI: 10.1371/journal.pone.0003541] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/06/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Sodalis glossinidius, a maternally transmitted bacterial endosymbiont of tsetse flies (Glossina spp.), uses an acylated homoserine lactone (AHL)-based quorum sensing system to modulate gene expression in accordance with bacterial cell density. The S. glossinidius quorum sensing system relies on the function of two regulatory proteins; SogI (a LuxI homolog) synthesizes a signaling molecule, characterized as N-(3-oxohexanoyl) homoserine lactone (OHHL), and SogR1 (a LuxR homolog) interacts with OHHL to modulate transcription of specific target genes. METHODOLOGY/PRINCIPAL FINDINGS We used a tiling microarray to analyze the S. glossinidius transcriptome in the presence and absence of exogenous OHHL. The major finding is that OHHL increases transcription of a large number of genes that are known to be involved in the oxidative stress response. We also show that the obligate symbiont of the rice weevil, Sitophilus oryzae (SOPE), maintains copies of the quorum sensing regulatory genes that are found in S. glossinidius. Molecular evolutionary analyses indicate that these sequences are evolving under stabilizing selection, consistent with the maintenance of their functions in the SOPE symbiosis. Finally, the expression studies in S. glossinidius also reveal that quorum sensing regulates the expression of a cryptic, degenerate gene (carA) that arose from an ancient deletion in the last common ancestor of S. glossinidius and SOPE. CONCLUSIONS/SIGNIFICANCE This oxidative stress response is likely mandated under conditions of dense intracellular symbiont infection, when intense metabolic activity is expected to generate a heavy oxidative burden. Such conditions are known to arise in the bacteriocytes of grain weevils, which harbor dense intracellular infections of symbiotic bacteria that are closely related to S. glossinidius. The presence of a degenerate carA sequence in S. glossinidius and SOPE indicates the potential for neofunctionalization to occur during the process of genome degeneration.
Collapse
Affiliation(s)
- Mauricio H Pontes
- Department of Biology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Broach RB, Jarrett JT. Role of the [2Fe-2S]2+ cluster in biotin synthase: mutagenesis of the atypical metal ligand arginine 260. Biochemistry 2006; 45:14166-74. [PMID: 17115711 PMCID: PMC2442824 DOI: 10.1021/bi061576p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthase (BS) is an S-adenosylmethionine (AdoMet)-dependent radical enzyme that catalyzes the addition of sulfur to dethiobiotin. Like other AdoMet radical enzymes, BS contains a [4Fe-4S] cluster that is coordinated by a highly conserved CxxxCxxC sequence motif and by the methionyl amine and carboxylate of AdoMet. The close association of the [4Fe-4S]+ cluster with AdoMet facilitates reductive cleavage of the sulfonium and the generation of transient 5'-deoxyadenosyl radicals, which are then proposed to sequentially abstract hydrogen atoms from the substrate to produce carbon radicals at C9 and C6 of dethiobiotin. BS also contains a [2Fe-2S]2+ cluster located approximately 4-5 A from dethiobiotin, and we have proposed that a bridging sulfide of this cluster quenches the substrate radicals, leading to formation of the thiophane ring of biotin. In BS from Escherichia coli, the [2Fe-2S]2+ cluster is coordinated by cysteines 97, 128, and 188, and the atypical metal ligand, arginine 260. The evolutionary conservation of an arginine guanidinium as a metal ligand suggests a novel role for this residue in tuning the reactivity or stability of the [2Fe-2S]2+ cluster. In this work, we explore the effects of mutagenesis of Arg260 to Ala, Cys, His, and Met. Although perturbations in a number of characteristics of the [2Fe-2S]2+ cluster and the proteins are noted, the reconstituted enzymes have in vitro single-turnover activities that are 30-120% of that of the wild type. Further, in vivo expression of each mutant enzyme was sufficient to sustain growth of a bioB- mutant strain on dethiobiotin-supplemented medium, suggesting the enzymes were active and efficiently reconstituted by the in vivo iron-sulfur cluster (ISC) assembly system. Although we cannot exclude an as-yet-unidentified in vivo role in cluster repair or retention, we can conclude that Arg260 is not essential for the catalytic reaction of BS.
Collapse
Affiliation(s)
- Robyn B Broach
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
23
|
Eisenberg MA. Biotin: biogenesis, transport, and their regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 38:317-72. [PMID: 4598072 DOI: 10.1002/9780470122839.ch7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Moss J, Lane MD. The biotin-dependent enzymes. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 35:321-442. [PMID: 4150153 DOI: 10.1002/9780470122808.ch7] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Mann S, Ploux O. 7,8-Diaminoperlargonic acid aminotransferase from Mycobacterium tuberculosis, a potential therapeutic target. Characterization and inhibition studies. FEBS J 2006; 273:4778-89. [PMID: 16984394 DOI: 10.1111/j.1742-4658.2006.05479.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Diaminopelargonic acid aminotransferase (DAPA AT), which is involved in biotin biosynthesis, catalyzes the transamination of 8-amino-7-oxononanoic acid (KAPA) using S-adenosyl-l-methionine (AdoMet) as amino donor. Mycobacterium tuberculosis DAPA AT, a potential therapeutic target, has been overproduced in Escherichia coli and purified to homogeneity using a single efficient step on a nickel-affinity column. The enzyme shows an electronic absorption spectrum typical of pyridoxal 5'-phosphate-dependent enzymes and behaves as a homotetramer in solution. The pH profile of the activity at saturation shows a single ionization group with a pK(a) of 8.0, which was attributed to the active-site lysine residue. The enzyme shows a Ping Pong Bi Bi kinetic mechanism with strong substrate inhibition with the following parameters: K(mAdoMet) = 0.78 +/- 0.20 mm, K(mKAPA) = 3.8 +/- 1.0 microm, k(cat) = 1.0 +/- 0.2 min(-1), K(iKAPA) = 14 +/- 2 microm. Amiclenomycin and a new analogue, 4-(4c-aminocyclohexa-2,5-dien-1r-yl)propanol (referred to as compound 1), were shown to be suicide substrates of this enzyme, with the following inactivation parameters: K(i) = 12 +/- 2 microm, k(inact) = 0.35 +/- 0.05 min(-1), and K(i) = 20 +/- 2 microm, k(inact) = 0.56 +/- 0.05 min(-1), for amiclenomycin and compound 1, respectively. The inactivation was irreversible, and the partition ratios were 1.0 and 1.1 for amiclenomycin and compound 1, respectively, which make these inactivators particularly efficient. compound 1 (100 microg.mL(-1)) completely inhibited the growth of an E. coli C268bioA mutant strain transformed with a plasmid expressing the M. tuberculosis bioA gene, coding for DAPA AT. Reversal of the antibiotic effect was observed on the addition of biotin or DAPA. Thus, compound 1 specifically targets DAPA AT in vivo.
Collapse
Affiliation(s)
- Stéphane Mann
- Synthèse Structure et Fonction de Molécules Bioactives, Université Pierre et Marie Curie-Paris 6, UMR 7613, Paris, France
| | | |
Collapse
|
26
|
Abstract
Biotin (1), a water-soluble B series vitamin, distributes widely in microorganisms, plants, and animals. Biosynthesis of 1 involves five steps sequence starting from pimelic acid. The last step, a transformation from dethiobiotin (DTB) to 1, includes an iron clusters-mediated radical process. The compound 1 is a cofactor of carboxylation enzymes and plays crucial roles in the metabolism of fatty acids, sugars, and alpha-amino acids. In addition to the increasing application to feed additives, recent reports have revealed that 1 enhances insulin secretion in animals, suggesting it for a promising therapeutic candidate for an anti-diabetes drug. The remarkably strong affinity of 1 with avidin and streptavidin has been extensively applied for such technologies as photoaffinity labeling. Among the number of approaches to 1 so far developed in 50 years, a synthesis using L-cysteine and thiolactone as a starting material and a key intermediate, respectively, represents one of the best routes leading to 1, because of short steps, high yield, use of inexpensive reagents, and ease of operation.
Collapse
Affiliation(s)
- Masahiko Seki
- Tanabe Seiyaku Co., Ltd., 3-2-10, Dosho-Machi, Osaka 541-8505, Japan.
| |
Collapse
|
27
|
Pinon V, Ravanel S, Douce R, Alban C. Biotin synthesis in plants. The first committed step of the pathway is catalyzed by a cytosolic 7-keto-8-aminopelargonic acid synthase. PLANT PHYSIOLOGY 2005; 139:1666-76. [PMID: 16299174 PMCID: PMC1310550 DOI: 10.1104/pp.105.070144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Biochemical and molecular characterization of the biotin biosynthetic pathway in plants has dealt primarily with biotin synthase. This enzyme catalyzing the last step of the pathway is localized in mitochondria. Other enzymes of the pathway are however largely unknown. In this study, a genomic-based approach allowed us to clone an Arabidopsis (Arabidopsis thaliana) cDNA coding 7-keto-8-aminopelargonic acid (KAPA) synthase, the first committed enzyme of the biotin synthesis pathway, which we named AtbioF. The function of the enzyme was demonstrated by functional complementation of an Escherichia coli mutant deficient in KAPA synthase reaction, and by measuring in vitro activity. Overproduction and purification of recombinant AtbioF protein enabled a thorough characterization of the kinetic properties of the enzyme and a spectroscopic study of the enzyme interaction with its substrates and product. This is the first characterization of a KAPA synthase reaction in eukaryotes. Finally, both green fluorescent protein-targeting experiments and western-blot analyses showed that the Arabidopsis KAPA synthase is present in cytosol, thus revealing a unique compartmentation of the plant biotin synthesis, split between cytosol and mitochondria. The significance of the complex compartmentation of biotin synthesis and utilization in the plant cell and its potential importance in the regulation of biotin metabolism are also discussed.
Collapse
Affiliation(s)
- Violaine Pinon
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique /Université Joseph Fourier/Commissariat à l'Energie Atomique-Grenoble, F-38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
28
|
Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 2003; 61:21-31. [PMID: 12658511 DOI: 10.1007/s00253-002-1186-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/31/2002] [Accepted: 10/31/2002] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany.
| | | |
Collapse
|
29
|
Ugulava NB, Gibney BR, Jarrett JT. Biotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions. Biochemistry 2001; 40:8343-51. [PMID: 11444981 PMCID: PMC1538964 DOI: 10.1021/bi0104625] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S](2+) clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dithionite results in conversion to enzyme containing [4Fe-4S](2+) and/or [4Fe-4S](+) clusters. To establish the predominant cluster forms present in biotin synthase in anaerobic assays, and by inference in Escherichia coli, we have accurately determined the extinction coefficient and cluster content of the enzyme under oxidized and reduced conditions and have examined the equilibrium reduction potentials at which cluster reductions and conversions occur as monitored by UV/visible and EPR spectroscopy. In contrast to previous reports, we find that aerobically purified BioB contains ca. 1.2-1.5 [2Fe-2S](2+) clusters per monomer with epsilon(452) = 8400 M(-)(1) cm(-)(1) per monomer. Upon reduction, the [2Fe-2S](2+) clusters are converted to [4Fe-4S] clusters with two widely separate reduction potentials of -140 and -430 mV. BioB reconstituted with excess iron and sulfide in 60% ethylene glycol was found to contain two [4Fe-4S](2+) clusters per monomer with epsilon(400) = 30 000 M(-)(1) cm(-)(1) per monomer and is reduced with lower midpoint potentials of -440 and -505 mV, respectively. Finally, as predicted by the measured redox potentials, enzyme incubated under typical anaerobic assay conditions is repurified containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. These results indicate that the dominant stable cluster state for biotin synthase is a dimer containing two [2Fe-2S](2+) and two [4Fe-4S](2+) clusters.
Collapse
Affiliation(s)
- N B Ugulava
- Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
30
|
Abstract
The genetics and mechanistic enzymology of biotin biosynthesis have been the subject of much investigation in the last decade, owing to the interest for biotin production by fermentation, on the one hand, and for the design of inhibitors with potential herbicidal properties, on the other hand. Four enzymes are involved in the synthesis of biotin from its two precursors, alanine and pimeloyl-CoA. They are now well-characterized and the X-ray structures of the first three have been published. 8-Amino-7-oxopelargonic acid synthase is a pyridoxal 5'-phosphate (PLP) enzyme, very similar to other acyl-CoA alpha-oxoamine synthases, and its detailed mechanism has been determined. The origin of its specific substrate, pimeloyl-CoA, however, is not completely established. It could be produced by a modified fatty acid pathway involving a malonyl thioester as the starter. 7,8-Diaminopelargonic acid (DAPA) aminotransferase, although sharing sequence and folding homologies with other transaminases, is unique as it uses S-adenosylmethionine (AdoMet) as the NH2 donor. The mechanism of dethiobiotin synthethase is also now well understood. It catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP. On the other hand, the mechanism of the last enzyme, biotin synthase, which has long raised a very puzzling problem, is only starting to be unraveled and appears indeed to be very complex. Biotin synthase belongs to the family of AdoMet-dependent enzymes that reductively cleave AdoMet into a deoxyadenosyl radical, and it is responsible for the homolytic cleavage of C-H bonds. A first radical formed on dethiobiotin is trapped by the sulfur donor, which was found to be the iron-sulfur (Fe-S) center contained in the enzyme, and cyclization follows in a second step. Two important features come from these results: (1) a new role for an Fe-S center has been revealed, and (2) biotin synthase is not only a catalyst but also a substrate for the reaction. Lipoate synthase, which catalyzes the formation of two C-S bonds from octanoic acid, has a very high sequence similarity with biotin synthase. Although no in vitro enzymology has been carried out with lipoate synthase, the sequence homology as well as the results of in vivo studies support the conclusion that both enzymes are strongly mechanistically related.
Collapse
Affiliation(s)
- A Marquet
- Laboratoire de Chimie Organique Biologique, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | |
Collapse
|
31
|
Ugulava NB, Gibney BR, Jarrett JT. Iron-sulfur cluster interconversions in biotin synthase: dissociation and reassociation of iron during conversion of [2Fe-2S] to [4Fe-4S] clusters. Biochemistry 2000; 39:5206-14. [PMID: 10819988 PMCID: PMC1458744 DOI: 10.1021/bi9926227] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotin synthase catalyzes the insertion of a sulfur atom into the saturated C6 and C9 carbons of dethiobiotin. This reaction has long been presumed to occur through radical chemistry, and recent experimental results suggest that biotin synthase belongs to a family of enzymes that contain an iron-sulfur cluster and reductively cleave S-adenosylmethionine, forming an enzyme or substrate radical, 5'-deoxyadenosine, and methionine. Biotin synthase (BioB) is aerobically purified as a dimer of 38 kDa monomers that contains two [2Fe-2S](2+) clusters per dimer. Maximal in vitro biotin synthesis requires incubation of BioB with dethiobiotin, AdoMet, reductants, exogenous iron, and crude bacterial protein extracts. It has previously been shown that reduction of BioB with dithionite in 60% ethylene glycol produces one [4Fe-4S](2+/1+) cluster per dimer. In the present work, we use UV/visible and electron paramagnetic resonance spectroscopy to show that [2Fe-2S] to [4Fe-4S] cluster conversion occurs through rapid dissociation of iron from the protein followed by rate-limiting reassociation. While in 60% ethylene glycol the product of dithionite reduction is one [4Fe-4S](2+) cluster per dimer, the product in water is one [4Fe-4S](1+) cluster per dimer. Further, incubation with excess iron, sulfide, and dithiothreitol produces protein that contains two [4Fe-4S](2+) clusters per dimer; subsequent reduction with dithionite produces two [4Fe-4S](1+) clusters per BioB dimer. BioB that contains two [4Fe-4S](2+/1+) clusters per dimer is rapidly and reversibly reduced and oxidized, suggesting that this is the redox-active form of the iron-sulfur cluster in the anaerobic enzyme.
Collapse
Affiliation(s)
- N B Ugulava
- Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
32
|
Hatakeyama K, Kobayashi M, Yukawa H. Analysis of biotin biosynthesis pathway in coryneform bacteria: Brevibacterium flavum. Methods Enzymol 1997; 279:339-48. [PMID: 9211286 DOI: 10.1016/s0076-6879(97)79038-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- K Hatakeyama
- Tsukuba Research Center, Mitsubishi Chemical Company, Ltd., Ibaraki, Japan
| | | | | |
Collapse
|
33
|
Parnas BL, Durley RC, Rhoden EE, Kilpatrick BF, Makkar N, Thomas KE, Smith WG, Corley DG. Isolation and structure of leukotriene-A4 hydrolase inhibitor: 8(S)-amino-2(R)-methyl-7-oxononanoic acid produced by Streptomyces diastaticus. JOURNAL OF NATURAL PRODUCTS 1996; 59:962-964. [PMID: 8904845 DOI: 10.1021/np9603986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The novel amino acid 8(S)-amino-2(R)-methyl-7-oxononanoic acid (1) was isolated from the soil-borne microorganism Streptomyces diastaticus during our screening for inhibitors of leukotriene-A4 hydrolase (LTA4H), a requisite enzyme in the biosynthesis of the potent inflammatory mediator leukotriene-B4 (LTB4). The structure of 1 was determined by detailed spectroscopic analyses and is related to 7-keto-8-aminopelargonic acid (2), a biosynthetic precursor of biotin. The relative potency of 1 (LTA4H IC50 = 0.6 microM) warranted further biological studies.
Collapse
Affiliation(s)
- B L Parnas
- Searle Research and Development, Monsanto Company, St. Louis, Missouri 63198, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Patton DA, Johnson M, Ward ER. Biotin synthase from Arabidopsis thaliana. cDNA isolation and characterization of gene expression. PLANT PHYSIOLOGY 1996; 112:371-8. [PMID: 8819333 PMCID: PMC157958 DOI: 10.1104/pp.112.1.371] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The full-length BIO2 cDNA from Arabidopsis thaliana was isolated using an expressed sequence tag that was homologous to the Escherichia coli biotin synthase gene (BioB). Comparisons of the deduced amino acid sequence from BIO2 with bacterial and yeast biotin synthase homologs revealed a high degree of sequence similarity. The amino terminus of the predicted BIO2 protein contains a stretch of hydrophobic residues similar in composition to transit peptide sequences. BIO2 is a single-copy nuclear gene in Arabidopsis that is expressed at high levels in the tissues of immature plants. Expression of BIO2 was higher in the light relative to dark and was induced 5-fold during biotin-limited conditions. These results demonstrate that expression of at least one gene in this pathway is regulated in response to developmental, environmental, and bio-chemical stimuli.
Collapse
Affiliation(s)
- D A Patton
- Ciba Agricultural Biotechnology, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
35
|
Birch OM, Fuhrmann M, Shaw NM. Biotin synthase from Escherichia coli, an investigation of the low molecular weight and protein components required for activity in vitro. J Biol Chem 1995; 270:19158-65. [PMID: 7642583 DOI: 10.1074/jbc.270.32.19158] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have developed a radiochemical method for the measurement of biotin synthase activity in vitro. A cell-free extract from an Escherichia coli strain containing a cloned bioB (biotin synthase) gene was incubated with [14C]dethiobiotin, which was converted to [14C] biotin. The assay was used to identify the low molecular weight compounds and two of the proteins that, in addition to the bioB gene product, are required for biotin synthase activity in vitro. The low molecular weight compounds are cysteine; S-adenosylmethionine; thiamine pyrophosphate; Fe2+; a pyridine nucleotide (the most effective being NADPH); and one of the amino acids asparagine, aspartate, glutamine, or serine. The proteins ae flavodoxin and ferredoxin (flavodoxin)-NADP+ reductase (EC 1.18.1.2). A third thiamine pyrophosphate-dependent protein is also required for activity. When the cell-free extract was incubated with nonlabeled dethiobiotin and either [35S]cysteine or [35S]cystine, 35S was incorporated into biotin, and we present further evidence that cysteine, and not S-adenosylmethionine or methionine, is the sulfur donor for the biotin synthase reaction.
Collapse
Affiliation(s)
- O M Birch
- Biotechnology Department, Lonza A.G., Visp, Switzterland
| | | | | |
Collapse
|
36
|
Alexeev D, Baxter RL, Sawyer L. Mechanistic implications and family relationships from the structure of dethiobiotin synthetase. Structure 1994; 2:1061-72. [PMID: 7881906 DOI: 10.1016/s0969-2126(94)00109-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Biotin is the vitamin essential for many biological carboxylation reactions, such as the conversion of acetyl-coenzyme A (CoA) to malonyl-CoA in fatty acid biosynthesis. Dethiobiotin synthetase (DTBS) facilitates the penultimate, ureido ring closure in biotin synthesis, which is a non-biotin-dependent carboxylation. DTBS displays no sequence similarity to any other protein in the database. Structural studies provide a molecular insight into the reaction mechanism of DTBS. RESULTS We present the structure of DTBS refined to 1.80 A resolution with an R-factor of 17.2% for all terms plus unrefined data on the binding of the substrate, 7,8-diaminopelargonic acid and the product, dethiobiotin. These studies confirm that the protein forms a homodimer with each subunit folded as a single globular alpha/beta domain. The presence of sulphate ions in the crystals and comparisons with the related Ha-ras-p21 oncogene product are used to infer the ATP-binding site, corroborated by the difference electron density for the ATP analogue AMP-PNP. CONCLUSIONS This study establishes that the enzyme active site is situated at the dimer interface, with the substrate binding to one monomer and ATP to the other. The overall fold of DTBS closely resembles that of three other enzymes, adenylosuccinate synthetase (purA), Ha-ras-p21, and nitrogenase iron protein, that are unrelated by sequence or function, indicating that DTBS is a member of a diverse family of enzymes.
Collapse
Affiliation(s)
- D Alexeev
- Edinburgh Centre for Molecular Recognition, Department of Biochemistry, University of Edinburgh, UK
| | | | | |
Collapse
|
37
|
L�vy-Schil S, Debussche L, Rigault S, Soubrier F, Bacchetta F, Lagneaux D, Schleuniger J, Blanche F, Crouzet J, Mayaux JF. Biotin biosynthetic pathway in recombinant strains of Escherichia coli overexpressing bio genes: evidence for a limiting step upstream from KAPA. Appl Microbiol Biotechnol 1993. [DOI: 10.1007/bf00167141] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Hatakeyama K, Kohama K, Vertès AA, Kobayashi M, Kurusu Y, Yukawa H. Analysis of the biotin biosynthesis pathway in coryneform bacteria: cloning and sequencing of the bioB gene from Brevibacterium flavum. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 1993; 4:87-93. [PMID: 8173080 DOI: 10.3109/10425179309020147] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The biotin biosynthetic pathway of three coryneform bacteria, Brevibacterium flavum, Brevibacterium lactofermentum, and Corynebacterium glutamicum were analysed by cross-feeding experiments using several Escherichia coli biotin-requiring mutants. The three strains of coryneform bacteria tested were able to convert 7-keto-8-aminopelargonic acid to biotin, through a biotin synthetic pathway identical to that from E. coli. The biotin biosynthetic gene, bioB, of B. flavum was cloned by phenotypic complementation of E. coli bioB mutants. The bioB gene was located on a 1.7 kb HindIII-SacI DNA fragment. Nucleotide sequence analysis of this fragment revealed that the bioB gene of B. flavum consists of a 1005 bp open reading frame. Its deduced amino acid sequence is 35.7% and 31.5% identical to that of the E. coli and Bacillus sphaericus bioB gene products, respectively. B. flavum mutants obtained by in vivo disruption of the bioB gene lost their ability to grow on minimal medium containing dethiobiotin, indicating that the bioB gene product is necessary for the conversion of dethiobiotin to biotin.
Collapse
Affiliation(s)
- K Hatakeyama
- Tsukuba Research Center, Mitsubishi Petrochemical Co., Ltd, Inashiki, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Gloeckler R, Ohsawa I, Speck D, Ledoux C, Bernard S, Zinsius M, Villeval D, Kisou T, Kamogawa K, Lemoine Y. Cloning and characterization of the Bacillus sphaericus genes controlling the bioconversion of pimelate into dethiobiotin. Gene 1990; 87:63-70. [PMID: 2110099 DOI: 10.1016/0378-1119(90)90496-e] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using 8.8 kb of genetic information from Bacillus sphaericus, it was possible to confer to Escherichia coli bio- strains, including delta bioA-D, bioC-, bioH-, the ability to convert exogenous pimelate into biotin. The bio genes were borne on two recombinant plasmids with inserts of 4.3 kb and 4.5 kb, which had been isolated from a genomic bank of HindIII-digested B. sphaericus DNA, by phenotypic complementation of various E. coli bio mutants. The B. sphaericus bioD and bioA genes were unambiguously identified within the 4.3-kb insert and shown to be closely linked to bioY (coding for a protein with a presently unknown function) and to bioB [Ohsawa et al., Gene 80 (1989) 39-48]. These genes are clustered in the order bioDAYB. The 4.5-kb fragment contains genetic information for three different proteins, the products of bioX, bioW and bioF. Complementation studies using an E. coli bioF mutant and a B. subtilis bio112TG3 strain, revealed that the third ORF of this cluster encodes 7-keto-8-aminopelargonic acid synthetase. A combination of bioW and bioF allows an efficient complementation of E. coli bioC and bioH mutants, provided that pimelate is added to the biotin-depleted growth medium. No function could be identified for the product of bioX. The gene order of this cluster is bioXWF. By sequence analysis, the two cloned DNA fragments were shown to bear overlapping open reading frames and secondary structures at their 3' ends, typical of transcription terminators.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
Pearson BM, Fuller LJ, McKee RA. Biosynthesis of biotin vitamers by Yarrowia lipolytica. Lett Appl Microbiol 1990. [DOI: 10.1111/j.1472-765x.1990.tb00272.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
O'Regan M, Gloeckler R, Bernard S, Ledoux C, Ohsawa I, Lemoine Y. Nucleotide sequence of the bioH gene of Escherichia coli. Nucleic Acids Res 1989; 17:8004. [PMID: 2678009 PMCID: PMC334922 DOI: 10.1093/nar/17.19.8004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
42
|
Ohsawa I, Speck D, Kisou T, Hayakawa K, Zinsius M, Gloeckler R, Lemoine Y, Kamogawa K. Cloning of the biotin synthetase gene from Bacillus sphaericus and expression in Escherichia coli and Bacilli. Gene 1989; 80:39-48. [PMID: 2507401 DOI: 10.1016/0378-1119(89)90248-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Biotin synthetase (BS) catalyses the biotransformation of dethiobiotin (DTB) to biotin. Here we report the cloning, characterization and expression of the gene encoding BS of Bacillus sphaericus. A recombinant plasmid pSB01, containing an 8.2-kb DNA fragment from B. sphaericus, was isolated by phenotypic complementation of an Escherichia coli bioB strain. Nucleotide sequence analysis of this fragment and N-terminal sequence determination of the recombinant protein product revealed that the bioB gene of B. sphaericus consists of a 996-bp open reading frame which is closely associated with at least one other gene. E. coli cells transformed with a bioB expression vector performed efficient bioconversion of DTB to biotin under defined culture conditions. Biotin production from transformed Bacillus subtilis and B. sphaericus recombinant strains was also demonstrated. Comparison of the amino acid sequences of BS from E. coli and B. sphaericus revealed extensive similarity.
Collapse
Affiliation(s)
- I Ohsawa
- Biological Science Institute, R & D Center, Nippon Zeon Co., Ltd., Kawasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Otsuka AJ, Buoncristiani MR, Howard PK, Flamm J, Johnson C, Yamamoto R, Uchida K, Cook C, Ruppert J, Matsuzaki J. The Escherichia coli biotin biosynthetic enzyme sequences predicted from the nucleotide sequence of the bio operon. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)77675-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
|
46
|
Parry RJ. Biosynthesis of some sulfur-containing natural products investigations of the mechanism of carbon-sulfur bond formation. Tetrahedron 1983. [DOI: 10.1016/s0040-4020(01)91887-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Abstract
The endpoints of the Escherichia coli bio DNA insertions in 24 lambda bio transducing phage were mapped electron micrographically in heteroduplexes of the type lambda bio/lambda att2, which permit simultaneous measurement of the lambda deletion and bio insertion endpoints. A physical map of the bio operon was constructed and correlated with the genetic map, the molecular sizes of the bio gene products, and the restriction map. The order att lambda-bioA-pBopA-bioBFCD-uvrB was confirmed. The maximum size of the bio operon was estimated at 5.5 kb, and the locus was found to be fully saturated with genes. There appears to be little space between the bioA gene and att lambda, while bioD mapped within 0.7 kb from uvrB. The size of the uvrB locus was estimated not to exceed 2.6 kb.
Collapse
|
48
|
Jensen RA, Calhoun DH. Intracellular roles of microbial aminotransferases: overlap enzymes across different biochemical pathways. Crit Rev Microbiol 1981; 8:229-66. [PMID: 7009061 DOI: 10.3109/10408418109085080] [Citation(s) in RCA: 41] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Salib AG, Frappier F, Guillerm G, Marquet A. On the mechanism of conversion of dethiobiotin to biotin in Escherichia coli. III. Isolation of an intermediate in the biosynthesis of biotin from dethiobiotin. Biochem Biophys Res Commun 1979; 88:312-9. [PMID: 378232 DOI: 10.1016/0006-291x(79)91731-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
|