1
|
Vancutsem E, Crombé F, Soetens O, Wautier M, Dördelmann C, Piérard D, Wybo I, Demuyser T. Evaluation of two automated real-time PCR-based quantification methods for whole blood Epstein-Barr viral load. Diagn Microbiol Infect Dis 2024; 108:116101. [PMID: 38016384 DOI: 10.1016/j.diagmicrobio.2023.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Quantification of EBV DNA is important in transplantation settings for the diagnosis of post-transplantation. We evaluated the performance of the AltoStar® EBV PCR Kit 1.5 on whole blood specimens: limit of detection, linearity, accuracy, and precision were determined using the WHO NIBSC 09/260 international standard. Results of 69 clinical samples were compared between the AltoStar® EBV PCR Kit 1.5 (altona Diagnostics) and the RealTime EBV assay (Abbott). The LoD of the AltoStar® Kit was 148 IU/mL and linearity was between 375 and 500000. A high concordance was found between nominal value of the NIBSC dilutions and the AltoStar EBV result. The total variation ranged from 2.2% to 9.6%. Out of 69 clinical samples tested, there was a high concordance between the 22 paired results within the overlapping linear ranges of both tests. The AltoStar® EBV assay is reliable and accurate for EBV viral load determination on whole blood samples.
Collapse
Affiliation(s)
- Ellen Vancutsem
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Florence Crombé
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Oriane Soetens
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magali Wautier
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles - Universitair Laboratorium Brussel (LHUB-ULB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Denis Piérard
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ingrid Wybo
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Demuyser
- Laboratory of Microbiology and infection control, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Papalexandri A, Gavriilaki E, Vardi A, Kotsiou N, Demosthenous C, Constantinou N, Touloumenidou T, Zerva P, Kika F, Iskas M, Batsis I, Mallouri D, Yannaki E, Anagnostopoulos A, Sakellari I. Pre-Emptive Use of Rituximab in Epstein-Barr Virus Reactivation: Incidence, Predictive Factors, Monitoring, and Outcomes. Int J Mol Sci 2023; 24:16029. [PMID: 38003218 PMCID: PMC10671524 DOI: 10.3390/ijms242216029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Post-transplant lymphoproliferative disease (PTLD) is a fatal complication of hematopoietic cell transplantation (HCT) associated with the Epstein-Barr virus (EBV). Multiple factors such as transplant type, graft-versus-host disease (GVHD), human leukocyte antigens (HLA) mismatch, patient age, and T-lymphocyte-depleting treatments increase the risk of PTLD. EBV reactivation in hematopoietic cell transplant recipients is monitored through periodic quantitative polymerase chain reaction (Q-PCR) tests. However, substantial uncertainty persists regarding the clinically significant EBV levels for these patients. Guidelines recommend initiating EBV monitoring no later than four weeks post-HCT and conducting it weekly. Pre-emptive therapies, such as the reduction of immunosuppressive therapy and the administration of rituximab to treat EBV viral loads are also suggested. In this study, we investigated the occurrence of EBV-PTLD in 546 HCT recipients, focusing on the clinical manifestations and risk factors associated with the disease. We managed to identify 67,150 viral genomic copies/mL as the cutoff point for predicting PTLD, with 80% sensitivity and specificity. Among our cohort, only 1% of the patients presented PTLD. Anti-thymocyte globulin (ATG) and GVHD were independently associated with lower survival rates and higher treatment-related mortality. According to our findings, prophylactic measures including regular monitoring, pre-emptive therapy, and supportive treatment against infections can be effective in preventing EBV-related complications. This study also recommends conducting EBV monitoring at regular intervals, initiating pre-emptive therapy when viral load increases, and identifying factors that increase the risk of PTLD. Our study stresses the importance of frequent and careful follow-ups of post-transplant complications and early intervention in order to improve survival rates and reduce mortality.
Collapse
Affiliation(s)
- Apostolia Papalexandri
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Anna Vardi
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Nikolaos Kotsiou
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Christos Demosthenous
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Natassa Constantinou
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Tasoula Touloumenidou
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Panagiota Zerva
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Fotini Kika
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Michalis Iskas
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Ioannis Batsis
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Despina Mallouri
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Evangelia Yannaki
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Achilles Anagnostopoulos
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| | - Ioanna Sakellari
- Hematology Department, BMT Unit, General Hospital “George Papanicolaou”, 57010 Thessaloniki, Greece; (A.P.); (A.V.); (C.D.); (T.T.); (P.Z.); (F.K.); (M.I.); (I.B.); (D.M.); (E.Y.); (A.A.); (I.S.)
| |
Collapse
|
3
|
Hayden RT, Su Y, Boonyaratanakornkit J, Cook L, Gu Z, Jerome KR, Pinsky BA, Sam SS, Tan SK, Zhu H, Tang L, Caliendo AM. Matrix Matters: Assessment of Commutability among BK Virus Assays and Standards. J Clin Microbiol 2022; 60:e0055522. [PMID: 35997500 PMCID: PMC9491175 DOI: 10.1128/jcm.00555-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Quantitative testing of BK virus (BKPyV) nucleic acid has become the standard of care in transplant patients. While the relationship between interassay harmonization and commutability has been well characterized for other transplant-related viruses, it has been less well studied for BKPyV, particularly regarding differences in commutability between matrices. Here, interassay agreement was evaluated among six real-time nucleic acid amplification tests (NAATs) and one digital PCR (dPCR) BKPyV assay. Differences in the commutability of three quantitative standards was examined across all assays using a variety of statistical approaches. Panels, including 40 samples each of plasma and urine samples previously positive for BKPyV, together with one previously negative plasma sample and four previously negative urine samples, were tested using all assays, with each real-time NAAT utilizing its usual quantitative calibrators. Serial dilutions of WHO, National Institute for Standards and Technology (NIST), and commercially produced (Exact/Bio-Rad) reference materials were also run by each assay as unknowns. The agreement of the clinical sample values was assessed as a group and in a pairwise manner. The commutability was estimated using both relativistic and quantitative means. The quantitative agreement across assays in the urine samples was within a single log10 unit across all assays, while the results from the plasma samples varied by 2 to 3 log10 IU/mL. The commutability showed a similar disparity between the matrices. Recalibration using international standards diminished the resulting discrepancies in some but not all cases. Differences in the sample matrix can affect the commutability and interassay agreement of quantitative BKPyV assays. Differences in commutability between matrices may largely be due to factors other than those such as amplicon size, previously described as important in the case of cytomegalovirus. Continued efforts to standardize viral load measurements must address multiple sources of variability and account for differences in assay systems, quantitative standards, and sample matrices.
Collapse
Affiliation(s)
- R. T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Y. Su
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | | | - L. Cook
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Z. Gu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - K. R. Jerome
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Diseaese Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - B. A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - S. S. Sam
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - S. K. Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - H. Zhu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - L. Tang
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - A. M. Caliendo
- Division of Infectious Diseases, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Impact of Fragmentation on Commutability of Epstein-Barr Virus and Cytomegalovirus Quantitative Standards. J Clin Microbiol 2019; 58:JCM.00888-19. [PMID: 31619529 DOI: 10.1128/jcm.00888-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/23/2022] Open
Abstract
Despite the adaptation of international standards, quantitative viral load testing of transplant-associated viruses continues to be limited by interlaboratory disagreement. Studies have suggested that this disagreement and the poor commutability of standards may, in some cases, be linked to amplicon size and the fragmentation of circulating viral DNA. We evaluated target fragmentation as a cause of noncommutability and pretest fragmentation of quantitative standards as a potential means of increasing commutability and interassay agreement. Forty-two cytomegalovirus (CMV)-positive and 41 Epstein-Barr virus (EBV)-positive plasma samples, together with two different quantitative standards for each virus, were tested as unknowns using 10 different quantitative PCR assays at 5 different laboratories. Standards were tested both intact and after intentional fragmentation by ultrasonication. Quantitative agreement between methods was assessed, together with commutability, using multiple statistical approaches. Most assays yielded results within 0.5 log10 IU/ml of the mean for CMV, while for EBV a greater variability of up to 1.5 log10 IU/ml of the mean was shown. Commutability showed marked improvement following fragmentation of both CMV standards but not after fragmentation of the EBV standards. These findings confirm the impact of amplicon size and target fragmentation on commutability for CMV and suggest that for some (but not all) viruses, interlaboratory harmonization can be improved through the use of fragmented quantitative standards.
Collapse
|
5
|
Allen UD, Preiksaitis JK. Post-transplant lymphoproliferative disorders, Epstein-Barr virus infection, and disease in solid organ transplantation: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13652. [PMID: 31230381 DOI: 10.1111/ctr.13652] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
Abstract
PTLD with the response-dependent sequential use of RIS, rituximab, and cytotoxic chemotherapy is recommended. Evidence gaps requiring future research and alternate treatment strategies including immunotherapy are highlighted.
Collapse
Affiliation(s)
- Upton D Allen
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Institute of Health Policy, Management & Evaluation, University of Toronto, Toronto, ON, Canada
| | - Jutta K Preiksaitis
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
6
|
A Comprehensive Statistical Framework for Determination of Commutability, Accuracy, and Agreement in Clinical DNAemia Assays. J Clin Microbiol 2019; 57:JCM.00963-18. [PMID: 30381420 DOI: 10.1128/jcm.00963-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Despite advances in the standardization of quantitative DNAemia tests and efforts to better understand and characterize the performance of reference materials in different assays, it remains unclear how the commutability performance of reference materials is related to intra- and interassay agreement. Building upon previous work, we describe a comprehensive framework to determine the relationship of commutability with assay accuracy and agreement. The use of this framework is illustrated using previously generated data regarding the performance of four quantitative Epstein-Bar virus (EBV) PCR assays with the WHO and ABI standards as examples. The use of these statistical tools can link the performance characteristics of one or more assays with predetermined clinical decision limits and may help improve the development, validation, and clinical utility of such DNAemia tests.
Collapse
|