1
|
Teng C, Li L, Su D, Li H, Zhao B, Xia H, Teng H, Song Y, Zheng Y, Cao X, Zheng H, Zhao Y, Ou X. Evaluation of genetic correlation with fluoroquinolones resistance in rifampicin-resistant Mycobacterium tuberculosis isolates. Heliyon 2024; 10:e31959. [PMID: 38868072 PMCID: PMC11167346 DOI: 10.1016/j.heliyon.2024.e31959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024] Open
Abstract
Objective To detect levofloxacin (LFX) and moxifloxacin (MFX) resistance among rifampicin-resistant tuberculosis (RR-TB) isolates, and predict the resistance level based on specific mutations in gyrA and gyrB genes. Methods A total of 686 RR-TB isolates were collected from Chinese Drug Resistance Surveillance Program from 2013 to 2020. The minimum inhibitory concentrations (MICs) of 12 anti-TB drugs were acquired using the broth microdilution method, followed by whole genome sequencing (WGS) analysis. Results Among the 686 RR isolates, the most prevalent resistance was to isoniazid (80.5 %) and ethambutol (28.4 %), followed by LFX (26.1 %) and MFX (21.9 %). The resistance rate of LFX (26.1%-99.4 %) was higher than that of MFX (21.9%-83.3 %) across various drug resistance patterns. Of the 180 fluoroquinolones (FQs) resistant isolates, 168 (93.3 %) had mutations in quinolone-resistant determining regions (QRDRs) with 21 mutation types, and Asp94Gly (32.7 %, 55/168) was the predominant mutation. Isolates with mutations in Asp94Asn and Asp94Gly were associated with high levels of resistance to LFX and MFX. Using broth microdilution method as gold standard, the sensitivities of WGS for LFX and MFX were 93.3 % and 98.0 %, and the specificities were 98.6 % and 95.0 %, respectively. Conclusion The resistance rate of LFX was higher than that of MFX among various drug resistance patterns in RR-TB isolates. The gyrA Asp94Gly was the predominant mutation type underlying FQs resistance. However, no significant difference was observed between mutation patterns in gyrA gene and resistance level of FQs.
Collapse
Affiliation(s)
- Chong Teng
- Department of Tuberculosis, Beijing Dongcheng District Center for Disease Control and Prevention, Beijing, 100050, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Chinese Field Epidemiology Training Program, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Ling Li
- Department of Clinical Laboratory, Ya'an People's Hospital, Sichuan, 625000, China
| | - Dan Su
- Department of Pathology, Capital Medical University Affiliated Beijing Chest Hospital, Beijing, 101149, China
| | - Hui Li
- Department of Tuberculosis, Beijing Dongcheng District Center for Disease Control and Prevention, Beijing, 100050, China
| | - Bing Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Hui Teng
- Centre of Health Management, Hunan Prevention and Treatment Institute for Occupational Diseases, Hunan, 410007, China
| | - Yuanyuan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yang Zheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiaolong Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Huiwen Zheng
- Laboratory of Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing, 100045, China
| | - Yanlin Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xichao Ou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| |
Collapse
|
2
|
Hazra D, Lam C, Chawla K, Sintchenko V, Dhyani VS, Venkatesh BT. Impact of Whole-Genome Sequencing of Mycobacterium tuberculosis on Treatment Outcomes for MDR-TB/XDR-TB: A Systematic Review. Pharmaceutics 2023; 15:2782. [PMID: 38140122 PMCID: PMC10747601 DOI: 10.3390/pharmaceutics15122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence and persistence of drug-resistant tuberculosis is a major threat to global public health. Our objective was to assess the applicability of whole-genome sequencing (WGS) to detect genomic markers of drug resistance and explore their association with treatment outcomes for multidrug-resistant/extensively drug-resistant tuberculosis (MDR/XDR-TB). METHODS Five electronic databases were searched for studies published in English from the year 2000 onward. Two reviewers independently conducted the article screening, relevant data extraction, and quality assessment. The data of the included studies were synthesized with a narrative method and are presented in a tabular format. RESULTS The database search identified 949 published articles and 8 studies were included. An unfavorable treatment outcome was reported for 26.6% (488/1834) of TB cases, which ranged from 9.7 to 51.3%. Death was reported in 10.5% (194/1834) of total cases. High-level fluoroquinolone resistance (due to gyrA 94AAC and 94GGC mutations) was correlated as the cause of unfavorable treatment outcomes and reported in three studies. Other drug resistance mutations, like kanamycin high-level resistance mutations (rrs 1401G), rpoB Ile491Phe, and ethA mutations, conferring prothionamide resistance were also reported. The secondary findings from this systematic review involved laboratory aspects of WGS, including correlations with phenotypic DST, cost, and turnaround time, or the impact of WGS results on public health actions, such as determining transmission events within outbreaks. CONCLUSIONS WGS has a significant capacity to provide accurate and comprehensive drug resistance data for MDR/XDR-TB, which can inform personalized drug therapy to optimize treatment outcomes.
Collapse
Affiliation(s)
- Druti Hazra
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Connie Lam
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Vitali Sintchenko
- Sydney Institute for Infectious Diseases, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Centre for Infectious Diseases and Microbiology-Public Health, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Vijay Shree Dhyani
- Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Bhumika T. Venkatesh
- Public Health Evidence South Asia, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
3
|
Pinhata JMW, Brandao AP, Gallo JF, Oliveira RSD, Ferrazoli L. GenoType MTBDRsl for detection of second-line drugs and ethambutol resistance in multidrug-resistant Mycobacterium tuberculosis isolates at a high-throughput laboratory. Diagn Microbiol Infect Dis 2023; 105:115856. [PMID: 36446302 DOI: 10.1016/j.diagmicrobio.2022.115856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
Abstract
We assessed the performance of MTBDRsl for detection of resistance to fluoroquinolones, aminoglycosides/cyclic peptides, and ethambutol compared to BACTEC MGIT 960 by subjecting simultaneously to both tests 385 phenotypically multidrug-resistant-Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. Discordances were resolved by Sanger sequencing. MTBDRsl correctly detected 99.7% of the multidrug-resistant isolates, 87.8% of the pre-XDR, and 73.9% of the XDR. The assay showed sensitivity of 86.4%, 100%, 85.2% and 76.4% for fluoroquinolones, amikacin/kanamycin, capreomycin and ethambutol, respectively. Specificity was 100% for fluoroquinolones and aminoglycosides/cyclic peptides, and 93.6% for ethambutol. Most fluoroquinolone-discordances were due to mutations in genome regions not targeted by the MTBDRsl v. 1.0: gyrA_H70R and gyrB_R446C, D461N, D449V, and N488D. Capreomycin-resistant isolates with wild-type rrs results on MTBDRsl presented tlyA mutations. MTBDRsl presented good performance for detecting resistance to second-line drugs and ethambutol in clinical isolates. In our setting, multidrug-resistant. isolates presented mutations not targeted by the molecular assay.
Collapse
Affiliation(s)
- Juliana Maira Watanabe Pinhata
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil.
| | - Angela Pires Brandao
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil; Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Failde Gallo
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Rosângela Siqueira de Oliveira
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| | - Lucilaine Ferrazoli
- Núcleo de Tuberculose e Micobacterioses, Centro de Bacteriologia, Instituto Adolfo Lutz (IAL), São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Chang X, Zhu L, Hu J, Zhang Q, Zhang F, Lin Q, Gai X, Wang X. Unveiling of Evolution Pattern for HY12 Enterovirus Quasispecies and Pathogenicity Alteration. Viruses 2021; 13:2174. [PMID: 34834980 PMCID: PMC8619380 DOI: 10.3390/v13112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Enterovirus, like the majority of RNA viruses, evolves to survive the changeable environments by a variety of strategies. Here, we showed that HY12 virus evolved to alter its characteristics and pathogenicity by employing a non-synonymous mutation. Analyses of 5'UTR, VP1 and VP2 gene sequences revealed the existence of HY12 virus in an array of mutants defined as quasispecies. The determination of diversity and complexity showed that the mutation rate and complexity of HY12 virus quasispecies increased, while the proportion of HY12 VP1 and VP2 consensus (master) sequences decreased with increasing passages. Synonymous mutation and non-synonymous mutation analysis displayed a positive selection for HY12 quasispecies evolution. A comparison of HY12 virus in different passages demonstrated that HY12 virus altered its characteristic, phenotype, and pathogenicity via non-synonymous mutation. These findings revealed the evolution pattern for HY12 virus, and the alteration of HY12 virus characteristics and pathogenicity by mutation.
Collapse
Affiliation(s)
- Xiaoran Chang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Junying Hu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Qun Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Fuhui Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Qian Lin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun 130062, China; (X.C.); (L.Z.); (J.H.); (Q.Z.); (F.Z.); (Q.L.); (X.G.)
- Key Laboratory for Zoonoses Research, Ministry of Education, Changchun 130062, China
| |
Collapse
|
5
|
Mokaddas E, Ahmad S, Eldeen HS, Zaglul H, Al-Mutairi NM, Al-Otaibi A. First report of extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) infection in Kuwait. J Infect Public Health 2021; 14:1612-1613. [PMID: 34624715 DOI: 10.1016/j.jiph.2021.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait; Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait.
| | | | - Husam Zaglul
- Tuberculosis Department, Chest Diseases Hospital, Shuwaikh, Kuwait
| | - Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ahad Al-Otaibi
- Microbiology Laboratory, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
6
|
Che Y, Yang T, Lin L, Xiao Y, Jiang F, Chen Y, Chen T, Zhou J. Comparative Utility of Genetic Determinants of Drug Resistance and Phenotypic Drug Susceptibility Profiling in Predicting Clinical Outcomes in Patients With Multidrug-Resistant Mycobacterium tuberculosis. Front Public Health 2021; 9:663974. [PMID: 33968888 PMCID: PMC8100237 DOI: 10.3389/fpubh.2021.663974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Setting: Programmatic management of drug-resistant tuberculosis in Ningbo, China. Objective: To assess whether data-driven genetic determinants of drug resistance patterns could outperform phenotypic drug susceptibility testing in predicting clinical meaningful outcomes among patients with multidrug-resistant tuberculosis (MDR-TB). Design: We conducted a prospective cohort study of 104 MDR-TB patients. All MDR-TB isolates underwent drug susceptibility testing and genotyping for mutations that could cause drug resistance. Study outcomes were time to sputum smear conversion and probability of treatment success, as well as time to culture conversion within 6 months. Data were analyzed using latent class analysis, Kaplan–Meier curves, and Cox regression models. Results: We report that latent class analysis of data identified two latent classes that predicted sputum smear conversion with P = 0.001 and area under receiver-operating characteristic curve of 0.73. The predicted latent class memberships were associated with superior capability in predicting sputum culture conversion at 6 months and overall treatment success compared to phenotypic drug susceptibility profiling using boosted logistic regression models. Conclusion: These results suggest that genetic determinants of drug resistance in combination with phenotypic drug-resistant tests could serve as useful biomarkers in predicting treatment prognosis in MDR-TB.
Collapse
Affiliation(s)
- Yang Che
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Tianchi Yang
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Lv Lin
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Yue Xiao
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Feng Jiang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Yanfei Chen
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| | - Tong Chen
- Ningbo Municipal Center for Disease Control and Prevention, Institute of Tuberculosis Prevention and Control, Ningbo, China
| | - Jifang Zhou
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Al-Mutairi NM, Ahmad S, Mokaddas E. Increasing prevalence of resistance to second-line drugs among multidrug-resistant Mycobacterium tuberculosis isolates in Kuwait. Sci Rep 2021; 11:7765. [PMID: 33833390 PMCID: PMC8032671 DOI: 10.1038/s41598-021-87516-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular methods detect genetic mutations associated with drug resistance. This study detected resistance-conferring mutations in gyrA/gyrB for fluoroquinolones and rrs/eis genes for second-line injectable drugs (SLIDs) among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) isolates in Kuwait. Fifty pansusceptible M. tuberculosis and 102 MDR-TB strains were tested. Phenotypic susceptibility testing was performed by MGIT 960 system using SIRE drug kit. GenoType MTBDRsl version 1 (gMTBDRslv1) and GenoType MTBDRsl version 2 (gMTBDRslv2) tests were used for mutation detection. Results were validated by PCR-sequencing of respective genes. Fingerprinting was performed by spoligotyping. No mutations were detected in pansusceptible isolates. gMTBDRslv1 detected gyrA mutations in 12 and rrs mutations in 8 MDR-TB isolates. gMTBDRsl2 additionally detected gyrB mutations in 2 and eis mutation in 1 isolate. Mutations in both gyrA/gyrB and rrs/eis were not detected. gMTBDRslv1 also detected ethambutol resistance-conferring embB mutations in 59 isolates. Although XDR-TB was not detected, frequency of resistance-conferring mutations for fluoroquinolones or SLIDs was significantly higher among isolates collected during 2013–2019 versus 2006–2012. Application of both tests is warranted for proper management of MDR-TB patients in Kuwait as gMTBDRslv2 detected resistance to fluoroquinolones and/or SLIDs in 3 additional isolates while gMTBDRslv1 additionally detected resistance to ethambutol in 58% of MDR-TB isolates.
Collapse
Affiliation(s)
- Noura M Al-Mutairi
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, P. O. Box 24923, 13110, Safat, Kuwait.,Kuwait National TB Control Laboratory, Shuwaikh, Kuwait
| |
Collapse
|
8
|
Drug resistance gene mutations and treatment outcomes in MDR-TB: A prospective study in Eastern China. PLoS Negl Trop Dis 2021; 15:e0009068. [PMID: 33471794 PMCID: PMC7850501 DOI: 10.1371/journal.pntd.0009068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/01/2021] [Accepted: 12/12/2020] [Indexed: 01/28/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) poses a serious challenge to TB control. It is of great value to search for drug resistance mutation sites and explore the roles that they play in the diagnosis and prognosis of MDR-TB. Methods We consecutively enrolled MDR-TB patients from five cities in Jiangsu Province, China, between January 2013 and December 2014. Drug susceptibility tests of rifampin, isoniazid, ofloxacin, and kanamycin were routinely performed by proportion methods on Lowenstein–Jensen (LJ) medium. Drug resistance-related genes were sequenced, and the consistency of genetic mutations and phenotypic resistance was compared. The association between mutations and treatment outcomes was expressed as odds ratios (ORs) and 95% confidence intervals (CIs). Results Among 87 MDR-TB patients, 71 with treatment outcomes were involved in the analysis. The proportion of successful treatment was 50.7% (36/71). The rpoB gene exhibited the highest mutation rate (93.0%) followed by katG (70.4%), pncA (33.8%), gyrA (29.6%), eis (15.5%), rrs (12.7%), gyrB (9.9%) and rpsA (4.2%). Multivariable analysis demonstrated that patients with pncA gene mutations (adjusted OR: 19.69; 95% CI: 2.43–159.33), advanced age (adjusted OR: 13.53; 95% CI: 1.46–124.95), and nonstandard treatment (adjusted OR: 7.72; 95% CI: 1.35–44.35) had a significantly higher risk of poor treatment outcomes. Conclusions These results suggest that Mycobacterium tuberculosis gene mutations may be related to phenotypic drug susceptibility. The pncA gene mutation along with treatment regimen and age are associated with the treatment outcomes of MDR-TB. Multidrug-resistant tuberculosis (MDR-TB) exacerbates the already serious tuberculosis epidemic, poses a notable threat to global tuberculosis control, and places a considerable burden on developing countries, as treatments for MDR-TB tend to be expensive, of limited efficacy, and toxic. Genotypic determinants of resistance to specific drugs or drug classes offer a rapid and highly specific alternative to phenotypic drug susceptibility testing. Although the relationship between gene mutations and drug resistance has been described previously, the strength of the association of mutations with the treatment outcomes of MDR tuberculosis have not been fully elucidated. The results of our study, which was conducted in a Chinese population, suggest that gene mutations in Mycobacterium tuberculosis may be related to phenotypic drug susceptibility. Mutation of the pncA gene contributes to a poor prognosis and can be applied to predict the treatment outcomes of MDR-TB.
Collapse
|
9
|
Fodor A, Abate BA, Deák P, Fodor L, Gyenge E, Klein MG, Koncz Z, Muvevi J, Ötvös L, Székely G, Vozik D, Makrai L. Multidrug Resistance (MDR) and Collateral Sensitivity in Bacteria, with Special Attention to Genetic and Evolutionary Aspects and to the Perspectives of Antimicrobial Peptides-A Review. Pathogens 2020; 9:pathogens9070522. [PMID: 32610480 PMCID: PMC7399985 DOI: 10.3390/pathogens9070522] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Antibiotic poly-resistance (multidrug-, extreme-, and pan-drug resistance) is controlled by adaptive evolution. Darwinian and Lamarckian interpretations of resistance evolution are discussed. Arguments for, and against, pessimistic forecasts on a fatal “post-antibiotic era” are evaluated. In commensal niches, the appearance of a new antibiotic resistance often reduces fitness, but compensatory mutations may counteract this tendency. The appearance of new antibiotic resistance is frequently accompanied by a collateral sensitivity to other resistances. Organisms with an expanding open pan-genome, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae, can withstand an increased number of resistances by exploiting their evolutionary plasticity and disseminating clonally or poly-clonally. Multidrug-resistant pathogen clones can become predominant under antibiotic stress conditions but, under the influence of negative frequency-dependent selection, are prevented from rising to dominance in a population in a commensal niche. Antimicrobial peptides have a great potential to combat multidrug resistance, since antibiotic-resistant bacteria have shown a high frequency of collateral sensitivity to antimicrobial peptides. In addition, the mobility patterns of antibiotic resistance, and antimicrobial peptide resistance, genes are completely different. The integron trade in commensal niches is fortunately limited by the species-specificity of resistance genes. Hence, we theorize that the suggested post-antibiotic era has not yet come, and indeed might never come.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| | - Birhan Addisie Abate
- Ethiopian Biotechnology Institute, Agricultural Biotechnology Directorate, Addis Ababa 5954, Ethiopia;
| | - Péter Deák
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary;
- Institute of Biochemistry, Biological Research Centre, H-6726 Szeged, Hungary
| | - László Fodor
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
| | - Ervin Gyenge
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - Michael G. Klein
- Department of Entomology, The Ohio State University, 1680 Madison Ave., Wooster, OH 44691, USA;
| | - Zsuzsanna Koncz
- Max-Planck Institut für Pflanzenzüchtungsforschung, Carl-von-Linné-Weg 10, D-50829 Köln, Germany;
| | | | - László Ötvös
- OLPE, LLC, Audubon, PA 19403-1965, USA;
- Institute of Medical Microbiology, Semmelweis University, H-1085 Budapest, Hungary
- Arrevus, Inc., Raleigh, NC 27612, USA
| | - Gyöngyi Székely
- Hungarian Department of Biology and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; (E.G.); (G.S.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania
| | - Dávid Vozik
- Research Institute on Bioengineering, Membrane Technology and Energetics, Faculty of Engineering, University of Veszprem, H-8200 Veszprém, Hungary; or or
| | - László Makrai
- Department of Microbiology and Infectious Diseases, University of Veterinary Medicine, P.O. Box 22, H-1581 Budapest, Hungary;
- Correspondence: or (A.F.); (L.M.); Tel.: +36-(30)-490-9294 (A.F.); +36-(30)-271-2513 (L.M.)
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW This review aims to describe the key principles in treatment of drug-resistant tuberculosis (TB) in people living with HIV, including early access to timely diagnostics, linkage into care, TB treatment strategies including the use of new and repurposed drugs, co-management of HIV disease, and treatment complications and programmatic support to optimize treatment outcomes. These are necessary strategies to decrease the likelihood of poor treatment outcomes including lower treatment completion rates and higher mortality. RECENT FINDINGS Diagnosis of drug-resistant TB is the gateway into care; yet understanding the utility and the limitations of genotypic methods in this population is necessary. The principles of TB treatment in HIV-infected individuals are similar to those without HIV co-infection, with few exceptions. However, adverse effects with potential significant morbidity may emerge during treatment, and timely antiretroviral therapy is essential to improve mortality in this patient population. Emerging data on the use of new and repurposed drugs and short course multidrug-resistant TB regimens and adherence strategies benefiting this population are reviewed. SUMMARY The clinical complexity of co-managing drug-resistant TB and HIV, and the higher rate of poor treatment outcomes in this population demand careful clinical management strategies, and multidisciplinary and comprehensive programmatic interventions to optimize treatment success in this vulnerable group.
Collapse
|
11
|
Lange C, Alghamdi WA, Al-Shaer MH, Brighenti S, Diacon AH, DiNardo AR, Grobbel HP, Gröschel MI, von Groote-Bidlingmaier F, Hauptmann M, Heyckendorf J, Köhler N, Kohl TA, Merker M, Niemann S, Peloquin CA, Reimann M, Schaible UE, Schaub D, Schleusener V, Thye T, Schön T. Perspectives for personalized therapy for patients with multidrug-resistant tuberculosis. J Intern Med 2018; 284:163-188. [PMID: 29806961 DOI: 10.1111/joim.12780] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to the World Health Organization (WHO), tuberculosis is the leading cause of death attributed to a single microbial pathogen worldwide. In addition to the large number of patients affected by tuberculosis, the emergence of Mycobacterium tuberculosis drug-resistance is complicating tuberculosis control in many high-burden countries. During the past 5 years, the global number of patients identified with multidrug-resistant tuberculosis (MDR-TB), defined as bacillary resistance at least against rifampicin and isoniazid, the two most active drugs in a treatment regimen, has increased by more than 20% annually. Today we experience a historical peak in the number of patients affected by MDR-TB. The management of MDR-TB is characterized by delayed diagnosis, uncertainty of the extent of bacillary drug-resistance, imprecise standardized drug regimens and dosages, very long duration of therapy and high frequency of adverse events which all translate into a poor prognosis for many of the affected patients. Major scientific and technological advances in recent years provide new perspectives through treatment regimens tailor-made to individual needs. Where available, such personalized treatment has major implications on the treatment outcomes of patients with MDR-TB. The challenge now is to bring these adances to those patients that need them most.
Collapse
Affiliation(s)
- C Lange
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - W A Alghamdi
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M H Al-Shaer
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - S Brighenti
- Department of Medicine, Center for Infectious Medicine (CIM), Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A H Diacon
- Task Applied Science, Bellville, South Africa
- Division of Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - A R DiNardo
- Section of Global and Immigrant Health, Baylor College of Medicine, Houston, TX, USA
| | - H P Grobbel
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - M I Gröschel
- Department of Pumonary Diseases & Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | | | - M Hauptmann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
| | - J Heyckendorf
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - N Köhler
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - T A Kohl
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - M Merker
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - S Niemann
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - C A Peloquin
- Department of Pharmacotherapy and Translational Research, Infectious Disease Pharmacokinetics Laboratory, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - M Reimann
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - U E Schaible
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- Cellular Microbiology, Research Center Borstel, Borstel, Germany
- Biochemical Microbiology & Immunochemistry, University of Lübeck, Lübeck, Germany
- LRA INFECTIONS'21, Borstel, Germany
| | - D Schaub
- Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany
- Tuberculosis Unit, German Center for Infection Research (DZIF), Borstel, Germany
- International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany
| | - V Schleusener
- Molecular and Experimental Mycobacteriology, National Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - T Thye
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - T Schön
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Department of Clinical Microbiology and Infectious Diseases, Kalmar County Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Hameed HMA, Islam MM, Chhotaray C, Wang C, Liu Y, Tan Y, Li X, Tan S, Delorme V, Yew WW, Liu J, Zhang T. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR- Mycobacterium tuberculosis Strains. Front Cell Infect Microbiol 2018; 8:114. [PMID: 29755957 PMCID: PMC5932416 DOI: 10.3389/fcimb.2018.00114] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023] Open
Abstract
Tuberculosis (TB) is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and total drug-resistant tuberculosis (TDR-TB), due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Md Mahmudul Islam
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chiranjibi Chhotaray
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Changwei Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Institute of Health Sciences, Anhui University, Hefei, China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Xinjie Li
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Vincent Delorme
- Tuberculosis Research Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wing W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|