1
|
Hoffmann DE, Javitt GH, Kelly CR, Keller JJ, Baunwall SMD, Hvas CL. Fecal microbiota transplantation: a tale of two regulatory pathways. Gut Microbes 2025; 17:2493901. [PMID: 40302307 PMCID: PMC12054926 DOI: 10.1080/19490976.2025.2493901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025] Open
Abstract
Fecal microbiota transplantation (FMT) is a procedure involving the transfer of intestinal microbiota from a healthy donor to a patient to restore a functional intestinal microbiome. First described in modern science in 1958, the use of FMT has been practiced for decades, but only during the past dozen years have clinical frameworks and legal regulations from competent authorities been developed. Future development of microbiota-derived medical therapies will be shaped by the regulatory frameworks of various jurisdictions. This review examines the historical development and status of FMT regulations in the United States and Europe, with particular attention to their respective approaches to ensuring the safety and quality of the therapeutic product and patient access.
Collapse
Affiliation(s)
- Diane E. Hoffmann
- University of Maryland Francis King Carey School of Law, Baltimore, MD, USA
| | | | - Colleen R. Kelly
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Josbert J. Keller
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, The Hague, Netherlands
- Department of Gastroenterology, Haaglanden Medical Center, The Hague, Netherlands
- Netherlands Donor Feces Bank, Leiden, Netherlands
| | | | - Christian Lodberg Hvas
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Liu Y, Li X, Chen Y, Yao Q, Zhou J, Wang X, Meng Q, Ji J, Yu Z, Chen X. Fecal microbiota transplantation: application scenarios, efficacy prediction, and factors impacting donor-recipient interplay. Front Microbiol 2025; 16:1556827. [PMID: 40201444 PMCID: PMC11975908 DOI: 10.3389/fmicb.2025.1556827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Fecal microbiota transplantation (FMT) represents a therapeutic approach that directly regulates the gut microbiota of recipients, normalizes its composition and reaping therapeutic rewards. Currently, in addition to its general application in treating Clostridium difficile (C. difficile) infection (CDI), FMT treatment has also been extended to the fields of other gastrointestinal diseases, infections, gut-liver or gut-brain axis disorders, metabolic diseases and cancer, etc. Prior to FMT, rigorous donor screening is essential to reduce the occurrence of adverse events. In addition, it is imperative to evaluate whether the recipient can safely and effectively undergo FMT treatment. However, the efficacy of FMT is influenced by the complex interactions between the gut microbiota of donor and recipient, the degree of donor microbiota engraftment is not necessarily positively related with the success rate of FMT. Furthermore, an increasing number of novel factors affecting FMT outcomes are being identified in recent clinical trials and animal experiments, broadening our understanding of FMT treatment. This article provides a comprehensive review of the application scenarios of FMT, the factors influencing the safety and efficacy of FMT from the aspects of both the donors and the recipients, and summarizes how these emerging novel regulatory factors can be combined to predict the clinical outcomes of patients undergoing FMT.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinru Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinyan Yao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinjie Zhou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoxuan Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingguo Meng
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiaxuan Ji
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
3
|
Al-Shakhshir S, Quraishi MN, Mullish B, Patel A, Vince A, Rowe A, Homer V, Jackson N, Gyimah D, Shabir S, Manzoor S, Cooney R, Alrubaiy L, Quince C, van Schaik W, Hares M, Beggs AD, Efstathiou E, Rimmer P, Weston C, Iqbal T, Trivedi PJ. FAecal micRobiota transplantation in primary sclerosinG chOlangitis (FARGO): study protocol for a randomised, multicentre, phase IIa, placebo-controlled trial. BMJ Open 2025; 15:e095392. [PMID: 39762111 PMCID: PMC11749870 DOI: 10.1136/bmjopen-2024-095392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/23/2025] Open
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is the classical hepatobiliary manifestation of inflammatory bowel disease (IBD). The strong association between gut and liver inflammation has driven several pathogenic hypotheses to which the intestinal microbiome is proposed to contribute. Pilot studies of faecal microbiota transplantation (FMT) in PSC and IBD are demonstrated to be safe and associated with increased gut bacterial diversity. However, the longevity of such changes and the impact on markers of disease activity and disease progression have not been studied. The aim of this clinical trial is to determine the effects of repeated FMT as a treatment for PSC-IBD. METHODS AND ANALYSIS FAecal micRobiota transplantation in primary sclerosinG chOlangitis (FARGO) is a phase IIa randomised placebo-controlled trial to assess the efficacy and safety of repeated colonic administration of FMT in patients with non-cirrhotic PSC-IBD. Fifty-eight patients will be recruited from six sites across England and randomised in a 1:1 ratio between active FMT or FMT placebo arms. FMT will be manufactured by the University of Birmingham Microbiome Treatment Centre, using stool collected from rigorously screened healthy donors. A total of 8 weekly treatments will be delivered; the first through colonoscopic administration (week 1) and the remaining seven via once-weekly enema (up to week 8). Participants will then be followed on a 12-weekly basis until week 48 from the first treatment visit. The primary efficacy outcome will be to determine the effect of FMT on serum alkaline phosphatase values over time (end of study at 48 weeks). Key secondary outcomes will be to evaluate the impact of FMT on other liver biochemical parameters, PSC risk scores, circulating and imaging markers of liver fibrosis, health-related quality of life measures, IBD activity and the incidence of PSC-related clinical events. Key translational objectives will be to identify mucosal metagenomic, metatranscriptomic, metabolomic and immunological pathways associated with the administration of FMT. ETHICS AND DISSEMINATION The protocol was approved by the South Central-Hampshire B Research Ethics Committee (REC 23/SC/0147). Participants will be required to provide written informed consent. The results of this trial will be disseminated through national and international presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER The trial was registered at ClinicalTrials.gov on 23 February 2024 (NCT06286709). Weblink: Study Details | FAecal Microbiota Transplantation in primaRy sclerosinG chOlangitis | ClinicalTrials.gov.
Collapse
Affiliation(s)
- Sarah Al-Shakhshir
- National Institute of Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC) Center for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, England, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mohammed Nabil Quraishi
- University of Birmingham Institute of Cancer and Genomic Sciences, Birmingham, Birmingham, UK
| | - Benjamin Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London Faculty of Medicine, London, UK
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Arzoo Patel
- National Institute of Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC) Center for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, England, UK
| | - Alexandra Vince
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Anna Rowe
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Victoria Homer
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Nicola Jackson
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Derick Gyimah
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Sahida Shabir
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Susan Manzoor
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Rachel Cooney
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Laith Alrubaiy
- Gastroenterology, St Mark's Hospital and Academic Institute, London, UK
| | - Christopher Quince
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Willem van Schaik
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, England, UK
| | - Miriam Hares
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, England, UK
| | - Andrew D Beggs
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham Institute of Cancer and Genomic Sciences, Birmingham, Birmingham, UK
| | - Elena Efstathiou
- University of Birmingham Institute of Cancer and Genomic Sciences, Birmingham, Birmingham, UK
| | - Peter Rimmer
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Chris Weston
- National Institute of Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC) Center for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, England, UK
| | - Tariq Iqbal
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- University of Birmingham Institute of Cancer and Genomic Sciences, Birmingham, Birmingham, UK
- University of Birmingham Microbiome Treatment Centre, University of Birmingham, Birmingham, UK
| | - Palak J Trivedi
- National Institute of Health and Care Research (NIHR) Birmingham Biomedical Research Centre (BRC) Center for Liver and Gastrointestinal Research, University of Birmingham, Birmingham, England, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
4
|
Beyer BR, Sheppard C, Mullins J, Igbadumhe A. Campylobacter Infection Introduced Following Fecal Microbiota Transplantation. Cureus 2024; 16:e62541. [PMID: 39022481 PMCID: PMC11254095 DOI: 10.7759/cureus.62541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Fecal microbiota transplantation is an evidence-based therapeutic option for recurrent Clostridium difficile infection, involving the transfer of healthy donor fecal material to restore gut microbial balance. Despite meticulous donor screening, Campylobacter jejuni, a prevalent cause of bacterial gastroenteritis, is not routinely tested, potentially impacting fecal microbiota transplant safety. We present a case of a female with recurrent C. difficile infection treated with fecal microbiota transplantation, complicated by a subsequent C. jejuni infection. The emergence of Campylobacter post fecal microbiota transplantation underscores the importance of comprehensive donor screening protocols. Our case prompts a reevaluation of fecal microbiota transplantation safety measures and advocates for inclusive screening to enhance patient outcomes.
Collapse
Affiliation(s)
- Brian R Beyer
- Medicine, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Cody Sheppard
- Medicine, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Jordyn Mullins
- Medicine, Burrell College of Osteopathic Medicine, Las Cruces, USA
| | - Anthony Igbadumhe
- Family Medicine, Burrell College of Osteopathic Medicine, Las Cruces, USA
| |
Collapse
|
5
|
Berry P, Khanna S. Recurrent Clostridioides difficile Infection: Current Clinical Management and Microbiome-Based Therapies. BioDrugs 2023; 37:757-773. [PMID: 37493938 DOI: 10.1007/s40259-023-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Clostridioides difficile is one of the most important causes of healthcare-associated diarrhea. The high incidence and recurrence rates of C. difficile infection, as well as its associated morbidity and mortality, are great concerns. The most common complication of C. difficile infection is recurrence, with rates of 20-30% after a primary infection and 60% after three or more episodes. Medical management of recurrent C. difficile infection involves a choice of therapy that is different from the antibiotic used in the primary episode. Patients with recurrent C. difficile infection also benefit from fecal microbiota transplantation or standardized microbiome restoration therapies (approved or experimental) to restore eubiosis. In contrast to antibiotics, microbiome restoration therapies restore a normal gut flora and eliminate C. difficile colonization and infection. Fecal microbiota transplantation in recurrent C. difficile infection has demonstrated higher success rates than vancomycin, fidaxomicin, or placebo. Fecal microbiota transplantation has traditionally been considered safe, with the most common adverse reactions being abdominal discomfort, and diarrhea, and rare serious adverse events. Significant heterogeneity and a lack of standardization regarding the process of preparation, and administration of fecal microbiota transplantation remain a major pitfall. Standardized microbiome-based therapies provide a promising alternative. In the ECOSPOR III trial of SER-109, an oral formulation of bacterial spores, a significant reduction in the recurrence rate (12%) was observed compared with placebo (40%). In the phase III PUNCH CD3 trial, RBX2660 also demonstrated high efficacy rates of 70.6% versus 57.5%. Both these agents are now US Food and Drug Administration approved for recurrent C. difficile infection. Other standardized microbiome-based therapies currently in the pipeline are VE303, RBX7455, and MET-2. Antibiotic neutralization strategies, vaccines, passive monoclonal antibodies, and drug repurposing are other therapeutic strategies being explored to treat C. difficile infection.
Collapse
Affiliation(s)
- Parul Berry
- All India Institute of Medical Sciences, New Delhi, India
| | - Sahil Khanna
- Division of Gastroenterology and Hepatology, C. difficile Clinic and Microbiome Restoration Program, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
6
|
Harris AD, Souli M, Pettigrew MM, for the Antibacterial Resistance Leadership Group. The Next Generation: Mentoring and Diversity in the Antibacterial Resistance Leadership Group. Clin Infect Dis 2023; 77:S331-S335. [PMID: 37843116 PMCID: PMC10578050 DOI: 10.1093/cid/ciad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The Antibacterial Resistance Leadership Group (ARLG) Mentoring Program was established to develop and prepare the next generation of clinician-scientists for a career in antibacterial resistance research. The ARLG Diversity, Equity, and Inclusion Working Group partners with the Mentoring Committee to help ensure diversity and excellence in the clinician-scientist workforce of the future. To advance the field of antibacterial research while fostering inclusion and diversity, the Mentoring Program has developed a number of fellowships, awards, and programs, which are described in detail in this article.
Collapse
Affiliation(s)
- Anthony D Harris
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Maria Souli
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | | |
Collapse
|
7
|
Giannella M, Rinaldi M, Viale P. Antimicrobial Resistance in Organ Transplant Recipients. Infect Dis Clin North Am 2023; 37:515-537. [PMID: 37244806 DOI: 10.1016/j.idc.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The overall burden of the main clinically relevant bacterial multidrug-resistant organisms (MDROs) (eg, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, extended-spectrum β-lactamase producing or extended-spectrum cephalosporin-resistant Enterobacterales, carbapenem-resistant or carbapenemase-producing Enterobacterales, MDR Pseudomonas aeruginosa, and carbapenem-resistant Acinetobacter baumannii) in solid organ transplant (SOT) populations is summarized showing prevalence/incidence, risk factors, and impact on graft/patient outcome according to the type of SOT. The role of such bacteria in donor-derived infections is also reviewed. As for the management, the main prevention strategies and treatment options are discussed. Finally, nonantibiotic-based strategies are considered as future directions for the management of MDRO in SOT setting.
Collapse
Affiliation(s)
- Maddalena Giannella
- Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 11, Bologna 40137, Italy.
| | - Matteo Rinaldi
- Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 11, Bologna 40137, Italy
| | - Pierluigi Viale
- Infectious Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Via Massarenti 11, Bologna 40137, Italy
| |
Collapse
|
8
|
Rossier L, Matter C, Burri E, Galperine T, Hrúz P, Juillerat P, Schoepfer A, Vavricka SR, Zahnd N, Décosterd N, Seibold F. Swiss expert opinion: current approaches in faecal microbiota transplantation in daily practice. Swiss Med Wkly 2023; 153:40100. [PMID: 37769622 DOI: 10.57187/smw.2023.40100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Faecal microbiota transplantation (FMT) is an established therapy for recurrent C. difficile infection, and recent studies have reported encouraging results of FMT in patients with ulcerative colitis. Few international consensus guidelines exist for this therapy, and thus FMT policies and practices differ among European countries. As of 2019, stool transplants are considered a non-standardised medicinal product in Switzerland, and a standardised production process requires authorisation by the Swiss Agency for Therapeutic Products. This authorisation leads to prolonged administrative procedures and increasing costs, which reduces treatment accessibility. In particular, patients with ulcerative colitis in Switzerland can only benefit from FMT off-label, even though it is a valid therapeutic option. Therefore, this study summarised the available data on FMT and established a framework for the standardised use of FMT. METHODS A panel of Swiss gastroenterologists with a special interest in inflammatory bowel disease was established to identify the current key issues of FMT. After a comprehensive review of the literature, statements were formulated about FMT indications, donor screening, stool transplant preparation and administration, and safety aspects. The panel then voted on the statements following the Delphi process; the statements were reformulated and revoted until a consensus was reached. The manuscript was then reviewed by an infectiologist (the head of Lausanne's FMT centre). RESULTS The established statements are summarised in the supplementary tables in the appendix to this paper. The working group hopes these will help standardise FMT practice in Switzerland and contribute to making faecal microbiota transplantation a safe and accessible treatment for patients with recurrent C. difficile infections and selected patients with ulcerative colitis, as well as other indications in the future.
Collapse
Affiliation(s)
- Laura Rossier
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Christoph Matter
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Emanuel Burri
- Department of Gastroenterology and Hepatology, University Medical Clinic, Baselland Canton Hospital, Liestal, Switzerland
| | - Tatiana Galperine
- Fecal microbiota transplantation center, Department of infectious disease, Lausanne University Hospital, Lausanne, Switzerland
| | - Petr Hrúz
- Clarunis, Department of Gastroenterology, St Clara hospital and University hospital Basel, Basel, Switzerland
| | - Pascal Juillerat
- GastroGeb - Gastroenterology practice and Crohn-colitis Center, Lausanne - Bulle, Switzerland
| | - Alain Schoepfer
- Department of Gastroenterology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Natalie Décosterd
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| | - Frank Seibold
- Intesto - Gastroenterology practice and Crohn-colitis Center, Bern, Switzerland
| |
Collapse
|
9
|
Miguel A. An overview of Clostridioides difficile and faecal microbiota transplant: implications for nursing practice. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2023; 32:546-549. [PMID: 37344135 DOI: 10.12968/bjon.2023.32.12.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Clostridioides difficile bacteria can cause excessive diarrhoea in patients, leading to further complications, such as severe dehydration and sepsis. Although C.difficile bacteria tend to reside harmlessly in many people's bowels, prolonged antibiotic use can alter the bacterial balance of the bowel resulting in a C.difficile infection. Guidance from the National Institute for Health and Care Excellence recommends treating a C.difficile infection with further antibiotic therapy; however, it also states that in cases of recurrent infection, a faecal microbiota transplant (FMT) should be considered. This article focuses on the treatment modality of FMT and is aimed at increasing awareness of the treatment. As well as discussing how the nurse can approach the topic with a patient considering FMT, the article also considers the nurse's role throughout the process.
Collapse
|
10
|
Conover KR, Absah I, Ballal S, Brumbaugh D, Cho S, Cardenas MC, Knackstedt ED, Goyal A, Jensen MK, Kaplan JL, Kellermayer R, Kociolek LK, Michail S, Oliva-Hemker M, Reed AW, Weatherly M, Kahn SA, Nicholson MR. Fecal Microbiota Transplantation for Clostridioides difficile Infection in Immunocompromised Pediatric Patients. J Pediatr Gastroenterol Nutr 2023; 76:440-446. [PMID: 36720105 PMCID: PMC10627107 DOI: 10.1097/mpg.0000000000003714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We sought to evaluate the safety and effectiveness of fecal microbiota transplantation (FMT) for recurrent Clostridioides difficile infection (CDI) in pediatric immunocompromised (IC) patients. METHODS This is a multicenter retrospective cohort study of pediatric participants who underwent FMT between March 2013 and April 2020 with 12-week follow-up. Pediatric patients were included if they met the definition of IC and were treated with FMT for an indication of recurrent CDI. We excluded patients over 18 years of age, those with incomplete records, insufficient follow-up, or not meeting study definition of IC. We also excluded those treated for Clostridioides difficile recurrence without meeting the study definition and those with inflammatory bowel disease without another immunocompromising condition. RESULTS Of 59 pediatric patients identified at 9 centers, there were 42 who met inclusion and no exclusion criteria. Included patients had a median age of 6.7 years. Etiology of IC included: solid organ transplantation (18, 43%), malignancy (12, 28%), primary immunodeficiency (10, 24%), or other chronic conditions (2, 5%). Success rate was 79% after first FMT and 86% after 1 or more FMT. There were no statistically significant differences in patient characteristics or procedural components when patients with a failed FMT were compared to those with a successful FMT. There were 15 total serious adverse events (SAEs) in 13 out of 42 (31%) patients that occurred during the follow-up period; 4 (9.5%) of which were likely treatment-related. There were no deaths or infections with multidrug resistant organisms during follow-up and all patients with a SAE fully recovered. CONCLUSIONS The success rate of FMT for recurrent CDI in this pediatric IC cohort is high and mirrors data for IC adults and immunocompetent children. FMT-related SAEs do occur (9.5%) and highlight the need for careful consideration of risk and benefit.
Collapse
Affiliation(s)
- Katie R Conover
- From the Department of General Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Imad Absah
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mayo Clinic Children's Center, Rochester, MN
| | - Sonia Ballal
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - David Brumbaugh
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado, Aurora, CO
| | - Stanley Cho
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX
| | - Maria C Cardenas
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mayo Clinic Children's Center, Rochester, MN
| | - Elizabeth Doby Knackstedt
- the Division of Pediatric Infectious Disease, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Alka Goyal
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Lucile Packard Children's Hospital, Palo Alto, CA
| | - M Kyle Jensen
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Jess L Kaplan
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Mass General Hospital for Children, Boston, MA
| | - Richard Kellermayer
- the Division of Pediatric Infectious Disease, University of Utah, Primary Children's Hospital, Salt Lake City, UT
| | - Larry K Kociolek
- the Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Sonia Michail
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Los Angeles, Los Angeles, CA
| | - Maria Oliva-Hemker
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins Children's Center, Baltimore, MD
| | - Anna W Reed
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins Children's Center, Baltimore, MD
| | - Madison Weatherly
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Stacy A Kahn
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA
| | - Maribeth R Nicholson
- the Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Monroe Carell Jr. Children's Hospital, Nashville, TN
| |
Collapse
|
11
|
Liu J, Wu A, Cai J, She ZG, Li H. The contribution of the gut-liver axis to the immune signaling pathway of NAFLD. Front Immunol 2022; 13:968799. [PMID: 36119048 PMCID: PMC9471422 DOI: 10.3389/fimmu.2022.968799] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the liver manifestation of metabolic syndrome and is the most common chronic liver disease in the world. The pathogenesis of NAFLD has not been fully clarified; it involves metabolic disturbances, inflammation, oxidative stress, and various forms of cell death. The "intestinal-liver axis" theory, developed in recent years, holds that there is a certain relationship between liver disease and the intestinal tract, and changes in intestinal flora are closely involved in the development of NAFLD. Many studies have found that the intestinal flora regulates the pathogenesis of NAFLD by affecting energy metabolism, inducing endotoxemia, producing endogenous ethanol, and regulating bile acid and choline metabolism. In this review, we highlighted the updated discoveries in intestinal flora dysregulation and their link to the pathogenesis mechanism of NAFLD and summarized potential treatments of NAFLD related to the gut microbiome.
Collapse
Affiliation(s)
- Jiayi Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Anding Wu
- Department of general surgery, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal of Wuhan University, Wuhan, China
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|