1
|
Monzón S, Varona S, Negredo A, Vidal-Freire S, Patiño-Galindo JA, Ferressini-Gerpe N, Zaballos A, Orviz E, Ayerdi O, Muñoz-Gómez A, Delgado-Iribarren A, Estrada V, García C, Molero F, Sánchez-Mora P, Torres M, Vázquez A, Galán JC, Torres I, Causse Del Río M, Merino-Diaz L, López M, Galar A, Cardeñoso L, Gutiérrez A, Loras C, Escribano I, Alvarez-Argüelles ME, Del Río L, Simón M, Meléndez MA, Camacho J, Herrero L, Jiménez P, Navarro-Rico ML, Jado I, Giannetti E, Kuhn JH, Sanchez-Lockhart M, Di Paola N, Kugelman JR, Guerra S, García-Sastre A, Cuesta I, Sánchez-Seco MP, Palacios G. Monkeypox virus genomic accordion strategies. Nat Commun 2024; 15:3059. [PMID: 38637500 PMCID: PMC11026394 DOI: 10.1038/s41467-024-46949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The 2023 monkeypox (mpox) epidemic was caused by a subclade IIb descendant of a monkeypox virus (MPXV) lineage traced back to Nigeria in 1971. Person-to-person transmission appears higher than for clade I or subclade IIa MPXV, possibly caused by genomic changes in subclade IIb MPXV. Key genomic changes could occur in the genome's low-complexity regions (LCRs), which are challenging to sequence and are often dismissed as uninformative. Here, using a combination of highly sensitive techniques, we determine a high-quality MPXV genome sequence of a representative of the current epidemic with LCRs resolved at unprecedented accuracy. This reveals significant variation in short tandem repeats within LCRs. We demonstrate that LCR entropy in the MPXV genome is significantly higher than that of single-nucleotide polymorphisms (SNPs) and that LCRs are not randomly distributed. In silico analyses indicate that expression, translation, stability, or function of MPXV orthologous poxvirus genes (OPGs), including OPG153, OPG204, and OPG208, could be affected in a manner consistent with the established "genomic accordion" evolutionary strategies of orthopoxviruses. We posit that genomic studies focusing on phenotypic MPXV differences should consider LCR variability.
Collapse
Affiliation(s)
- Sara Monzón
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Sarai Varona
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Escuela Internacional de Doctorado de la UNED (EIDUNED), Universidad Nacional de Educación a Distancia (UNED), 2832, Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Santiago Vidal-Freire
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | | | - Angel Zaballos
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eva Orviz
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Oskar Ayerdi
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Ana Muñoz-Gómez
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | | | - Vicente Estrada
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro Sanitario Sandoval, Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Cristina García
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisca Molero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Patricia Sánchez-Mora
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Montserrat Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana Vázquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Juan-Carlos Galán
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034, Madrid, Spain
| | - Ignacio Torres
- Servicio de Microbiología, Hospital Clínico Universitario, Instituto de Investigación INCLIVA, 46010, Valencia, Spain
| | - Manuel Causse Del Río
- Unidad de Microbiología, Hospital Universitario Reina Sofía, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - Laura Merino-Diaz
- Unidad Clínico de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Marcos López
- Servicio de Microbiología y Parasitología, Hospital Universitario Puerta de Hierro Majadahonda, 28222, Madrid, Spain
| | - Alicia Galar
- Servicio de Microbiología Clínica y Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, 28007, Madrid, Spain
| | - Laura Cardeñoso
- Servicio de Microbiología, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, 28006, Madrid, Spain
| | - Almudena Gutiérrez
- Servicio de Microbiología y Parasitología Clínica, Hospital Universitario La Paz, 28046, Madrid, Spain
| | - Cristina Loras
- Servicio de Microbiología, Hospital General y Universitario, 13005, Ciudad Real, Spain
| | - Isabel Escribano
- Servicio de Microbiología, Hospital General Universitario Dr. Balmis, 03010, Alicante, Spain
| | | | | | - María Simón
- Servicio de Microbiología, Hospital Central de la Defensa "Gómez Ulla", 28947, Madrid, Spain
| | - María Angeles Meléndez
- Servicio de Microbiología y Parasitología, Hospital Universitario 12 de Octubre, 28041, Madrid, Spain
| | - Juan Camacho
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Laura Herrero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pilar Jiménez
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Luisa Navarro-Rico
- Unidad de Genómica, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Isabel Jado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elaina Giannetti
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD, 21702, USA
| | - Mariano Sanchez-Lockhart
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Nicholas Di Paola
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Jeffrey R Kugelman
- United States Army Research Institute for Infectious Disease, Fort Detrick, Frederick, MD, 21702, USA
| | - Susana Guerra
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Departmento de Medicina Preventiva, Salud Publica y Microbiología, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isabel Cuesta
- Unidad de Bioinformática, Unidades Centrales Científico Técnicas, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maripaz P Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Gustavo Palacios
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
de Salazar A, Martínez MJ, Navero-Castillejos J, Negredo A, Galán JC, Rojo Molinero E, Lagarejos E, Muñoz-Almagro C, Hernández Rodríguez Á, Lepe JA, Antón Pagarolas A, Pérez Castro S, Zamora Cintas MI, Domínguez-Gil González M, Niubó-Bosch J, Gutiérrez Arroyo A, Vazquez A, García F, Sánchez-Seco Fariñas MP. The imperative for quality control programs in Monkeypox virus DNA testing by PCR: CIBERINFEC quality control. J Med Virol 2023; 95:e29240. [PMID: 37971716 DOI: 10.1002/jmv.29240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
To evaluate molecular assays for Mpox diagnosis available in various clinical microbiology services in Spain through a quality control (QC) approach. A total of 14 centers from across Spain participated in the study. The Reference Laboratory dispatched eight serum samples and eight nucleic acid extracts to each participating center. Some samples were spiked with Mpox or Vaccinia virus to mimic positive samples for Mpox or other orthopox viruses. Participating centers provided information on the results obtained, as well as the laboratory methods used. Among the 14 participating centers seven different commercial assays were employed, with the most commonly used kit being LightMix Modular Orthopox/Monkeypox (Mpox) Virus (Roche®). Of the 12 centers conducting Mpox determinations, concordance ranged from 62.5% (n = 1) to 100% (n = 11) for eluates and from 75.0% (n = 1) to 100% (n = 10) for serum. Among the 10 centers performing Orthopoxvirus determinations, a 100% concordance was observed for eluates, while for serum, concordance ranged from 87.5% (n = 6) to 100% (n = 4). Repeatedly, 6 different centers reported a false negative in serum samples for Orthopoxvirus diagnosis, particularly in a sample with borderline Ct = 39. Conversely, one center, using the TaqMan™ Mpox Virus Microbe Detection Assay (Thermo Fisher), reported false positives in Mpox diagnosis for samples spiked with vaccinia virus due to cross-reactions. We observed a positive correlation of various diagnostic assays for Mpox used by the participating centers with the reference values. Our results highlight the significance of standardization, validation, and ongoing QC in the microbiological diagnosis of infectious diseases, which might be particularly relevant for emerging viruses.
Collapse
Affiliation(s)
- Adolfo de Salazar
- Servicio de Microbiología, Hospital Universitario San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Miguel J Martínez
- Servicio de Microbiología, Hospital Clinic de Barcelona, Spain
- Instituto de Salud Global de Barcelona (ISGloba), Barcelona, Spain
| | | | - Anabel Negredo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Juan Carlos Galán
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Estrella Rojo Molinero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Departamento de Microbiología, Hospital Universitario Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Eduardo Lagarejos
- Servicio de Microbiología, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Carmen Muñoz-Almagro
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- RDI Microbiology Department, Hospital Sant Joan de Deu, Barcelona, Spain
- Departamento de Medicina, School of Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Águeda Hernández Rodríguez
- Laboratori Clínic de la Metropolitana Nord, Servei de Microbiologia, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - José Antonio Lepe
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Unidad de Enfermedades Infecciosas, Microbiología y Parasitología, Hospital Universitario Virgen del Rocio, Sevilla, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Andrés Antón Pagarolas
- Departamento de Microbiología, Hospital Universitari Vall d'Hebron, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sonia Pérez Castro
- Servicio Microbiología, Complexo Hospitalario Universitario de Vigo, Vigo, Spain
| | | | - Marta Domínguez-Gil González
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Jordi Niubó-Bosch
- Laboratori Clínic Territorial Metropolitana Sud, Departamento de Microbiología, Hospital Universitari de Bellvitge, Institut Català de la Salut (ICS), Hospitalet de Llobregat, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Ana Vazquez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Federico García
- Servicio de Microbiología, Hospital Universitario San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María Paz Sánchez-Seco Fariñas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
3
|
Álvarez Argüelles ME, Martínez ZP, Alba SR, González Alba JM, Fernandez-Verdugo AM, González IC, Rodríguez GM, Riveiro JAB, Martins MM, García SM. Detecting, Quantifying, and Isolating Monkeypox Virus in Suspected Cases, Spain. Emerg Infect Dis 2023; 29:1465-1469. [PMID: 37347839 PMCID: PMC10310368 DOI: 10.3201/eid2907.221229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
When a monkeypox virus outbreak began in several parts of the world in May 2022, timely and accurate diagnosis became mandatory. In our laboratory, a real-time quantitative PCR was designed and evaluated in several patient samples and compared with isolation results. Genomic viral load was related to virus viability.
Collapse
|
4
|
Martínez-Murcia A, Navarro A, Garcia-Sirera A, Pérez L, Bru G. Internal Validation of a Real-Time qPCR Kit following the UNE/EN ISO/IEC 17025:2005 for Detection of the Re-Emerging Monkeypox virus. Diagnostics (Basel) 2023; 13:diagnostics13091560. [PMID: 37174951 PMCID: PMC10177549 DOI: 10.3390/diagnostics13091560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Human mpox is caused by the Monkeypox virus, a microorganism closely related to the Variola virus, both belonging to the Orthopoxvirus genus. Mpox had been considered a rare disease until a global outbreak occurred in 2022. People infected with the virus present similar symptoms to patients suffering smallpox and other rash illnesses, hindering diagnosis. The WHO indicated that no commercial PCR or serology kits are currently widely available. In the present study, the MPXV MONODOSE dtec-qPCR kit was validated following guidelines of the UNE/EN ISO/IEC 17025:2005. The parameters evaluated for the acceptance of the assay were in silico and in vitro specificity, quantitative phase analysis, reliability, and sensitivity. The assay passed validation criteria and yielded an efficiency of 95.8%, high repeatability, reproducibility, and a Limit of Detection and Quantification of at least 10 copies. Results from the validation of the MPXV dtec-qPCR kit were satisfactory. The use of the MONODOSE format (dehydrated single PCR-tubes, ready to use) provided considerable advantages allowing the detection of the Monkeypox virus to be accurately achieved. This detection kit may be considered a reliable, fast, simple, and universally available option.
Collapse
Affiliation(s)
- Antonio Martínez-Murcia
- Department of Microbiology, University Miguel Hernández, 03312 Orihuela, Spain
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| | | | | | - Laura Pérez
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| | - Gema Bru
- Genetic PCR Solutions™, 03300 Orihuela, Spain
| |
Collapse
|
5
|
Shchelkunova GA, Shchelkunov SN. Smallpox, Monkeypox and Other Human Orthopoxvirus Infections. Viruses 2022; 15:103. [PMID: 36680142 PMCID: PMC9865299 DOI: 10.3390/v15010103] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Considering that vaccination against smallpox with live vaccinia virus led to serious adverse effects in some cases, the WHO, after declaration of the global eradication of smallpox in 1980, strongly recommended to discontinue the vaccination in all countries. This led to the loss of immunity against not only smallpox but also other zoonotic orthopoxvirus infections in humans over the past years. An increasing number of human infections with zoonotic orthopoxviruses and, first of all, monkeypox, force us to reconsider a possible re-emergence of smallpox or a similar disease as a result of natural evolution of these viruses. The review contains a brief analysis of the results of studies on genomic organization and evolution of human pathogenic orthopoxviruses, development of modern methods for diagnosis, vaccination, and chemotherapy of smallpox, monkeypox, and other zoonotic human orthopoxvirus infections.
Collapse
Affiliation(s)
| | - Sergei N. Shchelkunov
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, Koltsovo, 630559 Novosibirsk, Russia
| |
Collapse
|
6
|
Orviz E, Negredo A, Ayerdi O, Vázquez A, Muñoz-Gomez A, Monzón S, Clavo P, Zaballos A, Vera M, Sánchez P, Cabello N, Jiménez P, Pérez-García JA, Varona S, Del Romero J, Cuesta I, Delgado-Iribarren A, Torres M, Sagastagoitia I, Palacios G, Estrada V, Sánchez-Seco MP. Monkeypox outbreak in Madrid (Spain): Clinical and virological aspects. J Infect 2022; 85:412-417. [PMID: 35830908 PMCID: PMC9534097 DOI: 10.1016/j.jinf.2022.07.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Monkeypox is the most prevalent Orthopoxvirus zoonosis infection since the eradication of smallpox. The current multi-country outbreak involves five WHO regions affecting mainly Europe. Accurate clinical and virological aspects of the disease outside endemic areas are needed. METHODS We performed an observational study of cases diagnosed in Madrid (Spain) (May/June 2022). Confirmation from vesicular lesions swabs, Orthopoxvirus real-time PCR, sequencing, phylogenetic analysis, and direct detection by Electron microscopy was performed. In addition, a structured epidemiological questionnaire was completed systematically to gather sociodemographic, clinical, and behavioral data from all confirmed cases. FINDINGS We extracted data from 48 patients, all cisgender men. The median age was 35 years (IQR 29 - 44), and 87.5% were MSM. The most prevalent symptoms were the presence of vesicular-umbilicated and pseudo-pustular skin lesions (93.8%), asthenia (66.6%), and fever (52.1%). In addition, the location of the lesions in the genital or perianal area was related to the role in sexual intercourse (p<0.001). Sequencing analysis indicated the virus circulating in Spain belongs to the western African clade. Like the other European cases in the outbreak, the Spanish isolates are a direct descendant of viruses previously detected in Nigeria, the UK, Singapore, and Israel in 2017-2018. CONCLUSIONS Monkeypox is an emerging infectious disease in Europe where community transmission is reported, mainly in MSM. The first symptom was skin lesions instead of classical fever and rash. The disease follows a self-limited course, and there have been no cases with a serious presentation or severe complications.
Collapse
Affiliation(s)
- Eva Orviz
- Centro Sandoval/Hospital Clínico San Carlos, IdISSC
| | - Anabel Negredo
- Laboratorio de Arbovirus y Enfermedades Víricas importadas, Centro Nacional de Microbiología. Instituto de Salud Carlos III; CIBERINFEC
| | - Oskar Ayerdi
- Centro Sandoval/Hospital Clínico San Carlos, IdISSC
| | - Ana Vázquez
- Laboratorio de Arbovirus y Enfermedades Víricas importadas, Centro Nacional de Microbiología. Instituto de Salud Carlos III; CIBERINFEC
| | | | - Sara Monzón
- Unidad de Bioinformática, Instituto de Salud Carlos III
| | | | | | - Mar Vera
- Centro Sandoval/Hospital Clínico San Carlos, IdISSC
| | - Patricia Sánchez
- Laboratorio de Arbovirus y Enfermedades Víricas importadas, Centro Nacional de Microbiología. Instituto de Salud Carlos III; CIBERINFEC
| | - Noemi Cabello
- Centro Sandoval/Hospital Clínico San Carlos, IdISSC; CIBERINFEC
| | | | | | - Sarai Varona
- Unidad de Bioinformática, Instituto de Salud Carlos III
| | | | - Isabel Cuesta
- Unidad de Bioinformática, Instituto de Salud Carlos III
| | | | - Montse Torres
- Centro Nacional de Microbiología, Instituto de Salud Carlos III
| | | | | | - Vicente Estrada
- Centro Sandoval/Hospital Clínico San Carlos, IdISSC; CIBERINFEC.
| | - Maria Paz Sánchez-Seco
- Laboratorio de Arbovirus y Enfermedades Víricas importadas, Centro Nacional de Microbiología. Instituto de Salud Carlos III; CIBERINFEC
| |
Collapse
|
7
|
Walper SA, Lasarte Aragonés G, Sapsford KE, Brown CW, Rowland CE, Breger JC, Medintz IL. Detecting Biothreat Agents: From Current Diagnostics to Developing Sensor Technologies. ACS Sens 2018; 3:1894-2024. [PMID: 30080029 DOI: 10.1021/acssensors.8b00420] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although a fundamental understanding of the pathogenicity of most biothreat agents has been elucidated and available treatments have increased substantially over the past decades, they still represent a significant public health threat in this age of (bio)terrorism, indiscriminate warfare, pollution, climate change, unchecked population growth, and globalization. The key step to almost all prevention, protection, prophylaxis, post-exposure treatment, and mitigation of any bioagent is early detection. Here, we review available methods for detecting bioagents including pathogenic bacteria and viruses along with their toxins. An introduction placing this subject in the historical context of previous naturally occurring outbreaks and efforts to weaponize selected agents is first provided along with definitions and relevant considerations. An overview of the detection technologies that find use in this endeavor along with how they provide data or transduce signal within a sensing configuration follows. Current "gold" standards for biothreat detection/diagnostics along with a listing of relevant FDA approved in vitro diagnostic devices is then discussed to provide an overview of the current state of the art. Given the 2014 outbreak of Ebola virus in Western Africa and the recent 2016 spread of Zika virus in the Americas, discussion of what constitutes a public health emergency and how new in vitro diagnostic devices are authorized for emergency use in the U.S. are also included. The majority of the Review is then subdivided around the sensing of bacterial, viral, and toxin biothreats with each including an overview of the major agents in that class, a detailed cross-section of different sensing methods in development based on assay format or analytical technique, and some discussion of related microfluidic lab-on-a-chip/point-of-care devices. Finally, an outlook is given on how this field will develop from the perspective of the biosensing technology itself and the new emerging threats they may face.
Collapse
Affiliation(s)
- Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Guillermo Lasarte Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Kim E. Sapsford
- OMPT/CDRH/OIR/DMD Bacterial Respiratory and Medical Countermeasures Branch, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Carl W. Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University Fairfax, Virginia 22030, United States
| | - Clare E. Rowland
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20036, United States
| | - Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
8
|
A Model to Detect Autochthonous Group 1 and 2 Brazilian Vaccinia virus Coinfections: Development of a qPCR Tool for Diagnosis and Pathogenesis Studies. Viruses 2017; 10:v10010015. [PMID: 29301202 PMCID: PMC5795428 DOI: 10.3390/v10010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 11/16/2022] Open
Abstract
Vaccinia virus (VACV) is the etiological agent of bovine vaccinia (BV), an emerging zoonosis that has been associated with economic losses and social effects. Despite increasing reports of BV outbreaks in Brazil, little is known about the biological interactions of Brazilian VACV (VACV-BR) isolates during coinfections; furthermore, there are no tools for the diagnosis of these coinfections. In this study, a tool to co-detect two variants of VACV was developed to provide new information regarding the pathogenesis, virulence profile, and viral spread during coinfection with VACV-BR isolates. To test the quantitative polymerase chain reactions (qPCR) tool, groups of BALB/c mice were intranasally monoinfected with Pelotas virus 1-Group II (PV1-GII) and Pelotas virus 2-Group I (PV2-GI), or were coinfected with PV1-GII and PV2-GI. Clinical signs of the mice were evaluated and the viral load in lung and spleen were detected using simultaneous polymerase chain reactions (PCR) targeting the A56R (hemagglutinin) gene of VACV. The results showed that qPCR for the quantification of viral load in coinfection was efficient and highly sensitive. Coinfected mice presented more severe disease and a higher frequency of VACV detection in lung and spleen, when compared to monoinfected groups. This study is the first description of PV1 and PV2 pathogenicity during coinfection in mice, and provides a new method to detect VACV-BR coinfections.
Collapse
|
9
|
Olson VA, Shchelkunov SN. Are We Prepared in Case of a Possible Smallpox-Like Disease Emergence? Viruses 2017; 9:E242. [PMID: 32962316 PMCID: PMC5618008 DOI: 10.3390/v9090242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Smallpox was the first human disease to be eradicated, through a concerted vaccination campaign led by the World Health Organization. Since its eradication, routine vaccination against smallpox has ceased, leaving the world population susceptible to disease caused by orthopoxviruses. In recent decades, reports of human disease from zoonotic orthopoxviruses have increased. Furthermore, multiple reports of newly identified poxviruses capable of causing human disease have occurred. These facts raise concerns regarding both the opportunity for these zoonotic orthopoxviruses to evolve and become a more severe public health issue, as well as the risk of Variola virus (the causative agent of smallpox) to be utilized as a bioterrorist weapon. The eradication of smallpox occurred prior to the development of the majority of modern virological and molecular biological techniques. Therefore, there is a considerable amount that is not understood regarding how this solely human pathogen interacts with its host. This paper briefly recounts the history and current status of diagnostic tools, vaccines, and anti-viral therapeutics for treatment of smallpox disease. The authors discuss the importance of further research to prepare the global community should a smallpox-like virus emerge.
Collapse
Affiliation(s)
- Victoria A. Olson
- Poxvirus and Rabies Branch, Division of High Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Sergei N. Shchelkunov
- Department of Genomic Research and Development of DNA Diagnostics of Poxviruses, State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk Region, Russia
- Department of Molecular Biology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Pajer P, Dresler J, Kabíckova H, Písa L, Aganov P, Fucik K, Elleder D, Hron T, Kuzelka V, Velemínsky P, Klimentova J, Fucikova A, Pejchal J, Hrabakova R, Benes V, Rausch T, Dundr P, Pilin A, Cabala R, Hubalek M, Stríbrny J, Antwerpen MH, Meyer H. Characterization of Two Historic Smallpox Specimens from a Czech Museum. Viruses 2017; 9:E200. [PMID: 28749451 PMCID: PMC5580457 DOI: 10.3390/v9080200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Although smallpox has been known for centuries, the oldest available variola virus strains were isolated in the early 1940s. At that time, large regions of the world were already smallpox-free. Therefore, genetic information of these strains can represent only the very last fraction of a long evolutionary process. Based on the genomes of 48 strains, two clades are differentiated: Clade 1 includes variants of variola major, and clade 2 includes West African and variola minor (Alastrim) strains. Recently, the genome of an almost 400-year-old Lithuanian mummy was determined, which fell basal to all currently sequenced strains of variola virus on phylogenetic trees. Here, we determined two complete variola virus genomes from human tissues kept in a museum in Prague dating back 60 and 160 years, respectively. Moreover, mass spectrometry-based proteomic, chemical, and microscopic examinations were performed. The 60-year-old specimen was most likely an importation from India, a country with endemic smallpox at that time. The genome of the 160-year-old specimen is related to clade 2 West African and variola minor strains. This sequence likely represents a new endemic European variant of variola virus circulating in the midst of the 19th century in Europe.
Collapse
Affiliation(s)
- Petr Pajer
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Jiri Dresler
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Hana Kabíckova
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Libor Písa
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Pavel Aganov
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Karel Fucik
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01 Prague 6, Czech Republic.
| | - Daniel Elleder
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Tomas Hron
- Institute of Molecular Genetics of the ASCR, v. v. i., Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Vitezslav Kuzelka
- National Museum, Department of Anthropology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic.
| | - Petr Velemínsky
- National Museum, Department of Anthropology, Václavské náměstí 68, 115 79 Praha 1, Czech Republic.
| | - Jana Klimentova
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Alena Fucikova
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Jaroslav Pejchal
- Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 01 Hradec Králové, Czech Republic.
| | - Rita Hrabakova
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburská 89, 277 21 Liběchov, Czech Republic.
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Tobias Rausch
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Pavel Dundr
- Institute of Pathology of the First Faculty of Medicine and General Teaching Hospital, Studničkova 2, 128 00 Prague, Czech Republic.
| | - Alexander Pilin
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 4, 128 21, Praha 2, Czech Republic.
| | - Radomir Cabala
- Institute of Forensic Medicine and Toxicology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 4, 128 21, Praha 2, Czech Republic.
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic.
| | - Jan Stríbrny
- Military Institute of Forensic Medicine, Military University Hospital Prague, U Vojenské nemocnice 1200, 169 02 Praha 6.
| | - Markus H Antwerpen
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| | - Hermann Meyer
- Bundeswehr Institute of Microbiology, Neuherbergstr. 11, 80937 Munich, Germany.
| |
Collapse
|
11
|
Shchelkunov SN, Shcherbakov DN, Maksyutov RA, Gavrilova EV. Species-specific identification of variola, monkeypox, cowpox, and vaccinia viruses by multiplex real-time PCR assay. J Virol Methods 2011; 175:163-9. [DOI: 10.1016/j.jviromet.2011.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
|
12
|
Abstract
With the eradication of smallpox about 30 years ago, the identification and differentiation of other poxviruses with varying pathogenicity in humans present a challenge for diagnostic facilities. While a clinical differentiation can be demanding, electron microscopy is the fastest approach to identify poxviruses. Molecular techniques, based on specific genomic sequences, are routinely applied to identify poxvirus species and distinguish between individual virus variants. In this chapter, we present detailed protocols for both techniques and discuss questions relevant to fast and reliable diagnostics of poxviruses.
Collapse
Affiliation(s)
- Andreas Kurth
- Centre for Biological Safety 1, German Consultant Laboratory for Poxviruses, Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
13
|
Gavrilova EV, Shcherbakov DN, Maksyutov RA, Shchelkunov SN. Development of real-time PCR assay for specific detection of cowpox virus. J Clin Virol 2010; 49:37-40. [PMID: 20594906 PMCID: PMC9628739 DOI: 10.1016/j.jcv.2010.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 12/04/2022]
Abstract
Background The number of recorded human cowpox cases are recently increasing. The symptoms caused by cowpox virus (CPXV) in a number of human cases are close to the symptoms characteristic of the orthopoxviral human infections caused by monkeypox or smallpox (variola) viruses. Any rapid and reliable real-time PCR method for distinguishing cowpox from smallpox and monkeypox is yet absent. Objectives The aim of this study was to develop a quick and reliable real-time TaqMan PCR assay for specific detection of cowpox virus and to determine the sensitivity and specificity of this method. Study design Based on aligned nucleotide sequences of orthopoxviruses, we found a virus-specific region in the CPXV genome and selected the oligonucleotide primers and hybridization probe within this region. The specificity of the developed method was tested using a panel of various orthopoxvirus (OPV) DNAs. The sensitivity was determined using the recombinant plasmid carrying a fragment of CPXV DNA and genomic DNA of the CPXV strain GRI-90. Results The analytical specificity of this method was determined using DNAs of 17 strains of four OPV species pathogenic for humans and amounted to 100%. The method allows 6 copies of plasmid DNA and 20 copies of CPXV DNA in the reaction mixture to be detected. Conclusion A quick and reliable TaqMan PCR assay providing for a highly sensitive and specific detection of CPXV DNA was developed.
Collapse
|
14
|
Hoffmann B, Beer M, Reid SM, Mertens P, Oura CAL, van Rijn PA, Slomka MJ, Banks J, Brown IH, Alexander DJ, King DP. A review of RT-PCR technologies used in veterinary virology and disease control: sensitive and specific diagnosis of five livestock diseases notifiable to the World Organisation for Animal Health. Vet Microbiol 2009; 139:1-23. [PMID: 19497689 DOI: 10.1016/j.vetmic.2009.04.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 12/31/2022]
Abstract
Real-time, reverse transcription polymerase chain reaction (rRT-PCR) has become one of the most widely used methods in the field of molecular diagnostics and research. The potential of this format to provide sensitive, specific and swift detection and quantification of viral RNAs has made it an indispensable tool for state-of-the-art diagnostics of important human and animal viral pathogens. Integration of these assays into automated liquid handling platforms for nucleic acid extraction increases the rate and standardisation of sample throughput and decreases the potential for cross-contamination. The reliability of these assays can be further enhanced by using internal controls to validate test results. Based on these advantageous characteristics, numerous robust rRT-PCRs systems have been developed and validated for important epizootic diseases of livestock. Here, we review the rRT-PCR assays that have been developed for the detection of five RNA viruses that cause diseases that are notifiable to the World Organisation for Animal Health (OIE), namely: foot-and-mouth disease, classical swine fever, bluetongue disease, avian influenza and Newcastle disease. The performance of these tests for viral diagnostics and disease control and prospects for improved strategies in the future are discussed.
Collapse
Affiliation(s)
- Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Artificial plasmid engineered to simulate multiple biological threat agents. Appl Microbiol Biotechnol 2009; 81:1129-39. [DOI: 10.1007/s00253-008-1715-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/03/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
16
|
de Souza Trindade G, Li Y, Olson VA, Emerson G, Regnery RL, da Fonseca FG, Kroon EG, Damon I. Real-time PCR assay to identify variants of Vaccinia virus: implications for the diagnosis of bovine vaccinia in Brazil. J Virol Methods 2008; 152:63-71. [PMID: 18602170 DOI: 10.1016/j.jviromet.2008.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 05/12/2008] [Accepted: 05/15/2008] [Indexed: 10/21/2022]
Abstract
Naturally occurring infections of Vaccinia virus (VACV) have been recognized in Brazil during the past 10 years. Human Brazilian Vaccinia virus (BVV) infections typically occur as a zoonosis transferred from affected dairy cows to their handlers. Outbreaks have caused notable economic losses to the rural community in the region. The origins of BVV are unclear but previous analyses have shown that at least two distinct clades of BVV exist. The aim of this study was to develop a rapid and inexpensive process for identification and differentiation of BVV that should facilitate epidemiological and ecological investigations including the improved diagnosis of Brazilian Orthopoxvirus infections. A SYBR green quantitative real-time polymerase chain reaction (PCR) targeting the hemagglutinin gene was developed to identify different populations of BVV, VACV vaccine strains used in Brazil during the smallpox eradication campaign (Vaccinia Lister (VACV-LIS) and New York City Board of Health (VACV-NYCBH)), and currently available vaccines (VACV-NYCBH DRYVAX and VACV-NYCBH Acambis 2000). Three primer combinations (one to amplify many orthopoxviruses including all vaccinia viruses described so far; one to differentiate BVV from vaccine strains (VACV-LIS, VACV-NYCBH DRYVAX and VACV-NYCBH Acambis 2000); and one to differentiate BVV clades) were designed to work at the same annealing temperature and reaction conditions. In addition, these methods were able to detect orthopoxvirus viral DNA in lesion biopsy material without the need for DNA extraction.
Collapse
Affiliation(s)
- Giliane de Souza Trindade
- Division of Viral and Rickettsial Diseases National Center for Zoonotic, Vector-Borne and Enteric Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Orthopoxvirus detection in environmental specimens during suspected bioterror attacks: inhibitory influences of common household products. Appl Environ Microbiol 2007; 74:32-7. [PMID: 17965204 DOI: 10.1128/aem.01501-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After terrorists attacked the United States in 2001, the appearance of letters and other objects containing powdery substances with unknown potentials for biological threat focused attention on the speed, sensitivity, and reliability of diagnostic methods. This study summarizes the abilities and limitations of real-time PCR, electron microscopy (EM), and virus isolation when used to detect potential bioweapons. In particular, we investigated the inhibitory influences of different common household products present in environmental specimens on PCR yield, EM detection, and virus isolation. We used vaccinia virus as a model for orthopoxviruses by spiking it into specimens. In the second part of the study, we describe modifications of diagnostic methods to overcome inhibitory effects. A variety of PCR amplification enhancers, DNA extraction protocols, and applications of internal controls were evaluated to improve diagnostic simplicity, speed, and reliability. As a result, we strongly recommend using at least two different frontline techniques in parallel, e.g., EM and PCR. A positive result obtained by any one of these techniques should be followed by a biological method to confirm the putative diagnosis. Confirmatory methods include virus isolation followed by an agent-specific immunofluorescence assay to confirm the presence of replication-competent particles.
Collapse
|
18
|
Kurth A, Nitsche A. Fast and reliable diagnostic methods for the detection of human poxvirus infections. Future Virol 2007. [DOI: 10.2217/17460794.2.5.467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the most prominent poxvirus, Variola virus, was successfully eradicated in the last century, several other poxviruses cause zoonotic infections that, in the early stages, resemble Variola virus infections with varying pathogenicity in humans. Over recent decades, numerous diagnostic methods for the detection of poxviruses have been established. As a result of technical progress and the advancement in molecular techniques, only a small selection of these methods meet the demands of being rapid and reliable. This review briefly introduces human poxviruses, summarizes the methods available, discusses their pros and cons and provides recommendations for a ‘fast and reliable diagnostic approach.
Collapse
Affiliation(s)
- Andreas Kurth
- Robert Koch Institute, Center for Biological Safety 1, German Consultant Laboratory for Poxviruses, Nordufer 20, 13353 Berlin, Germany.
| | - Andreas Nitsche
- Robert Koch Institute, Center for Biological Safety 1, German Consultant Laboratory for Poxviruses, Nordufer 20, 13353 Berlin, Germany.
| |
Collapse
|
19
|
Quenelle DC, Prichard MN, Keith KA, Hruby DE, Jordan R, Painter GR, Robertson A, Kern ER. Synergistic efficacy of the combination of ST-246 with CMX001 against orthopoxviruses. Antimicrob Agents Chemother 2007; 51:4118-24. [PMID: 17724153 PMCID: PMC2151443 DOI: 10.1128/aac.00762-07] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves.
Collapse
Affiliation(s)
- Debra C Quenelle
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35233-1711, USA.
| | | | | | | | | | | | | | | |
Collapse
|