1
|
Karroum PJ, Padda I, Taik S, Piccione G, Fabian D, Kavarthapu A, Tantry B, Mahmoud M, Vandenborn S, Otiwaah J, Diaz K. Atopobium minutum: An uncommon culprit of severe bacteremia and empyema: A case report and literature review. Radiol Case Rep 2024; 19:3915-3921. [PMID: 39040826 PMCID: PMC11261269 DOI: 10.1016/j.radcr.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 07/24/2024] Open
Abstract
Atopobium minutum (A. minutum) has rarely been documented in human infections. However, this report describes a case involving a 52-year-old woman who developed empyema and lung collapse due to A. minutum. She initially presented to the emergency department with nausea, vomiting, diarrhea, and abdominal pain. Her condition quickly declined within the first day of arrival, leading to respiratory failure and requiring intubation and ICU-level care. Despite receiving intensive antibiotic treatment, the patient needed prolonged intubation and a tracheostomy. Initial cultures indicated Streptococcus intermedius and Lactobacillus minutus, but final culture results identified A. minutum as the cause. This case highlights the difficulty in diagnosing A. minutum infections, often necessitating advanced DNA sequencing, and raises concerns about potential multidrug resistance. It highlights the importance of prompt identification of the pathogen by laboratories to allow for effective treatment of these rare infections.
Collapse
Affiliation(s)
- Paul J. Karroum
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Inderbir Padda
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Sophia Taik
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Gianpaolo Piccione
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Daniel Fabian
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Anusha Kavarthapu
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Bhuvana Tantry
- Department of Internal Medicine, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | - Mahmoud Mahmoud
- Department of Radiology, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| | | | - Juliana Otiwaah
- School of Medicine, St. George's University, True Blue, Grenada
| | - Keith Diaz
- Department of Pulmonary and Critical Care, Richmond University Medical Center/Mount Sinai, Staten Island, NY, USA
| |
Collapse
|
2
|
Dubreuil LJ. Fifty years devoted to anaerobes: historical, lessons, and highlights. Eur J Clin Microbiol Infect Dis 2024; 43:1-15. [PMID: 37973693 DOI: 10.1007/s10096-023-04708-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Renew interest and enthusiasm for anaerobes stem from both technological improvements (culture media, production of an adequate anaerobic atmosphere, identification methods) and greater awareness on the part of clinicians. Anaerobic infections were historically treated empirically, targeting the species known to be involved in each type of infection. Prevotella, fusobacteria, and Gram-positive cocci (GPAC) were considered responsible for infections above the diaphragm whereas for intra-abdominal infections, Bacteroides of the fragilis group (BFG), GPAC and clostridia were predominantly implicated. The antibiotic susceptibility of anaerobes was only taken into consideration by the clinician in the event of treatment failure or when faced with infections by multidrug-resistant bacteria (MDR). The evolution of antibiotic resistance together with clinical failures due to the absence of detection of hetero-resistant clones has resulted in a greater need for accessible antibiotic susceptibility testing (AST) and disc diffusion method. Improved isolation and identification of anaerobes, along with the availability of accessible and robust methods for performing AST, will ensure that treatment, whether empirical or guided by an antibiogram, will lead to better outcomes for anaerobic infections.
Collapse
Affiliation(s)
- Luc J Dubreuil
- Clinical Microbiology Department, Faculty of Pharmacy, University of Lille, Lille, France.
| |
Collapse
|
3
|
Sadowy E. Mobile genetic elements beyond the VanB-resistance dissemination among hospital-associated enterococci and other Gram-positive bacteria. Plasmid 2021; 114:102558. [PMID: 33472048 DOI: 10.1016/j.plasmid.2021.102558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/30/2022]
Abstract
An increasing resistance to vancomycin among clinically relevant enterococci, such as Enterococcus faecalis and Enterococcus faecium is a cause of a great concern, as it seriously limits treatment options. The vanB operon is one of most common determinants of this type of resistance. Genes constituting the operon are located in conjugative transposons, such as Tn1549-type transposons or, more rarely, in ICEEfaV583-type structures. Such elements show differences in structure and size, and reside in various sites of bacterial chromosome or, in the case of Tn1549-type transposons, are also occasionally associated with plasmids of divergent replicon types. While conjugative transposition contributes to the acquisition of Tn1549-type transposons from anaerobic gut commensals by enterococci, chromosomal recombination and conjugal transfer of plasmids appear to represent main mechanisms responsible for horizontal dissemination of vanB determinants among hospital E. faecalis and E. faecium. This review focuses on diversity of genetic elements harbouring vanB determinants in hospital-associated strains of E. faecium and E. faecalis, the mechanisms beyond vanB spread in populations of these bacteria, and provides an overview of the vanB-MGE distribution among other enterococci and Gram-positive bacteria as potential reservoirs of vanB genes.
Collapse
Affiliation(s)
- Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, Warsaw, Poland.
| |
Collapse
|
4
|
Werner G, Neumann B, Weber RE, Kresken M, Wendt C, Bender JK. Thirty years of VRE in Germany - "expect the unexpected": The view from the National Reference Centre for Staphylococci and Enterococci. Drug Resist Updat 2020; 53:100732. [PMID: 33189998 DOI: 10.1016/j.drup.2020.100732] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Enterococci are commensals of the intestinal tract of many animals and humans. Of the various known and still unnamed new enterococcal species, only isolates of Enterococcus faecium and Enterococcus faecalis have received increased medical and public health attention. According to textbook knowledge, the majority of infections are caused by E. faecalis. In recent decades, the number of enterococcal infections has increased, with the increase being exclusively associated with a rising number of nosocomial E. faecium infections. This increase has been accompanied by the dissemination of certain hospital-acquired strain variants and an alarming progress in the development of antibiotic resistance namely vancomycin resistance. With this review we focus on a description of the specific situation of vancomycin resistance among clinical E. faecium isolates in Germany over the past 30 years. The present review describes three VRE episodes in Germany, each of which is framed by the beginning and end of the respective decade. The first episode is specified by the first appearance of VRE in 1990 and a country-wide spread of specific vanA-type VRE strains (ST117/CT24) until the late 1990s. The second decade was initially marked by regional clusters and VRE outbreaks in hospitals in South-Western Germany in 2004 and 2005, mainly caused by vanA-type VRE of ST203. Against the background of a certain "basic level" of VRE prevalence throughout Germany, an early shift from the vanA genotype to the vanB genotype in clinical isolates already occurred at the end of the 2000s without much notice. With the beginning of the third decade in 2010, VRE rates in Germany have permanently increased, first in some federal states and soon after country-wide. Besides an increase in VRE prevalence, this decade was marked by a sharp increase in vanB-type resistance and a dominance of a few, novel strain variants like ST192 and later on ST117 (CT71, CT469) and ST80 (CT1065). The largest VRE outbreak, which involved about 2,900 patients and lasted over three years, was caused by a novel and until that time, unknown strain type of ST80/CT1013 (vanB). Across all periods, VRE outbreaks were mainly oligoclonal and strain types varied over space (hospital wards) and time. The spread of VRE strains obviously respects political borders; for instance, both vancomycin-variable enterococci which were highly prevalent in Denmark and ST796 VRE which successfully disseminated in Australia and Switzerland, were still completely absent among German hospital patients, until to date.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany.
| | - Bernd Neumann
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | - Robert E Weber
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| | | | | | - Jennifer K Bender
- National Reference Centre for Staphylococci and Enterococci, Division Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, Germany
| |
Collapse
|
5
|
Haas KN, Blanchard JL. Reclassification of the Clostridium clostridioforme and Clostridium sphenoides clades as Enterocloster gen. nov. and Lacrimispora gen. nov., including reclassification of 15 taxa. Int J Syst Evol Microbiol 2020; 70:23-34. [DOI: 10.1099/ijsem.0.003698] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Kelly N. Haas
- Department of Biology, California State University Sacramento, Sacramento, California, USA
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California, USA
| | - Jeffrey L. Blanchard
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
- Graduate Program in Organismal and Evolutionary Biology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
6
|
Lambertsen L, Rubio-Cosials A, Patil KR, Barabas O. Conjugative transposition of the vancomycin resistance carrying Tn1549: enzymatic requirements and target site preferences. Mol Microbiol 2018; 107:639-658. [PMID: 29271522 DOI: 10.1111/mmi.13905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 11/30/2022]
Abstract
Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini-Tn1549 can transpose in E. coli away from its natural Gram-positive host. We find the transposon-encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT-N6-AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.
Collapse
Affiliation(s)
- Lotte Lambertsen
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Anna Rubio-Cosials
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Kiran Raosaheb Patil
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| |
Collapse
|
7
|
Ferreira TG, Moura H, Barr JR, Pilotto Domingues RMC, Ferreira EDO. Ribotypes associated with Clostridium difficile outbreaks in Brazil display distinct surface protein profiles. Anaerobe 2017; 45:120-128. [PMID: 28435010 DOI: 10.1016/j.anaerobe.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/01/2017] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a spore-forming anaerobic intestinal pathogen that causes Clostridium difficile infection (CDI). C. difficile is the leading cause of toxin-mediated nosocomial antibiotic-associated diarrhea. The pathogenesis of CDI is attributed to two major virulence factors, TcdA and TcdB toxins, that cause the symptomatic infection. C. difficile also expresses a number of key proteins, including cell wall proteins (CWPs). S-layer proteins (SLPs) are CWPs that form a paracrystalline surface array that coats the surface of the bacterium. SLPs have a role in C. difficile binding to the gastrointestinal tract, but their importance in virulence need to be better elucidated. Here, we describe bottom-up proteomics analysis of surface-enriched proteins fractions obtained through glycine extraction of five C. difficile clinical isolates from Brazil using gel-based and gel-free approaches. We were able to identify approximately 250 proteins for each strain, among them SlpA, Cwp2, Cwp6, CwpV and Cwp84. Identified CWPs presented different amino acid coverage, which might suggest differences in post-translational modifications. Proteomic analysis of SLPs from ribotype 133, agent of C. difficile outbreaks in Brazil, revealed unique proteins and provided additional information towards in depth characterization of the strains causing CDI in Brazil.
Collapse
Affiliation(s)
- Thais Gonçalves Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil
| | - Hercules Moura
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - John R Barr
- Centers for Disease Control and Prevention - CDC, Division of Laboratory Sciences, Atlanta, GA, USA
| | - Regina M C Pilotto Domingues
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil.
| | - Eliane de Oliveira Ferreira
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Laboratório de Biologia de Anaeróbios, Rio de Janeiro, Brazil; Universidade Federal do Rio de Janeiro - Polo Xerém, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Dehoux P, Marvaud JC, Abouelleil A, Earl AM, Lambert T, Dauga C. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants. BMC Genomics 2016; 17:819. [PMID: 27769168 PMCID: PMC5073890 DOI: 10.1186/s12864-016-3152-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. RESULTS The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. CONCLUSION Genomic comparison of C. bolteae and C. clostridiofrome revealed functional differences in butyrate pathways and in flagellar systems, which play a critical role within human microbiota. Most of the resistance genes detected in both species were previously characterized in other bacterial species. A few of them were related to antibiotics inactive against Clostridium spp. Some were part of mobile genetic elements suggesting that these commensals of the human microbiota act as reservoir of antimicrobial resistances.
Collapse
Affiliation(s)
- Pierre Dehoux
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Jean Christophe Marvaud
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
| | - Amr Abouelleil
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Ashlee M. Earl
- Genome Sequencing and Analysis Program, Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Thierry Lambert
- Faculté de Pharmacie, EA4043 “Unité Bactéries Pathogènes et Santé” (UBaPS), Université Paris Sud, Châtenay-Malabry Cedex, 92296 France
- Antibacterial Agents Unit, Department of Microbiology, Institut Pasteur, Paris, France
| | - Catherine Dauga
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
- International Group of Data Analysis, Centre for Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| |
Collapse
|
9
|
Young VB. Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect 2016; 22:905-909. [PMID: 27619640 DOI: 10.1016/j.cmi.2016.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The growing appreciation of the potential role of indigenous microbiota in disease has resulted in a concomitant interest in manipulating the microbiome for therapeutic effect. The most successful example of microbiota manipulation for treatment of a disease is in recurrent infection with the bacterial pathogen Clostridium difficile. AIMS This review provides historic perspectives on development of microbiota transplantation and reviews evidence for its use in recurrent C. difficile infection. SOURCES A PubMed search of the terms ([fecal transplant OR fecal transplantation] AND difficile) to 9 June 2016 yielded 415 articles. CONTENT Recent work has pointed to potential mechanisms by which microbiota restoration in the form of faecal transplantation has been efficacious. This includes studies of microorganisms associated with successful faecal transplantation in human and animal studies and a focus on bacterial bile acid metabolism as a mechanism that mediates colonization resistance against the pathogen. The potential use of microbiota manipulation for other diseases such as inflammatory bowel diseases and metabolic disorders will be discussed. The case will be made that the lessons learned from treatment of recurrent C. difficile infection may not necessarily translate to use of faecal transplantation or other methods to alter the microbiome for the treatment of other diseases. IMPLICATIONS A key conclusion that can be drawn is that understanding of the precise role of the microbiota in the pathogenesis of a specific disease is necessary prior to determining if microbiota manipulation represents a novel treatment therapy.
Collapse
Affiliation(s)
- V B Young
- Department of Internal Medicine/Infectious Diseases Division, Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
A Phenotypically Silent vanB2 Operon Carried on a Tn1549-Like Element in Clostridium difficile. mSphere 2016; 1:mSphere00177-16. [PMID: 27536735 PMCID: PMC4980698 DOI: 10.1128/msphere.00177-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
In the last decade, Clostridium difficile infection (CDI) has reached an epidemic state with increasing incidence and severity in both health care and community settings. Vancomycin is an important first-line therapy for CDI, and the emergence of resistance would have significant clinical consequences. In this study, we describe for the first time a vanB2 vancomycin resistance operon in C. difficile, isolated from an Australian veal calf at slaughter. The operon was carried on an ~42-kb element showing significant homology and synteny to Tn1549, a conjugative transposon linked with the emergence and global dissemination of vancomycin-resistant enterococci (VRE). Notably, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly as a result of an aberrant vanRB gene. As observed for other anaerobic species of the animal gut microbiota, C. difficile may be a reservoir of clinically important vancomycin resistance genes. IMPORTANCE In an era when the development of new antimicrobial drugs is slow, vancomycin remains the preferred antimicrobial therapy for Clostridium difficile infection (CDI), the most important health care-related infection in the world today. The emergence of resistance to vancomycin would have significant consequences in relation to treating patients with CDI. In this paper, we describe for the first time a complete set of vancomycin resistance genes in C. difficile. The genes were very similar to genes found in vancomycin-resistant enterococci (VRE) that were associated with the emergence and global dissemination of this organism. Fortunately, the C. difficile strain did not show any reduced susceptibility to vancomycin in vitro (MIC, 1 mg/liter), possibly because of a small difference in one gene. However, this observation signals that we may be very close to seeing a fully vancomycin-resistant strain of C. difficile.
Collapse
|
11
|
The Plasmidome of Firmicutes: Impact on the Emergence and the Spread of Resistance to Antimicrobials. Microbiol Spectr 2016; 3:PLAS-0039-2014. [PMID: 26104702 DOI: 10.1128/microbiolspec.plas-0039-2014] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Firmicutes is one of the most abundant groups of prokaryotes in the microbiota of humans and animals and includes genera of outstanding relevance in biomedicine, health care, and industry. Antimicrobial drug resistance is now considered a global health security challenge of the 21st century, and this heterogeneous group of microorganisms represents a significant part of this public health issue.The presence of the same resistant genes in unrelated bacterial genera indicates a complex history of genetic interactions. Plasmids have largely contributed to the spread of resistance genes among Staphylococcus, Enterococcus, and Streptococcus species, also influencing the selection and ecological variation of specific populations. However, this information is fragmented and often omits species outside these genera. To date, the antimicrobial resistance problem has been analyzed under a "single centric" perspective ("gene tracking" or "vehicle centric" in "single host-single pathogen" systems) that has greatly delayed the understanding of gene and plasmid dynamics and their role in the evolution of bacterial communities.This work analyzes the dynamics of antimicrobial resistance genes using gene exchange networks; the role of plasmids in the emergence, dissemination, and maintenance of genes encoding resistance to antimicrobials (antibiotics, heavy metals, and biocides); and their influence on the genomic diversity of the main Gram-positive opportunistic pathogens under the light of evolutionary ecology. A revision of the approaches to categorize plasmids in this group of microorganisms is given using the 1,326 fully sequenced plasmids of Gram-positive bacteria available in the GenBank database at the time the article was written.
Collapse
|
12
|
Detection of Vancomycin-Resistant Enterococci. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Mendes-Soares H, Krishnan V, Settles ML, Ravel J, Brown CJ, Forney LJ. Fine-scale analysis of 16S rRNA sequences reveals a high level of taxonomic diversity among vaginal Atopobium spp. Pathog Dis 2015; 73:ftv020. [PMID: 25778779 DOI: 10.1093/femspd/ftv020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 01/29/2023] Open
Abstract
Although vaginal microbial communities of some healthy women have high proportions of Atopobium vaginae, the genus Atopobium is more commonly associated with bacterial vaginosis, a syndrome associated with an increased risk of adverse pregnancy outcomes and the transmission of sexually transmitted diseases. Genetic differences within Atopobium species may explain why single species can be associated with both health and disease. We used 16S rRNA gene sequences from previously published studies to explore the taxonomic diversity of the genus Atopobium in vaginal microbial communities of healthy women. Although A. vaginae was the species most commonly found, we also observed three other Atopobium species in the vaginal microbiota, one of which, A. parvulum, was not previously known to reside in the human vagina. Furthermore, we found several potential novel species of the genus Atopobium and multiple phylogenetic clades of A. vaginae. The diversity of Atopobium found in our study, which focused only on samples from healthy women, is greater than previously recognized, suggesting that analysis of samples from women with BV would yield even more diversity. Classification of microbes only to the genus level may thus obfuscate differences that might be important to better understand health or disease.
Collapse
Affiliation(s)
- Helena Mendes-Soares
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Vandhana Krishnan
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Matthew L Settles
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Celeste J Brown
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| | - Larry J Forney
- Department of Biological Sciences and Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow ID 83844, USA
| |
Collapse
|
14
|
Sepsis with an Atopobium-like species in a patient with Fournier's gangrene. J Clin Microbiol 2013; 52:364-6. [PMID: 24153131 DOI: 10.1128/jcm.02310-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atopobium species are Gram-positive, anaerobic, catalase-negative, fastidious bacteria belonging to the family Coriobacteriaceae. We report the isolation of an Atopobium-like species in a patient with Fournier's gangrene and highlight the role of 16S rRNA gene sequencing in the identification of fastidious organisms in the clinical laboratory.
Collapse
|
15
|
ICESluvan, a 94-kilobase mosaic integrative conjugative element conferring interspecies transfer of VanB-type glycopeptide resistance, a novel bacitracin resistance locus, and a toxin-antitoxin stabilization system. J Bacteriol 2013; 195:5381-90. [PMID: 24078615 DOI: 10.1128/jb.02165-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 94-kb integrative conjugative element (ICESluvan) transferable to Enterococcus faecium and Enterococcus faecalis from an animal isolate of Streptococcus lutetiensis consists of a mosaic of genetic fragments from different Gram-positive bacteria. A variant of ICESluvan was confirmed in S. lutetiensis from a patient. A complete Tn5382/Tn1549 with a vanB2 operon is integrated into a streptococcal ICESde3396-like region harboring a putative bacteriophage exclusion system, a putative agglutinin receptor precursor, and key components of a type IV secretion system. Moreover, ICESluvan encodes a putative MobC family mobilization protein and a relaxase and, thus, in total has all genetic components essential for conjugative transfer. A 9-kb element within Tn5382/Tn1549 encodes, among others, putative proteins similar to the TnpX site-specific recombinase in Faecalibacterium and VanZ in Paenibacillus, which may contribute to the detected low-level teicoplanin resistance. Furthermore, ICESluvan encodes a novel bacitracin resistance locus that is associated with reduced susceptibility to bacitracin when transferred to E. faecium. The expression of a streptococcal pezAT toxin-antitoxin-encoding operon of ICESluvan in S. lutetiensis, E. faecium, and E. faecalis was confirmed by reverse transcription (RT)-PCR, indicating an active toxin-antitoxin system which may contribute to stabilizing ICESluvan within new hosts. Junction PCR and DNA sequencing confirmed that ICESluvan excised to form a circular intermediate in S. lutetiensis, E. faecalis, and E. faecium. Transfer between E. faecalis cells was observed in the presence of helper plasmid pIP964. Sequence analysis of the original S. lutetiensis donor and enterococcal transconjugants showed that ICESluvan integrates in a site-specific manner into the C-terminal end of the chromosomal tRNA methyltransferase gene rumA.
Collapse
|
16
|
Werner G, Coque TM, Franz CMAP, Grohmann E, Hegstad K, Jensen L, van Schaik W, Weaver K. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303:360-79. [PMID: 23602510 DOI: 10.1016/j.ijmm.2013.03.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enterococci have been recognized as important hospital-acquired pathogens in recent years, and isolates of E. faecalis and E. faecium are the third- to fourth-most prevalent nosocomial pathogen worldwide. Acquired resistances, especially against penicilin/ampicillin, aminoglycosides (high-level) and glycopeptides are therapeutically important and reported in increasing numbers. On the other hand, isolates of E. faecalis and E. faecium are commensals of the intestines of humans, many vertebrate and invertebrate animals and may also constitute an active part of the plant flora. Certain enterococcal isolates are used as starter cultures or supplements in food fermentation and food preservation. Due to their preferred intestinal habitat, their wide occurrence, robustness and ease of cultivation, enterococci are used as indicators for fecal pollution assessing hygiene standards for fresh- and bathing water and they serve as important key indicator bacteria for various veterinary and human resistance surveillance systems. Enterococci are widely prevalent and genetically capable of acquiring, conserving and disseminating genetic traits including resistance determinants among enterococci and related Gram-positive bacteria. In the present review we aimed at summarizing recent advances in the current understanding of the population biology of enterococci, the role mobile genetic elements including plasmids play in shaping the population structure and spreading resistance. We explain how these elements could be classified and discuss mechanisms of plasmid transfer and regulation and the role and cross-talk of enterococcal isolates from food and food animals to humans.
Collapse
Affiliation(s)
- Guido Werner
- National Reference Centre for Stapyhlococci and Enterococci, Division of Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode Branch, Burgstr. 37, 38855 Wernigerode, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bouvet P, K'Ouas G, Le Coustumier A, Popoff MR. Clostridium celerecrescens, often misidentified as "Clostridium clostridioforme group," is involved in rare human infection cases. Diagn Microbiol Infect Dis 2012; 74:299-302. [PMID: 22901791 DOI: 10.1016/j.diagmicrobio.2012.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/15/2012] [Accepted: 06/25/2012] [Indexed: 11/30/2022]
Abstract
Misidentification of rare Clostridium species often originated from the environment as clinically relevant species is problematic. A strain isolated from a traumatic leg wound first identified as C. clostridioforme was finally identified as the rare Clostridium celerecrescens. Two similar misidentifications are reported in the literature. In order to help the phenotypic differentiation of C. celerecrescens from the close species of the "C. clostridioforme group", an identification table and differential susceptibilities to 4 selected antibiotics are proposed. Once a clinical isolate is referred to this group, identification should be definitively confirmed by unambiguous methods such as 16s rDNA sequencing.
Collapse
Affiliation(s)
- Philippe Bouvet
- Institut Pasteur, Centre National de Référence des Bactéries Anaérobies et du Botulisme, Unité Bactéries anaérobies et Toxines, 25-28 rue du Docteur Roux, F-75724 Paris cedex 15, France.
| | | | | | | |
Collapse
|
18
|
Werner G, Klare I, Fleige C, Geringer U, Witte W, Just HM, Ziegler R. Vancomycin-resistant vanB-type Enterococcus faecium isolates expressing varying levels of vancomycin resistance and being highly prevalent among neonatal patients in a single ICU. Antimicrob Resist Infect Control 2012; 1:21. [PMID: 22958440 PMCID: PMC3533821 DOI: 10.1186/2047-2994-1-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 04/14/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Vancomycin-resistant isolates of E. faecalis and E. faecium are of special concern and patients at risk of acquiring a VRE colonization/infection include also intensively-cared neonates. We describe here an ongoing high prevalence of VanB type E. faecium in a neonatal ICU hardly to identify by routine diagnostics. METHODS During a 10 months' key period 71 E. faecium isolates including 67 vanB-type isolates from 61 patients were collected non-selectively. Vancomycin resistance was determined by different MIC methods (broth microdilution, Vitek® 2) including two Etest® protocols (McFarland 0.5/2.0. on Mueller-Hinton/Brain Heart Infusion agars). Performance of three chromogenic VRE agars to identify the vanB type outbreak VRE was evaluated (BrillianceTM VRE agar, chromIDTM VRE agar, CHROMagarTM VRE). Isolates were genotyped by SmaI- and CeuI-macrorestriction analysis in PFGE, plasmid profiling, vanB Southern hybridisations as well as MLST typing. RESULTS Majority of vanB isolates (n = 56, 79%) belonged to a single ST192 outbreak strain type showing an identical PFGE pattern and analyzed representative isolates revealed a chromosomal localization of a vanB2-Tn5382 cluster type. Vancomycin MICs in cation-adjusted MH broth revealed a susceptible value of ≤4 mg/L for 31 (55%) of the 56 outbreak VRE isolates. Etest® vancomycin on MH and BHI agars revealed only two vanB VRE isolates with a susceptible result; in general Etest® MIC results were about 1 to 2 doubling dilutions higher than MICs assessed in broth and values after the 48 h readout were 0.5 to 1 doubling dilutions higher for vanB VRE. Of all vanB type VRE only three, three and two isolates did not grow on BrillianceTM VRE agar, chromIDTM VRE agar and CHROMagarTM VRE, respectively. Permanent cross contamination via the patients' surrounding appeared as a possible risk factor for permanent VRE colonization/infection. CONCLUSIONS Low level expression of vanB resistance may complicate a proper routine diagnostics of vanB VRE and mask an ongoing high VRE prevalence. A high inoculum and growth on rich solid media showed the highest sensitivity in identifying vanB type resistance.
Collapse
Affiliation(s)
- Guido Werner
- Unit FG13 Nosocomial Infections, Robert Koch-Institute Wernigerode, Wernigerode, Germany
| | - Ingo Klare
- Unit FG13 Nosocomial Infections, Robert Koch-Institute Wernigerode, Wernigerode, Germany
| | - Carola Fleige
- Unit FG13 Nosocomial Infections, Robert Koch-Institute Wernigerode, Wernigerode, Germany
| | - Uta Geringer
- Unit FG13 Nosocomial Infections, Robert Koch-Institute Wernigerode, Wernigerode, Germany
| | - Wolfgang Witte
- Unit FG13 Nosocomial Infections, Robert Koch-Institute Wernigerode, Wernigerode, Germany
| | - Heinz-Michael Just
- Institute for Clinical Hygiene and Infectiology, Hospital Nord der Stadt Nürnberg, Nuremberg, Germany
| | - Renate Ziegler
- Institute for Clinical Hygiene and Infectiology, Hospital Nord der Stadt Nürnberg, Nuremberg, Germany
| |
Collapse
|