1
|
Zhao Y, Zhang L, Tang X, Ren S, Zhang Y. Anthropogenic disturbance promotes the diversification of antibiotic resistance genes and virulence factors in the gut of plateau pikas (Ochotona curzoniae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1027941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prevalence and transmission of antibiotic resistance genes (ARGs) and virulence factors (VFs) pose a great threat to public health. The importance of pollution in determining the occurrence of ARGs and VFs in wildlife is poorly understood. Using a metagenomic approach, this study investigates the composition and functional pathways of bacteria, ARGs, and VFs in the gut microbiome of Plateau pikas in regions of medical pollution (MPR), heavy tourist traffic (HTR), and no contamination (NCR). We found that the abundance of probiotic genera (Clostridium, Eubacterium, Faecalibacterium, and Roseburia) were significantly lower in the HTR. The metabolic pathways of replication and repair in the endocrine and nervous systems were significantly enriched in the MPR, whereas endocrine and metabolic diseases were significantly enriched in the NCR. The Shannon and Gini–Simpson α-diversity indices of ARGs were highest in the HTR, and there were significant differences in β-diversity among the three regions. The resistance of ARGs to glycopeptide antibiotics increased significantly in the MPR, whereas the ARGs for aminocoumarins increased significantly in the HTR. The diversity of mobile genetic elements (MGEs) was significantly higher in the MPR than in other regions. We observed a strong positive correlation between ARGs and pathogenic bacteria, and the network structure was the most complex in the MPR. There were significant differences in the β-diversity of VFs among the three regions. Medical pollution led to significant enrichment of fibronectin-binding protein and PhoP, whereas tourism-related pollution (in the HTR) led to significant enrichment of LPS and LplA1. Our study indicates that environmental pollution can affect the structure and function of gut microbes and disseminate ARGs and VFs via horizontal transmission, thereby posing a threat to the health of wild animals.
Collapse
|
2
|
Ali S, Dennehy F, Donoghue O, McNicholas S. Antimicrobial susceptibility patterns of anaerobic bacteria at an Irish University Hospital over a ten-year period (2010-2020). Anaerobe 2021; 73:102497. [PMID: 34875368 DOI: 10.1016/j.anaerobe.2021.102497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES In recent years various clinical studies have demonstrated poor outcomes in infections caused by anaerobic bacteria due to inappropriate therapy, directly due to emergence of resistant strains. This is a concern given that many anaerobic infections are treated empirically with metronidazole or a beta-lactam/beta-lactamase inhibitor combinations (e.g., co-amoxiclav, piperacillin-tazobactam). To date there is a paucity of available data on antimicrobial resistance trends of anaerobic bacteria in Ireland, and our study aims to determine such patterns among isolates processed at our institution over the last ten years. METHODS Significant anaerobic bacteria isolated from clinical specimens processed at our laboratory from January 2010 to January 2020 inclusive were reviewed. Bacteria were identified using MALDI-TOF, with E-tests used for antimicrobial susceptibility testing. Data was processed through WHONET. RESULTS A total of 2098 clinically significant anaerobic bacterial isolates from blood cultures (31%), theatre/intraoperative specimens (30%), aspirates and drain fluid (22%) and wound swabs (17%) were reviewed during the study period; with the majority of isolates being Bacteroides spp (32.79%, n = 688) and Clostridium spp (18.68%, n = 392). With isolates demonstrating well-recognised or inherent resistances excluded, overall resistance to tested antimicrobials was 6.40% to penicillin, 1.71% to metronidazole, 1.43% to co-amoxiclav, 13.63% to clindamycin, 0.43% to piperacillin-tazobactam and 0% to meropenem. CONCLUSION Metronidazole and beta-lactam/beta-lactamase inhibitor combinations remain highly efficacious against the majority of anaerobic isolates reviewed, and can safely be used as empiric therapy in suspected anaerobic infections. However, periodic surveillance of resistance trends remains important.
Collapse
Affiliation(s)
- Saied Ali
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, D04 T6F4, Ireland.
| | - Frank Dennehy
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, D04 T6F4, Ireland.
| | - Orla Donoghue
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, D04 T6F4, Ireland.
| | - Sinead McNicholas
- Department of Microbiology, St Vincent's University Hospital, Elm Park, Dublin, D04 T6F4, Ireland.
| |
Collapse
|
3
|
Genotyping of multi drug resistant Bacteroides fragilis group of clinical isolates from mangalore, south India. Indian J Med Microbiol 2020; 39:19-23. [PMID: 33610251 DOI: 10.1016/j.ijmmb.2020.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Bacteroides fragilis group, the most encountered anaerobic bacterium is emerging with resistance to antibiotics. This study explores the antibiogram and occurrence of resistance genes in isolates of B fragilis group from clinical samples. METHOD In this study the antimicrobial susceptibility test was done using commercially available E strip test and the results were recorded according to CLSI guidelines. Genotypic investigations were performed by conventional PCR to detect the target resistant genes. RESULTS Ceftriaxone, cefoxitin, clindamycin and imipenem were found to be the most resistant antimicrobials in E test method. Metronidazole has shown resistance in 7 strains in vitro while resistance nim genes were detected in 12 strains from 62 randomly selected isolates. Other resistance genes (cfiA, ermF and cepA) were expressed at 58%, 62.9% and 48.3% respectively, among these strains. CONCLUSION B fragilis group harbouring the resistant genes may not be fully expressed phenotypically. Hence, detection of these genes by PCR might be necessary for a pertinent conclusion.
Collapse
|
4
|
Yekani M, Baghi HB, Naghili B, Vahed SZ, Sóki J, Memar MY. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb Pathog 2020; 149:104506. [PMID: 32950639 DOI: 10.1016/j.micpath.2020.104506] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Bacteroides fragilis is a most frequent anaerobic pathogen isolated from human infections, particularly found in the abdominal cavity. Different factors contribute to the pathogenesis and persistence of B. fragilis at infection sites. The knowledge of the virulence factors can provide applicable information for finding alternative options for the antibiotic therapy and treatment of B. fragilis caused infections. Herein, a comprehensive review of the important B. fragilis virulence factors was prepared. In addition to B. fragilis toxin (BFT) and its potential role in the diarrhea and cancer development, some other important virulence factors and characteristics of B. fragilis are described including capsular polysaccharides, iron acquisition, resistance to antimicrobial agents, and survival during the prolonged oxidative stress, quorum sensing, and secretion systems.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee,Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - József Sóki
- Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Microbiology Department, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Maraki S, Mavromanolaki VE, Stafylaki D, Kasimati A. Surveillance of antimicrobial resistance in recent clinical isolates of Gram-negative anaerobic bacteria in a Greek University Hospital. Anaerobe 2020; 62:102173. [DOI: 10.1016/j.anaerobe.2020.102173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
6
|
Shafquat Y, Jabeen K, Farooqi J, Mehmood K, Irfan S, Hasan R, Zafar A. Antimicrobial susceptibility against metronidazole and carbapenem in clinical anaerobic isolates from Pakistan. Antimicrob Resist Infect Control 2019; 8:99. [PMID: 31210928 PMCID: PMC6567479 DOI: 10.1186/s13756-019-0549-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/26/2019] [Indexed: 11/12/2022] Open
Abstract
Background Globally metronidazole and carbapenem resistance in anaerobic organisms is increasing necessitating continuous surveillance to guide selection of empirical treatment. In this study we have determined metronidazole resistance in anaerobes using MIC Evaluator strips (M.I.C.E strips). Carbapenem resistance was evaluated only in metronidazole resistant isolates. Material and methods The study was conducted at the Aga Khan University (AKU) Hospital laboratory, Karachi, Pakistan (2014–2017). Metronidazole and imipenem resistance was evaluated using M.I.C.E strips and minimum inhibitory concentrations (MICs) were interpreted using Clinical Laboratory Standards Institute (CLSI) criteria. Clinical details including demographics, prolonged hospital stay, malignancy, transplant, dialysis, diabetes, site of infection and outcome were analyzed for association with metronidazole resistance. Results Of the 223 clinically significant isolates, 39 (17.5%) were metronidazole resistant (excluding the inherently resistant organisms; for example Cutibacterium species). Imipenem resistance was determined in 29 metronidazole resistant isolates and of these 7 (24.1%) were found to be resistant. Proportion of metronidazole resistant strains was highest amongst Bacteroides species. A significant increase in metronidazole resistance from 12.3% in 2010–2011 to 17.5% in the current study was found. Carbapenem resistance also emerged in the period 2014–2017. Isolates from malignancy and transplant patients showed lower odds of developing metronidazole resistance (0.003(95% CI: 1.7–17.9)). Prolonged hospital stay was not associated with metronidazole resistance (1.1((95% CI: 0.5–2.5)). Conclusion The rising trend of metronidazole resistance and emergence of carbapenem resistance in anaerobic bacteria is alarming. Continued surveillance with strengthening of laboratory capacity regarding anaerobic susceptibility testing is urgently needed in Pakistan.
Collapse
Affiliation(s)
- Yusra Shafquat
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Kauser Jabeen
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Joveria Farooqi
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Kiran Mehmood
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Seema Irfan
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Rumina Hasan
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| | - Afia Zafar
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Stadium road, Karachi, Pakistan
| |
Collapse
|
7
|
Kierzkowska M, Majewska A, Szymanek-Majchrzak K, Sawicka-Grzelak A, Mlynarczyk A, Mlynarczyk G. The presence of antibiotic resistance genes and bft genes as well as antibiotic susceptibility testing of Bacteroides fragilis strains isolated from inpatients of the Infant Jesus Teaching Hospital, Warsaw during 2007-2012. Anaerobe 2019; 56:109-115. [PMID: 30844502 DOI: 10.1016/j.anaerobe.2019.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to assess drug susceptibility of clinical B. fragilis strains and to determine any correlation between drug resistance and the presence of specific genes. Antimicrobial susceptibility was assessed using E-tests. All isolates were analyzed with the PCR technique for the presence of antibiotic resistance genes (cepA, cfxA, cfiA, ermF, ermB, ermG, nim), insertion sequences elements (IS1186, IS1187, IS1188, IS942), and enterotoxin-encoding genes (bft). Susceptibility tests yielded the following rates of resistance to the evaluated antibiotics: penicillin G (100%), clindamycin (22.5%), cefoxitin (6.3%), amoxicillin/clavulanic acid (1.8%). All strain were susceptible to imipenem, and metronidazole. The following antibiotic resistance genes were detected in the evaluated isolates: cepA (in 96.4% of isolates), cfxA (in 12.6%), cfiA (in 1.8%), and ermF (in 25.2%). Genes ermB, ermG, and nim were not found. The presence of the cepA gene showed no correlation with the penicillin G MIC. However, we observed a high correlation between cefoxitin MIC values and the presence of gene cfxA as well as a nearly complete correlation between clindamycin MIC values and the presence of gene ermF. The presence of a bft gene was detected in 14.4% of the analyzed B. fragilis isolates; with the bft-1 allele found in 75%, bft-2 in 25%, and bft-3 in none of the isolates. Antibiotic susceptibility profiles of enterotoxin gene-positive isolates in our study did not differ from those of enterotoxin gene-negative isolates.
Collapse
Affiliation(s)
- Marta Kierzkowska
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004, Warsaw, Poland; Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland
| | - Anna Majewska
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004, Warsaw, Poland; Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland.
| | - Ksenia Szymanek-Majchrzak
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004, Warsaw, Poland; Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland
| | - Anna Sawicka-Grzelak
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004, Warsaw, Poland; Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland
| | - Andrzej Mlynarczyk
- Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland
| | - Grazyna Mlynarczyk
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego 5 Str., 02-004, Warsaw, Poland; Department of Medical Microbiology, The Infant Jesus Teaching Hospital, Lindleya 4 Str., 02-004, Warsaw, Poland
| |
Collapse
|
8
|
Dingsdag SA, Hunter N. Metronidazole: an update on metabolism, structure-cytotoxicity and resistance mechanisms. J Antimicrob Chemother 2019; 73:265-279. [PMID: 29077920 DOI: 10.1093/jac/dkx351] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Metronidazole, a nitroimidazole, remains a front-line choice for treatment of infections related to inflammatory disorders of the gastrointestinal tract including colitis linked to Clostridium difficile. Despite >60 years of research, the metabolism of metronidazole and associated cytotoxicity is not definitively characterized. Nitroimidazoles are prodrugs that are reductively activated (the nitro group is reduced) under low oxygen tension, leading to imidazole fragmentation and cytotoxicity. It remains unclear if nitroimidazole reduction (activation) contributes to the cytotoxicity profile, or whether subsequent fragmentation of the imidazole ring and formed metabolites alone mediate cytotoxicity. A molecular mechanism underpinning high level (>256 mg/L) bacterial resistance to metronidazole also remains elusive. Considering the widespread use of metronidazole and other nitroimidazoles, this review was undertaken to emphasize the structure-cytotoxicity profile of the numerous metabolites of metronidazole in human and murine models and to examine conflicting reports regarding metabolite-DNA interactions. An alternative hypothesis, that DNA synthesis and repair of existing DNA is indirectly inhibited by metronidazole is proposed. Prokaryotic metabolism of metronidazole is detailed to discuss new resistance mechanisms. Additionally, the review contextualizes the history and current use of metronidazole, rates of metronidazole resistance including metronidazole MDR as well as the biosynthesis of azomycin, the natural precursor of metronidazole. Changes in the gastrointestinal microbiome and the host after metronidazole administration are also reviewed. Finally, novel nitroimidazoles and new antibiotic strategies are discussed.
Collapse
Affiliation(s)
- Simon A Dingsdag
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| | - Neil Hunter
- Institute of Dental Research and Westmead Centre for Oral Health, Westmead, NSW 2145, Australia.,Department of Life Sciences Faculty of Dentistry, The University of Sydney, NSW 2006, Australia.,The Westmead Institute for Medical Research, The University of Sydney, NSW 2145, Australia
| |
Collapse
|
9
|
Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe 2019; 55:40-53. [DOI: 10.1016/j.anaerobe.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/06/2023]
|
10
|
Sárvári KP, Sóki J, Kristóf K, Juhász E, Miszti C, Melegh SZ, Latkóczy K, Urbán E. Molecular characterisation of multidrug-resistant Bacteroides isolates from Hungarian clinical samples. J Glob Antimicrob Resist 2018; 13:65-69. [DOI: 10.1016/j.jgar.2017.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/21/2017] [Accepted: 10/24/2017] [Indexed: 10/18/2022] Open
|
11
|
Litterio MR, Cejas D, Gutkind G, Radice M. Identification of CfiA coding genes in Bacteroides fragilis isolates recovered in Argentina. Inconsistencies in CfiA organization and nomenclature. Anaerobe 2017; 48:257-261. [PMID: 29017951 DOI: 10.1016/j.anaerobe.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/26/2023]
Abstract
CfiA (CcrA) metallo-β-lactamase is the main carbapenem resistance mechanism in B. fragilis. From cfiA positive isolates detected in a previous surveillance study, 3 displayed resistance to imipenem while the remaining were susceptible. The aim of this study was to identify the cfiA alleles and to analyze the presence of IS elements in their upstream regions. CfiA-1, CfiA-4, CfiA-13, CfiA-19 and CfiA-22 were detected. IS elements belonging to IS21 family and IS942 group were identified upstream to cfiA in the 3 imipenem resistant isolates. We present an exhaustive analysis of cfiA/CfiA registers in databases, illustrating the inconsistencies in both organization and nomenclature. According to this analysis CfiA family comprises nowadays 15 different CfiA variants coded by 24 cfiA sequences. Curation of CfiA database is mandatory, if not new cfiA admission at GenBank will contribute to make this classification more complex.
Collapse
Affiliation(s)
- Mirta R Litterio
- Hospital de Pediatría S.A.M.I.C "Prof. Dr. Juan P. Garrahan", Combate de los Pozos 1881, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniela Cejas
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Gabriel Gutkind
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcela Radice
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Microbiología, Junín 956, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
12
|
Abstract
Alteration in the host microbiome at skin and mucosal surfaces plays a role in the function of the immune system, and may predispose immunocompromised patients to infection. Because obligate anaerobes are the predominant type of bacteria present in humans at skin and mucosal surfaces, immunocompromised patients are at increased risk for serious invasive infection due to anaerobes. Laboratory approaches to the diagnosis of anaerobe infections that occur due to pyogenic, polymicrobial, or toxin-producing organisms are described. The clinical interpretation and limitations of anaerobe recovery from specimens, anaerobe-identification procedures, and antibiotic-susceptibility testing are outlined. Bacteriotherapy following analysis of disruption of the host microbiome has been effective for treatment of refractory or recurrent Clostridium difficile infection, and may become feasible for other conditions in the future.
Collapse
Affiliation(s)
- Deirdre L Church
- Departments of Pathology & Laboratory Medicine and Medicine, University of Calgary, and Division of Microbiology, Calgary Laboratory Services, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
13
|
Changes in the antibiotic susceptibility of anaerobic bacteria from 2007-2009 to 2010-2012 based on the CLSI methodology. Anaerobe 2016; 42:27-30. [PMID: 27427465 DOI: 10.1016/j.anaerobe.2016.07.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/20/2022]
Abstract
Antimicrobial susceptibility testing of anaerobic isolates was conducted at four independent sites from 2010 to 2012 and compared to results from three sites during the period of 2007-2009. This data comparison shows significant changes in antimicrobial resistance in some anaerobic groups. Therefore, we continue to recommend institutions regularly perform susceptibility testing when anaerobes are cultured from pertinent sites. Annual generation of an institutional-specific antibiogram is recommended for tracking of resistance trends over time.
Collapse
|
14
|
|
15
|
Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge. Case Rep Infect Dis 2016; 2016:3607125. [PMID: 27418986 PMCID: PMC4935919 DOI: 10.1155/2016/3607125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022] Open
Abstract
We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.
Collapse
|
16
|
Tierney D, Copsey SD, Morris T, Perry JD. A new chromogenic medium for isolation of Bacteroides fragilis suitable for screening for strains with antimicrobial resistance. Anaerobe 2016; 39:168-72. [DOI: 10.1016/j.anaerobe.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/16/2022]
|
17
|
White BK, Mende K, Weintrob AC, Beckius ML, Zera WC, Lu D, Bradley W, Tribble DR, Schnaubelt ER, Murray CK. Epidemiology and antimicrobial susceptibilities of wound isolates of obligate anaerobes from combat casualties. Diagn Microbiol Infect Dis 2015; 84:144-50. [PMID: 26607420 DOI: 10.1016/j.diagmicrobio.2015.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/18/2022]
Abstract
Data from recent conflicts related to war wounds and obligate anaerobes are limited. We define the epidemiology and antimicrobial susceptibility of obligate anaerobes from Iraq and Afghanistan casualties (6/2009-12/2013), as well as their association with clinical outcomes. Susceptibility against eleven antibiotics (7 classes) was tested. Overall, 59 patients had 119 obligate anaerobes identified (83 were first isolates). Obligate anaerobes were isolated 7-13 days post-injury, primarily from lower extremity wounds (43%), and were largely Bacteroides spp. (42%) and Clostridium spp. (19%). Patients with pelvic wounds were more likely to have Bacteroides spp. and concomitant resistant gram-negative aerobes. Seventy-three percent of isolates were resistant to ≥1 antimicrobials. Bacteroides spp. demonstrated the most resistance (16% of first isolates). Patients with resistant isolates had similar outcomes to those with susceptible strains. Serial recovery of isolates occurred in 15% of patients and was significantly associated with isolation of Bacteroides spp., along with resistant gram-negative aerobes.
Collapse
Affiliation(s)
- Brian K White
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA.
| | - Katrin Mende
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA; Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Amy C Weintrob
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA; Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Miriam L Beckius
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA
| | - Wendy C Zera
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA; Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Dan Lu
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - William Bradley
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA; Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - David R Tribble
- Infectious Disease Clinical Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - Clinton K Murray
- San Antonio Military Medical Center, Joint Base San Antonio, Fort Sam Houston, TX, USA
| | | |
Collapse
|
18
|
Handal N, Bakken Jørgensen S, Smith Tunsjø H, Johnsen BO, Leegaard TM. Anaerobic blood culture isolates in a Norwegian university hospital: identification by MALDI-TOF MS vs 16S rRNA sequencing and antimicrobial susceptibility profiles. APMIS 2015; 123:749-58. [DOI: 10.1111/apm.12410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 05/12/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Nina Handal
- Department of Microbiology and Infection Control; Akershus University Hospital; Lørenskog Norway
| | - Silje Bakken Jørgensen
- Department of Microbiology and Infection Control; Akershus University Hospital; Lørenskog Norway
| | - Hege Smith Tunsjø
- Department of Multidisciplinary Laboratory Medicine and Medical Biochemistry; Unit of Gene Technology; Akershus University Hospital; Lørenskog Norway
| | - Bjørn Odd Johnsen
- Department of Microbiology and Infection Control; Akershus University Hospital; Lørenskog Norway
| | - Truls Michael Leegaard
- Department of Microbiology and Infection Control; Akershus University Hospital; Lørenskog Norway
| |
Collapse
|
19
|
Ngo A, Fong KT, Cox DL, Chen X, Fisher AJ. Structures of Bacteroides fragilis uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (BfLpxA). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1068-76. [PMID: 25945572 PMCID: PMC4427197 DOI: 10.1107/s1399004715003326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/16/2015] [Indexed: 11/11/2022]
Abstract
Uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) acyltransferase (LpxA) catalyzes a reversible reaction for adding an O-acyl group to the GlcNAc in UDP-GlcNAc in the first step of lipid A biosynthesis. Lipid A constitutes a major component of lipopolysaccharides, also referred to as endotoxins, which form the outer monolayer of the outer membrane of Gram-negative bacteria. Ligand-free and UDP-GlcNAc-bound crystal structures of LpxA from Bacteroides fragilis NCTC 9343, the most common pathogenic bacteria found in abdominal abscesses, have been determined and are presented here. The enzyme crystallizes in a cubic space group, with the crystallographic threefold axis generating the biological functional homotrimer and with each monomer forming a nine-rung left-handed β-helical (LβH) fold in the N-terminus followed by an α-helical motif in the C-terminus. The structure is highly similar to LpxA from other organisms. Yet, despite sharing a similar LβH structure with LpxAs from Escherichia coli and others, previously unseen calcium ions are observed on the threefold axis in B. fragilis LpxA to help stabilize the trimeric assembly.
Collapse
Affiliation(s)
- Alice Ngo
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kai T. Fong
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Daniel L. Cox
- Department of Physics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Xi Chen
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Andrew J. Fisher
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
- Department of Molecular and Cellular Biology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
20
|
Shilnikova II, Dmitrieva NV. Evaluation of antibiotic susceptibility of Bacteroides, Prevotella and Fusobacterium species isolated from patients of the N. N. Blokhin Cancer Research Center, Moscow, Russia. Anaerobe 2015; 31:15-8. [DOI: 10.1016/j.anaerobe.2014.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/01/2022]
|
21
|
Urbán E, Horváth Z, Sóki J, Lázár G. First Hungarian case of an infection caused by multidrug-resistant Bacteroides fragilis strain. Anaerobe 2015; 31:55-8. [DOI: 10.1016/j.anaerobe.2014.09.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 11/28/2022]
|
22
|
Nagy E, Justesen US, Eitel Z, Urbán E. Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe 2014; 31:65-71. [PMID: 25464140 DOI: 10.1016/j.anaerobe.2014.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/09/2014] [Accepted: 10/31/2014] [Indexed: 11/18/2022]
Abstract
With the emergence of antibiotic resistance among Bacteroides fragilis group isolates the need of susceptibility testing in routine laboratories is increasing. The aims of the present study were to evaluate the disk diffusion method for susceptibility testing in case of different clinical isolates of Bacteroides spp by comparing zone diameter results with MICs obtained earlier during an Europe-wide antibiotic susceptibility surveillance, and to propose zone diameter breakpoints, which correlate for the EUCAST MIC breakpoints. We tested 381 clinical isolates of the B. fragilis group to amoxicillin/clavulanic acid, cefoxitin, clindamycin, imipenem, metronidazole, moxifloxacin, piperacillin/tazobactam, tigecycline by agar dilution method previously. The inhibition zones of the same antibiotics including meropenem disc were determined by the disc diffusion on Brucella blood agar supplemented with haemin and vitamin K1. Plates were incubated at 37 °C in an anaerobic atmosphere for 24 h. The zone diameters were read at 100% inhibition. In case of discrepant results MICs were determined by gradient test and compared with the inhibition zones on the same plate. We found a good agreement between the inhibition zone diameters and the MICs for imipenem, metronidazole, moxifloxacin and tigecyclin. The inhibition zone diameters of meropenem also separated clearly the isolates, which can be considered wild-type isolates. In case of amoxicillin/clavulanic acid and piperacillin/tazobactam intermediate and susceptible isolates according to the MIC determination, overlap during the zone diameter determination. Isolates with an inhibition zone <23 mm for amoxicillin/clavulanic acid and <25 mm for piperacillin/tazobactam should be retested by a MIC determination method. The 10 μg clindamycin disc clearly separated the resistant and the susceptible population of B. fragilis group strains. In the case of cefoxitin only resistant population could be separated with an inhibition zone <17 mm, intermediate and susceptible isolates overlap. In conclusion, we suggest that disk diffusion can be an option for susceptibility testing of B. fragilis group isolates for most relevant antibiotics in routine laboratories.
Collapse
Affiliation(s)
- Elisabeth Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary.
| | - Ulrik Stenz Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Zsuzsa Eitel
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - Edit Urbán
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Molina J, Barrantes G, Quesada-Gómez C, Rodríguez C, Rodríguez-Cavallini E. Phenotypic and Genotypic Characterization of Multidrug-ResistantBacteroides,Parabacteroidesspp., andPseudoflavonifractorfrom a Costa Rican Hospital. Microb Drug Resist 2014; 20:478-84. [DOI: 10.1089/mdr.2013.0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- José Molina
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Gloriana Barrantes
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - César Rodríguez
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| | - Evelyn Rodríguez-Cavallini
- Laboratorio de Investigación en Bacteriología Anaerobia, Facultad de Microbiología, Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San José, Costa Rica
| |
Collapse
|
24
|
Abstract
Susceptibility testing of anaerobic bacteria recovered from selected cases can influence the choice of antimicrobial therapy. The Clinical and Laboratory Standards Institute (CLSI) has standardized many laboratory procedures, including anaerobic susceptibility testing (AST), and has published documents for AST. The standardization of testing methods by the CLSI allows comparisons of resistance trends among various laboratories. Susceptibility testing should be performed on organisms recovered from sterile body sites, those that are isolated in pure culture, or those that are clinically important and have variable or unique susceptibility patterns. Organisms that should be considered for individual isolate testing include highly virulent pathogens for which susceptibility cannot be predicted, such as Bacteroides, Prevotella, Fusobacterium, and Clostridium spp.; Bilophila wadsworthia; and Sutterella wadsworthensis. This review describes the current methods for AST in research and reference laboratories. These methods include the use of agar dilution, broth microdilution, Etest, and the spiral gradient endpoint system. The antimicrobials potentially effective against anaerobic bacteria include beta-lactams, combinations of beta-lactams and beta-lactamase inhibitors, metronidazole, chloramphenicol, clindamycin, macrolides, tetracyclines, and fluoroquinolones. The spectrum of efficacy, antimicrobial resistance mechanisms, and resistance patterns against these agents are described.
Collapse
|
25
|
Hartmeyer GN, Sóki J, Nagy E, Justesen US. Multidrug-resistant Bacteroides fragilis group on the rise in Europe? J Med Microbiol 2012; 61:1784-1788. [DOI: 10.1099/jmm.0.049825-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- G. N. Hartmeyer
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - J. Sóki
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - E. Nagy
- Institute of Clinical Microbiology, University of Szeged, Szeged, Hungary
| | - U. S. Justesen
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
26
|
Goldstein EJ, Citron DM. Resistance Trends in Antimicrobial Susceptibility of Anaerobic Bacteria, Part II. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.clinmicnews.2010.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Goldstein EJ, Citron DM. Resistance Trends in Antimicrobial Susceptibility of Anaerobic Bacteria, Part I. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.clinmicnews.2010.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Patrick S, Blakely GW, Houston S, Moore J, Abratt VR, Bertalan M, Cerdeño-Tárraga AM, Quail MA, Corton N, Corton C, Bignell A, Barron A, Clark L, Bentley SD, Parkhill J. Twenty-eight divergent polysaccharide loci specifying within- and amongst-strain capsule diversity in three strains of Bacteroides fragilis. MICROBIOLOGY (READING, ENGLAND) 2010; 156:3255-3269. [PMID: 20829291 PMCID: PMC3090145 DOI: 10.1099/mic.0.042978-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Comparison of the complete genome sequence of Bacteroides fragilis 638R, originally isolated in the USA, was made with two previously sequenced strains isolated in the UK (NCTC 9343) and Japan (YCH46). The presence of 10 loci containing genes associated with polysaccharide (PS) biosynthesis, each including a putative Wzx flippase and Wzy polymerase, was confirmed in all three strains, despite a lack of cross-reactivity between NCTC 9343 and 638R surface PS-specific antibodies by immunolabelling and microscopy. Genomic comparisons revealed an exceptional level of PS biosynthesis locus diversity. Of the 10 divergent PS-associated loci apparent in each strain, none is similar between NCTC 9343 and 638R. YCH46 shares one locus with NCTC 9343, confirmed by mAb labelling, and a second different locus with 638R, making a total of 28 divergent PS biosynthesis loci amongst the three strains. The lack of expression of the phase-variable large capsule (LC) in strain 638R, observed in NCTC 9343, is likely to be due to a point mutation that generates a stop codon within a putative initiating glycosyltransferase, necessary for the expression of the LC in NCTC 9343. Other major sequence differences were observed to arise from different numbers and variety of inserted extra-chromosomal elements, in particular prophages. Extensive horizontal gene transfer has occurred within these strains, despite the presence of a significant number of divergent DNA restriction and modification systems that act to prevent acquisition of foreign DNA. The level of amongst-strain diversity in PS biosynthesis loci is unprecedented.
Collapse
Affiliation(s)
- Sheila Patrick
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Garry W Blakely
- Institute of Cell Biology, University of Edinburgh, Darwin Building, Kings Buildings, Edinburgh EH9 3JR, UK
| | - Simon Houston
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jane Moore
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Valerie R Abratt
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Marcelo Bertalan
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ana M Cerdeño-Tárraga
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Michael A Quail
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Nicola Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Craig Corton
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Alexandra Bignell
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Barron
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Louise Clark
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen D Bentley
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Parkhill
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
29
|
Valéria Dos Santos K, Roque DE Carvalho MA, Amancio Martins W, Coutinho SC, Bahia JL, Lopes DE Andrade JP, Morais Apolonio AC, Cara DC, Galuppo Diniz C, Nicoli JR, DE Macedo Farias L. In vitro selection of ertapenem and piperacillin/tazobactam-resistant strains of Bacteroides fragilis and analysis of their virulence in gnotobiotic mice. J Chemother 2010; 22:259-63. [PMID: 20685630 DOI: 10.1179/joc.2010.22.4.259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Ertapenem and piperacillin/tazobactam are beta-lactam antibiotics with a broad spectrum of activity, used for the treatment of mixed infections, in which Bacteroides fragilis plays an important etiological role. The aim of this study was to select strains of B. fragilis resistant to these drugs and correlate the phenotype profiles of these lineages with changes in the virulence of the original bacterium. B. fragilis ATCC 25285, sensitive to the drugs listed, was used in this study. Strains resistant to these drugs were obtained by multi-step method and this condition was confirmed by comparing the time-kill curve of the original strain with those curves obtained from derived-resistant strains. To assess the virulence, germ-free mice were challenged intragastrically with the original strain or those derived-resistant. The mouse infection by the piperacillin/tazobactam-resistant B. fragilis strain produced increased levels of C-reactive protein, alkaline phosphatase and white blood cells and reduced platelet counts, what may indicate that acquisition of piperacillin/tazobactam resistance may enhance the pathogenic properties of these B. fragilis strains.
Collapse
Affiliation(s)
- K Valéria Dos Santos
- Departamento de Microbiologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
[Usefulness of anaerobic vial in the diagnosis of bacteremia or fungemia]. Med Clin (Barc) 2009; 132:743-5. [PMID: 19386331 DOI: 10.1016/j.medcli.2009.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 02/03/2009] [Indexed: 11/22/2022]
|
31
|
Boyanova L, Kolarov R, Mitov I. Antimicrobial resistance and the management of anaerobic infections. Expert Rev Anti Infect Ther 2007; 5:685-701. [PMID: 17678430 DOI: 10.1586/14787210.5.4.685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Management of anaerobic infections encompasses surgical procedures, antibacterial therapy and adjuncts. At present, metronidazole, penems, beta-lactam/beta-lactamase inhibitor combinations and chloramphenicol have the highest activity against obligate anaerobes. Tigecycline is a promising new agent. Other antibacterials (e.g., nitazoxanide, moxifloxacin, garenoxacin and ramoplanin) and nonantibiotic agents show potential but need further investigation. The patient's characteristics, mixed anaerobic/aerobic infections, infection sites, bacterial resistance patterns, bactericidal activity of agents and their pharmacokinetics, toxicity and influence on the normal flora should be considered. Susceptibility patterns of anaerobes have become less predictable owing to increasing antibacterial resistance. Emergence of highly virulent or multidrug-resistant strains is challenging the current therapy. To counteract these trends, regular resistance surveillance in anaerobes, rational antibiotic use and evaluation of new treatment alternatives are important.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Microbiology, Medical University of Sofia, Sofia, Bulgaria.
| | | | | |
Collapse
|