1
|
Aslan AT, Akova M. Recent updates in treating carbapenem-resistant infections in patients with hematological malignancies. Expert Rev Anti Infect Ther 2024:1-17. [PMID: 39313753 DOI: 10.1080/14787210.2024.2408746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Patients with hematological malignancies (PHMs) are at increased risk for infections caused by carbapenem-resistant organisms (CROs) due to frequent exposure to broad-spectrum antibiotics and prolonged hospital stays. These infections result in high mortality and morbidity rates along with delays in chemotherapy, longer hospitalizations, and increased health care costs. AREAS COVERED Treatment alternatives for CRO infections in PHMs. EXPERT OPINION The best available treatment option for KPC and OXA-48 producers is ceftazidime/avibactam. Imipenem/cilastatin/relebactam and meropenem/vaborbactam remain as the alternative options. They can also be used as salvage therapy in KPC-positive Enterobacterales infections resistant to ceftazidime/avibactam, if in vitro susceptibility is shown. Treatment of metallo-β-lactamase producers is an unmet need. Ceftazidime/avibactam plus aztreonam or aztreonam/avibactam seems to be the most reliable option for metallo-β-lactamase producers. As a first-line option for carbapenem-resistant Pseudomonas aeruginosa infections, ceftolozane/tazobactam is preferable and ceftazidime/avibactam and imipenem/cilastatin/relebactam constitute alternative regimens. Although sulbactam/durlobactam is the most reliable option against carbapenem-resistant Acinetobacter baumannii infections, its utility as monotherapy and in PHMs is not yet known. Cefiderocol can be selected as a 'last-resort' option for CRO infections. New risk score models supported by artificial intelligence algorithms can be used to predict the exact risk of infections in previously colonized patients.
Collapse
Affiliation(s)
- Abdullah Tarık Aslan
- Faculty of Medicine, UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Murat Akova
- Faculty of Medicine, Infectious Diseases and Clinical Microbiology, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
2
|
Fratoni AJ, Gethers ML, Nicolau DP, Kuti JL. Non-KPC Attributes of Newer β-lactam/β-lactamase Inhibitors, Part 1: Enterobacterales and Pseudomonas aeruginosa. Clin Infect Dis 2024; 79:33-42. [PMID: 38306487 DOI: 10.1093/cid/ciae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Gram-negative antibiotic resistance continues to grow as a global problem due to the evolution and spread of β-lactamases. The early β-lactamase inhibitors (BLIs) are characterized by spectra limited to class A β-lactamases and ineffective against carbapenemases and most extended spectrum β-lactamases. In order to address this therapeutic need, newer BLIs were developed with the goal of treating carbapenemase producing, carbapenem resistant organisms (CRO), specifically targeting the Klebsiella pneumoniae carbapenemase (KPC). These BL/BLI combination drugs, avibactam/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have proven to be indispensable tools in this effort. However, non-KPC mechanisms of resistance are rising in prevalence and increasingly challenging to treat. It is critical for clinicians to understand the unique spectra of these BL/BLIs with respect to non-KPC CRO. In Part 1of this 2-part series, we describe the non-KPC attributes of the newer BL/BLIs with a focus on utility against Enterobacterales and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Matthew L Gethers
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
3
|
Almyroudi MP, Chang A, Andrianopoulos I, Papathanakos G, Mehta R, Paramythiotou E, Koulenti D. Novel Antibiotics for Gram-Negative Nosocomial Pneumonia. Antibiotics (Basel) 2024; 13:629. [PMID: 39061311 PMCID: PMC11273951 DOI: 10.3390/antibiotics13070629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Nosocomial pneumonia, including hospital-acquired pneumonia and ventilator-associated pneumonia, is the leading cause of death related to hospital-acquired infections among critically ill patients. A growing proportion of these cases are attributed to multi-drug-resistant (MDR-) Gram-negative bacteria (GNB). MDR-GNB pneumonia often leads to delayed appropriate treatment, prolonged hospital stays, and increased morbidity and mortality. This issue is compounded by the increased toxicity profiles of the conventional antibiotics required to treat MDR-GNB infections. In recent years, several novel antibiotics have been licensed for the treatment of GNB nosocomial pneumonia. These novel antibiotics are promising therapeutic options for treatment of nosocomial pneumonia by MDR pathogens with certain mechanisms of resistance. Still, antibiotic resistance remains an evolving global crisis, and resistance to novel antibiotics has started emerging, making their judicious use crucial to prolong their shelf-life. This article presents an up-to-date review of these novel antibiotics and their current role in the antimicrobial armamentarium. We critically present data for the pharmacokinetics/pharmacodynamics, the in vitro spectrum of antimicrobial activity and resistance, and in vivo data for their clinical and microbiological efficacy in trials. Where possible, available data are summarized specifically in patients with nosocomial pneumonia, as this cohort may exhibit 'critical illness' physiology that affects drug efficacy.
Collapse
Affiliation(s)
- Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Aina Chang
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Department of Haematology, King’s College London, London SE5 9RS, UK
| | - Ioannis Andrianopoulos
- Department of Critical Care, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios Papathanakos
- Department of Critical Care, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Reena Mehta
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Pharmacy Department, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Kings College London, London SE5 9RS, UK
| | | | - Despoina Koulenti
- Department of Critical Care Medicine, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
- Antibiotic Optimisation Group, UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
4
|
Wu T, Zhang Z, Li T, Dong X, Wu D, Zhu L, Xu K, Zhang Y. The type III secretion system facilitates systemic infections of Pseudomonas aeruginosa in the clinic. Microbiol Spectr 2024; 12:e0222423. [PMID: 38088541 PMCID: PMC10783026 DOI: 10.1128/spectrum.02224-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The identification of decisive virulence-associated genes in highly pathogenic P. aeruginosa isolates in the clinic is essential for diagnosis and the start of appropriate treatment. Over the past decades, P. aeruginosa ST463 has spread rapidly in East China and is highly resistant to β-lactams. Given the poor clinical outcome caused by this phenotype, detailed information regarding its decisive virulence genes and factors affecting virulence expression needs to be deciphered. Here, we demonstrate that the T3SS effector ExoU has toxic effects on mammalian cells and is required for virulence in the murine bloodstream infection model. Moreover, a functional downstream SpcU is required for ExoU secretion and cytotoxicity. This work highlights the potential role of ExoU in the pathogenesis of disease and provides a new perspective for further research on the development of new antimicrobials with antivirulence ability.
Collapse
Affiliation(s)
- Tiantian Wu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenchuan Zhang
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, China
| | - Tong Li
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xu Dong
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Wu
- Research and Service Center, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- College of Food and Health, Zhejiang A&F University, Lin'an, Hangzhou, China
| | - Lixia Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaijin Xu
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhang
- Department of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
5
|
Lee SY, Gill CM, Nicolau DP. Activity of novel β-lactam/β-lactamase inhibitor combinations against serine carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2023; 78:2795-2800. [PMID: 37840005 PMCID: PMC10689909 DOI: 10.1093/jac/dkad225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/29/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Antimicrobial resistance in Pseudomonas aeruginosa is complex and multifaceted. While the novel β-lactamase inhibitors (BLIs) avibactam, relebactam and vaborbactam inhibit serine-based β-lactamases, the comparative potency of the novel β-lactam (BL)/BLI combinations against serine carbapenemase-producing P. aeruginosa is unknown. OBJECTIVES To compare the in vitro activity of ceftazidime/avibactam, ceftazidime, imipenem/relebactam, imipenem, meropenem/vaborbactam and meropenem against serine β-lactamase-producing P. aeruginosa. METHODS Carbapenem-resistant P. aeruginosa were collated through the Enhancing Rational Antimicrobials against Carbapenem-resistant P. aeruginosa (ERACE-PA) Global Surveillance. Isolates positive for serine-based carbapenemases were assessed. MICs were determined by broth microdilution to each novel BL/BLI and BL alone. RESULTS GES was the most common carbapenemase identified (n = 59) followed by KPC (n = 8). Ceftazidime/avibactam had MIC50/MIC90 values of 4/8 mg/L and 91% of isolates were susceptible. Conversely, ceftazidime alone was active against only 3% of isolates. The MIC50/MIC90 of imipenem/relebactam were 16/>16 mg/L and 13% of all isolates were defined as susceptible. Of the KPC-producing isolates, 38% were susceptible to imipenem/relebactam, compared with 0% to imipenem. The meropenem/vaborbactam MIC50/MIC90 were >16/>16 mg/L, and 6% of isolates were susceptible, which was similar to meropenem alone (MIC50/90, >8/>8 mg/L; 3% susceptible) suggesting the addition of vaborbactam cannot overcome co-expressed, non-enzymatic resistance mechanisms. CONCLUSIONS Among the novel BL/BLIs, ceftazidime/avibactam displayed better in vitro activity and thus is a rational treatment option for serine carbapenemase-harbouring P. aeruginosa. While imipenem/relebactam displayed some activity, particularly against isolates with blaKPC, meropenem/vaborbactam exhibited poor activity, with MICs similar to meropenem alone.
Collapse
Affiliation(s)
- Su Young Lee
- School of Pharmacy, West Coast University, 590 N. Vermont Ave, Los Angeles, CA 90004, USA
| | - Christian M Gill
- Center for Anti-Infective Research & Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
| | - David P Nicolau
- Center for Anti-Infective Research & Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT, USA
| |
Collapse
|
6
|
Ruiz VH, Fratoni A, Nicolau DP, Kuti JL. In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2023; 67:e0092023. [PMID: 37888987 PMCID: PMC10648857 DOI: 10.1128/aac.00920-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
Pseudomonas aeruginosa is a common multidrug-resistant pathogen in patients with cystic fibrosis (CF). The in vitro activity of imipenem/relebactam and imipenem was compared with other antipseudomonal antibiotics against 105 isolates from patients with CF from three US hospitals. Imipenem/relebactam, imipenem, meropenem, ceftazidime/avibactam, and ceftolozane/tazobactam susceptibilities were 77%, 55%, 58%, 90%, and 92%, respectively. Relebactam potentiates imipenem against CF P. aeruginosa by fourfold leading imipenem/relebactam to retain susceptibility against most isolates in this cohort.
Collapse
Affiliation(s)
- Victor H. Ruiz
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Andrew Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L. Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
7
|
Abniki R, Tashakor A, Masoudi M, Mansury D. Global Resistance of Imipenem/Relebactam against Gram-Negative Bacilli: Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2023; 100:100723. [PMID: 38174096 PMCID: PMC10758719 DOI: 10.1016/j.curtheres.2023.100723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/18/2023] [Indexed: 01/05/2024]
Abstract
Background Relebactam, previously known as MK-7655, is currently being tested in combination with imipenem as a class A and class C β-lactamase inhibitor, including KPC from Klebsiella pneumoniae. Objective The objective of the current study was to evaluate the activity of imipenem/relebactam against gram-negative bacilli. Methods After applying exclusion and inclusion criteria, 72 articles with full texts that describe the prevalence of imipenem/relebactam resistance were chosen for the meta-analysis and systematic review. Articles published between January 2015 and February 2023 were surveyed. The systematic literature search was conducted in PubMed, Web of Science, Google Scholar, and Scopus. Results The pooled estimation of 282,621 sample isolates revealed that the prevalence rate of imipenem/relebactam resistance is roughly 14.6% (95% CI, 0.116%-0.182%). Conclusions The findings of this analysis show that imipenem/relebactam resistance is rare in the majority of developed countries. Given that relebactam has proven to restore the activity of imipenem against current clinical isolates, further research into imipenem/relebactam is necessary.
Collapse
Affiliation(s)
- Reza Abniki
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirhossein Tashakor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Melika Masoudi
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Fratoni AJ, Mah JW, Nicolau DP, Kuti JL. Imipenem/cilastatin/relebactam pharmacokinetics in critically ill patients with augmented renal clearance. J Antimicrob Chemother 2022; 77:2992-2999. [PMID: 35906810 DOI: 10.1093/jac/dkac261] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/12/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Imipenem and relebactam are predominantly excreted via glomerular filtration. Augmented renal clearance (ARC) is a common syndrome in critically-ill patients with sepsis, and sub-therapeutic antibiotic concentrations are of concern. Herein, we describe the pharmacokinetics of imipenem/relebactam in critically-ill patients with ARC. METHODS Infected patients in the ICU with ARC (CLCR ≥ 130 mL/min) received a single dose of imipenem/cilastatin/relebactam 1.25 g as a 30 min infusion. Blood samples were collected over 6 h for concentration determination. Protein binding was assessed by ultrafiltration. An 8 h urine creatinine collection confirmed ARC. Population pharmacokinetic models with and without covariates were fit using the non-parametric adaptive grid algorithm in Pmetrics. A 5000 patient Monte Carlo simulation assessed joint PTA using relebactam fAUC/MIC ≥8 and imipenem ≥40% fT>MIC. RESULTS Eight patients with ARC completed the study. A base population pharmacokinetic model with two-compartments fitted the data best. The mean ± SD parameters were: CL, 17.31 ± 5.76 L/h; Vc, 16.15 ± 7.75 L; k12, 1.62 ± 0.99 h-1; and k21, 3.53 ± 3.31 h-1 for imipenem, and 11.51 ± 4.79 L/h, 16.54 ± 7.43 L, 1.59 ± 1.12 h-1, and 2.83 ± 2.91 h-1 for relebactam. Imipenem/cilastatin/relebactam 1.25 g as a 30 min infusion every 6 h achieved 100% and 93% PTA at MICs of 1 and 2 mg/L, respectively. CONCLUSIONS Despite enhanced clearance of both imipenem and relebactam, the currently approved dosing regimen for normal renal function was predicted to achieve optimal exposure in critically-ill patients with ARC sufficient to treat most susceptible pathogens.
Collapse
Affiliation(s)
- Andrew J Fratoni
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA
| | - John W Mah
- Division of Surgical Critical Care, Hartford Hospital, Hartford, CT 06102, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA
| | - Joseph L Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA
| |
Collapse
|
9
|
Abstract
Imipenem (IMI)/cilastatin/relebactam (REL) (I/R) is a novel β-lactam/β-lactamase inhibitor combination with expanded microbiologic activity against carbapenem-resistant non-Morganellaceae Enterobacterales (CR-NME) and difficult-to-treat (DTR) Pseudomonas aeruginosa. Relebactam, a bicyclic diazabicyclooctane, has no direct antimicrobial activity but provides reliable inhibition of many Ambler class A and class C enzymes. It is currently approved for the treatment of adult patients with hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia (HABP/VABP) and those with complicated urinary tract infections (cUTIs) and complicated intra-abdominal infections (cIAIs) when limited or no alternative treatments are available. Given the number of recently approved β-lactams with expanded activity against highly resistant Gram-negative pathogens, this review summarizes the published literature on I/R, with a focus on its similar and distinguishing characteristics relative to those of other recently approved agents. Overall, available data support its use for the treatment of patients with HABP/VABP, cUTI, and cIAI due to CR-NME and DTR P. aeruginosa. Data indicate that I/R retains some activity against CR-NME and DTR P. aeruginosa isolates that are resistant to the newer β-lactams and vice versa, suggesting that susceptibility testing be performed for all the newer agents to determine optimal treatment options for patients with CR-NME and DTR P. aeruginosa infections. Further comparative PK/PD and clinical studies are warranted to determine the optimal role of I/R, alone and in combination, for the treatment of patients with highly resistant Gram-negative infections. Until further data are available, I/R is a potential treatment for patients with CR-NME and DTR P. aeruginosa infections when the benefits outweigh the risks.
Collapse
|
10
|
Barnsteiner S, Baty F, Albrich WC, Babouee Flury B, Gasser M, Plüss-Suard C, Schlegel M, Kronenberg A, Kohler P. Antimicrobial resistance and antibiotic consumption in intensive care units, Switzerland, 2009 to 2018. EURO SURVEILLANCE : BULLETIN EUROPEEN SUR LES MALADIES TRANSMISSIBLES = EUROPEAN COMMUNICABLE DISEASE BULLETIN 2021; 26. [PMID: 34794535 PMCID: PMC8603405 DOI: 10.2807/1560-7917.es.2021.26.46.2001537] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background Intensive care units (ICU) constitute a high-risk setting for antimicrobial resistance (AMR). Aim We aimed to describe secular AMR trends including meticillin-resistant Staphylococcus aureus (MRSA), glycopeptide-resistant enterococci (GRE), extended-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) and Klebsiella pneumoniae (ESCR-KP), carbapenem-resistant Enterobacterales (CRE) and Pseudomonas aeruginosa (CRPA) from Swiss ICU. We assessed time trends of antibiotic consumption and identified factors associated with CRE and CRPA. Methods We analysed patient isolate and antibiotic consumption data of Swiss ICU sent to the Swiss Centre for Antibiotic Resistance (2009–2018). Time trends were assessed using linear logistic regression; a mixed-effects logistic regression was used to identify factors associated with CRE and CRPA. Results Among 52 ICU, MRSA decreased from 14% to 6% (p = 0.005; n = 6,465); GRE increased from 1% to 3% (p = 0.011; n = 4,776). ESCR-EC and ESCR-KP increased from 7% to 15% (p < 0.001, n = 10,648) and 5% to 11% (p = 0.002; n = 4,052), respectively. CRE, mostly Enterobacter spp., increased from 1% to 5% (p = 0.008; n = 17,987); CRPA remained stable at 27% (p = 0.759; n = 4,185). Antibiotic consumption in 58 ICU increased from 2009 to 2013 (82.5 to 97.4 defined daily doses (DDD)/100 bed-days) and declined until 2018 (78.3 DDD/100 bed-days). Total institutional antibiotic consumption was associated with detection of CRE in multivariable analysis (odds ratio per DDD: 1.01; 95% confidence interval: 1.0–1.02; p = 0.004). Discussion In Swiss ICU, antibiotic-resistant Enterobacterales have been steadily increasing over the last decade. The emergence of CRE, associated with institutional antibiotic consumption, is of particular concern and calls for reinforced surveillance and antibiotic stewardship in this setting.
Collapse
Affiliation(s)
- Stefanie Barnsteiner
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Florent Baty
- Lung Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Werner C Albrich
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Baharak Babouee Flury
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland.,Medical Research Center, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Michael Gasser
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | | | - Matthias Schlegel
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Andreas Kronenberg
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | -
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Elevated MICs of Susceptible Anti-Pseudomonal Cephalosporins in Non-Carbapenemase-Producing, Carbapenem-Resistant Pseudomonas aeruginosa: Implications for Dose Optimization. Antimicrob Agents Chemother 2021; 65:e0120421. [PMID: 34398670 DOI: 10.1128/aac.01204-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study evaluated the in vitro potency of ceftazidime and cefepime amongst carbapenem-resistant Pseudomonas aeruginosa collected as part of a global surveillance program and assessed the pharmacodynamic implications using previously published population pharmacokinetics. When susceptible, MICs resulted at the high end of distribution for both ceftazidime and cefepime, thus 6 g/day was required to achieve optimal pharmacodynamic profiles. These findings should be considered in the clinic and for the application of CLSI susceptibility breakpoints.
Collapse
|
12
|
Lob SH, DePestel DD, DeRyke CA, Kazmierczak KM, Young K, Motyl MR, Sahm DF. Ceftolozane/Tazobactam and Imipenem/Relebactam Cross-Susceptibility Among Clinical Isolates of Pseudomonas aeruginosa From Patients With Respiratory Tract Infections in ICU and Non-ICU Wards-SMART United States 2017-2019. Open Forum Infect Dis 2021; 8:ofab320. [PMID: 34307727 PMCID: PMC8297703 DOI: 10.1093/ofid/ofab320] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Carbapenem-nonsusceptible and multidrug-resistant (MDR) P. aeruginosa, which are more common in patients with lower respiratory tract infections (LRTIs) and in patients in intensive care units (ICUs), pose difficult treatment challenges and may require new therapeutic options. Two β-lactam/β-lactamase inhibitor combinations, ceftolozane/tazobactam (C/T) and imipenem/relebactam (IMI/REL), are approved for treatment of hospital-acquired/ventilator-associated bacterial pneumonia. METHODS The Clinical and Laboratory Standards Institute-defined broth microdilution methodology was used to determine minimum inhibitory concentrations (MICs) against P. aeruginosa isolates collected from patients with LRTIs in ICUs (n = 720) and non-ICU wards (n = 914) at 26 US hospitals in 2017-2019 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) surveillance program. RESULTS Susceptibility to commonly used β-lactams including carbapenems was 5-9 percentage points lower and MDR rates 7 percentage points higher among isolates from patients in ICUs than those in non-ICU wards (P < .05). C/T and IMI/REL maintained activity against 94.0% and 90.8% of ICU isolates, respectively, while susceptibility to all comparators except amikacin (96.0%) was 63%-76%. C/T and IMI/REL inhibited 83.1% and 68.1% of meropenem-nonsusceptible (n = 207) and 71.4% and 65.7% of MDR ICU isolates (n = 140), respectively. Among all ICU isolates, only 2.5% were nonsusceptible to both C/T and IMI/REL, while 6.7% were susceptible to C/T but not to IMI/REL and 3.5% were susceptible to IMI/REL but not to C/T. CONCLUSIONS These data suggest that susceptibility to both C/T and IMI/REL should be considered for testing at hospitals, as both agents could provide important new options for treating patients with LRTIs, especially in ICUs where collected isolates show substantially reduced susceptibility to commonly used β-lactams.
Collapse
|
13
|
Reyes S, Abdelraouf K, Nicolau DP. In vivo activity of human-simulated regimens of imipenem alone and in combination with relebactam against Pseudomonas aeruginosa in the murine thigh infection model. J Antimicrob Chemother 2021; 75:2197-2205. [PMID: 32386408 DOI: 10.1093/jac/dkaa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Imipenem/relebactam is a carbapenem/β-lactamase inhibitor combination with in vitro activity against Pseudomonas aeruginosa and Enterobacterales, including KPC producers. OBJECTIVES To provide translational data to support the clinical utility of the imipenem/relebactam 500/250 mg q6h regimen using a human-simulated regimen (HSR) of imipenem/relebactam, compared with imipenem alone, against a phenotypically and genotypically diverse population of P. aeruginosa. METHODS Twenty-nine P. aeruginosa isolates, including KPC (n = 6), PDC (n = 9), PAO (n = 4), GES (n = 5) and VIM (n = 1) producers, were used for the in vivo efficacy studies. Neutropenic mice were thigh-inoculated and randomized to receive HSRs of either imipenem 500 mg q6h, imipenem 1 g q8h, imipenem/relebactam 500/250 mg q6h or saline. RESULTS Twenty-seven of the 29 isolates examined were imipenem resistant, with 24/29 isolates showing imipenem MICs of ≥32 mg/L. The addition of relebactam decreased the MICs up to 64-fold; imipenem/relebactam MICs ranged from 0.25 to >32 mg/L. Efficacies of the imipenem monotherapies and the imipenem/relebactam therapy were comparable for the two imipenem-susceptible organisms. Among the imipenem-resistant isolates, an increased mean growth was observed in the imipenem 500 mg q6h HSR and 1 g q8h HSR treatment groups of 1.31 ± 1.01 and 0.18 ± 1.67 log10 cfu/thigh, respectively. In contrast, a ≥2 log reduction in bacterial density was observed in 27/29 (93%) of the imipenem-resistant isolates subjected to imipenem/relebactam 500/250 mg q6h HSR. CONCLUSIONS The imipenem/relebactam 500/250 mg q6h HSR demonstrated superior in vivo activity compared with the conventionally employed imipenem regimens against MDR P. aeruginosa over a wide range of imipenem/relebactam MICs.
Collapse
Affiliation(s)
- Sergio Reyes
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Kamilia Abdelraouf
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - David P Nicolau
- Center for Anti-infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA.,Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
14
|
Lob SH, Hackel MA, Young K, Motyl MR, Sahm DF. Activity of imipenem/relebactam and comparators against gram-negative pathogens from patients with bloodstream infections in the United States and Canada - SMART 2018-2019. Diagn Microbiol Infect Dis 2021; 100:115421. [PMID: 34082265 DOI: 10.1016/j.diagmicrobio.2021.115421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Bloodstream infections (BSI) are often caused by drug-resistant pathogens, and novel antimicrobials are needed. We examined the activity of imipenem/relebactam against BSI pathogens from US and Canada: >99% of non-Morganellaceae Enterobacterales, including 100% of MDR isolates, and >94% of Pseudomonas aeruginosa were imipenem/relebactam-susceptible. Imipenem/relebactam could provide an important treatment option.
Collapse
|
15
|
Abstract
Imipenem/cilastatin/relebactam (Recarbrio™) is an intravenously administered combination of the carbapenem imipenem, the renal dehydropeptidase-I inhibitor cilastatin, and the novel β-lactamase inhibitor relebactam. Relebactam is a potent inhibitor of class A and class C β-lactamases, conferring imipenem activity against many imipenem-nonsusceptible strains. Imipenem/cilastatin/relebactam is approved in the USA and EU for the treatment of hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) in adults and other gram-negative infections, including complicated urinary tract infections (cUTIs) [including pyelonephritis] and complicated intra-abdominal infections (cIAIs), in adults with limited or no alternative treatment options. In pivotal phase II and III trials, imipenem/cilastatin/relebactam was noninferior to piperacillin/tazobactam in patients with HABP/VABP and to imipenem/cilastatin in patients with cUTIs and cIAIs. It was also effective in imipenem-nonsusceptible infections. Imipenem/cilastatin/relebactam was generally well tolerated, with a safety profile consistent with that of imipenem/cilastatin. Available evidence indicates that imipenem/cilastatin/relebactam is an effective and generally well tolerated option for gram-negative infections in adults, including critically ill and/or high-risk patients, and a potential therapy for infections caused by carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Young-A Heo
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
16
|
Guner Ozenen G, Sahbudak Bal Z, Umit Z, Avcu G, Tekin D, Kurugol Z, Cilli F, Ozkinay F. Nosocomial Non-fermentative gram negative bacteria bloodstream infections in children; Risk factors and clinical outcomes of carbapenem resistance. J Infect Chemother 2021; 27:729-735. [PMID: 33454215 DOI: 10.1016/j.jiac.2020.12.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Non-fermentative Gram-negative bacterias (NFGNBs) are a major cause of life threatening infections in hospitalized children. In this study, we aimed to evaluate the demographic and clinical characteristics of NFGNBs infections and identify the risk factors and outcomes of bloodstream infections (BSIs) caused by carbapenem-resistant (CR) NFGNBs infections. METHODS A retrospective cohort was designed to evaluate the patients with a BSI caused by NFGNBs between in January 2014 and December 2017. RESULTS A total of 131 episodes from 115 patients were evaluated. The mean age of the patients was 4.79±(4.74) year. The most commonly isolated NFGNBs species was Acinetobacter spp. (35.9%), Pseudomonas spp. (34.4%), and Stenotrophomonas maltophilia (13%). The rate of carbapenem-resistance was 38.2% in Acinetobacter spp. and 26.6% in Pseudomonas spp. The comparison of CR group with carbapenem-susceptible (CS) group showed statistical significance for the length of hospital stay prior to onset of infection and total hospital stay (P values were 0.001, 0.008). Based on the univariate analysis, requirement of mechanical ventilation, central venous catheter, nasogastric tube, Foley catheter, severe neutropenia (<100/mm3), prolonged neutropenia (≥14 days), prior intensive care unit admission and prior antimicrobial treatment (carbapenems, colistin, glycopeptide) were more common in carbapenem-resistant NFGNBs infections (P values are 0.001, 0.012, 0.000, 0.005, 0.042, 0.027, 0.007, 0.007). In patients with NFGNBs infections 14-day and 30-day mortality rates were %16.8 and 21.4%. CONCLUSION CR infections were more common in children with prolonged and severe neutropenia. Prior antimicrobial use and intensive care unit admission were more common in CR infections.
Collapse
Affiliation(s)
- Gizem Guner Ozenen
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| | - Zumrut Sahbudak Bal
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| | - Zuhal Umit
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| | - Gulhadiye Avcu
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| | - Duygu Tekin
- Medical School of Ege University, Department of Microbiology and Infectious Diseases, Izmir, Turkey.
| | - Zafer Kurugol
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| | - Feriha Cilli
- Medical School of Ege University, Department of Microbiology and Infectious Diseases, Izmir, Turkey.
| | - Ferda Ozkinay
- Medical School of Ege University, Division of Infectious Disease, Department of Pediatrics, Izmir, Turkey.
| |
Collapse
|
17
|
Gill CM, Kresken M, Seifert H, Nicolau DP. Evaluation of a Phenotypic Algorithm to Direct Carbapenemase Testing in Pseudomonas aeruginosa: Validation in a Multicenter German Cohort. Microb Drug Resist 2021; 27:1243-1248. [PMID: 33417826 DOI: 10.1089/mdr.2020.0476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pseudomonas aeruginosa remains a prominent nosocomial pathogen. Detection of carbapenemase-producing P. aeruginosa is vital to dictate antimicrobial therapy and infection control measures. A pragmatic, minimum inhibitory concentration-based algorithm using imipenem AND meropenem-resistant plus ceftazidime-, cefepime-, and piperacillin/tazobactam-nonsusceptible criterion was derived to guide carbapenemase testing in P. aeruginosa. This study was an assessment of the algorithm's test performance in a cohort of 985 nonduplicate P. aeruginosa isolates collected from 20 German medical laboratories. Susceptibility data were assessed in the algorithm using both Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) interpretations. Sensitivity and specificity were calculated to evaluate algorithm test performance. The original algorithm criteria resulted in high specificity (95-97%) using both CLSI and EUCAST criteria; however, it failed to capture five carbapenemase-harboring isolates testing piperacillin/tazobactam susceptibility (CLSI/EUCAST). Two carbapenemase-producing isolates were also meropenem susceptible per EUCAST. A modified algorithm utilizing imipenem OR meropenem-resistant plus ceftazidime and cefepime nonsusceptible, improved the sensitivity of the criteria without significantly compromising specificity (CLSI sensitivity/specificity: 96%/94% and EUCAST sensitivity/specificity: 96%/95%). Application of the modified algorithm criteria resulted in high sensitivity and specificity using both CLSI and EUCAST interpretations in a large cohort of clinical P. aeruginosa. Utilization of this algorithm can improve the efficiency of carbapenemase testing in the clinical laboratory.
Collapse
Affiliation(s)
- Christian M Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Michael Kresken
- Antiinfectives Intelligence GmbH, Rheinbach, Germany
- Rheinische Fachhochschule Köln GmbH, Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|
18
|
Behzadi P, Baráth Z, Gajdács M. It's Not Easy Being Green: A Narrative Review on the Microbiology, Virulence and Therapeutic Prospects of Multidrug-Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:42. [PMID: 33406652 PMCID: PMC7823828 DOI: 10.3390/antibiotics10010042] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is the most frequent cause of infection among non-fermenting Gram-negative bacteria, predominantly affecting immunocompromised patients, but its pathogenic role should not be disregarded in immunocompetent patients. These pathogens present a concerning therapeutic challenge to clinicians, both in community and in hospital settings, due to their increasing prevalence of resistance, and this may lead to prolonged therapy, sequelae, and excess mortality in the affected patient population. The resistance mechanisms of P. aeruginosa may be classified into intrinsic and acquired resistance mechanisms. These mechanisms lead to occurrence of resistant strains against important antibiotics-relevant in the treatment of P. aeruginosa infections-such as β-lactams, quinolones, aminoglycosides, and colistin. The occurrence of a specific resistotype of P. aeruginosa, namely the emergence of carbapenem-resistant but cephalosporin-susceptible (Car-R/Ceph-S) strains, has received substantial attention from clinical microbiologists and infection control specialists; nevertheless, the available literature on this topic is still scarce. The aim of this present review paper is to provide a concise summary on the adaptability, virulence, and antibiotic resistance of P. aeruginosa to a readership of basic scientists and clinicians.
Collapse
Affiliation(s)
- Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Zoltán Baráth
- Department of Prosthodontics, Faculty of Dentistry, University of Szeged, Tisza Lajos körút 62-64, 6720 Szeged, Hungary;
| | - Márió Gajdács
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
19
|
Campanella TA, Gallagher JC. A Clinical Review and Critical Evaluation of Imipenem-Relebactam: Evidence to Date. Infect Drug Resist 2020; 13:4297-4308. [PMID: 33268997 PMCID: PMC7701153 DOI: 10.2147/idr.s224228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Imipenem-relebactam (I-R) is a novel beta-lactam/beta-lactamase inhibitor combination given with cilastatin. It is indicated for the treatment of complicated urinary tract infections, complicated intra-abdominal infections, and hospital-acquired or ventilator-associated bacterial pneumonia. A literature search was completed to evaluate the evidence to date of I-R. I-R has in vitro activity against multidrug-resistant organisms including carbapenem-resistant Pseudomonas aeruginosa and extended-spectrum beta-lactamase and carbapenem-resistant Enterobacterales. It was granted FDA approval following the promising results of two phase II clinical trials in patients with complicated urinary tract infections and complicated intra-abdominal infections. The most common adverse drug events associated with I-R were nausea (6%), diarrhea (6%), and headache (4%). I-R is a new beta-lactam/beta-lactamase inhibitor combination that will be most likely used for patients with multidrug-resistant gram-negative infections in which there are limited or no available alternative treatment options.
Collapse
Affiliation(s)
- Toni A Campanella
- Department of Pharmacy, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Jason C Gallagher
- Department of Pharmacy Practice, Temple University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Imipenem/Cilastatin/Relebactam Alone and in Combination against Pseudomonas aeruginosa in the In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother 2020; 64:AAC.01764-20. [PMID: 33139283 DOI: 10.1128/aac.01764-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Combination therapy may enhance imipenem/cilastatin/relebactam's (I/R) activity against Pseudomonas aeruginosa and suppress resistance development. Human-simulated unbound plasma concentrations of I/R at 1.25 g every 6 h (h), colistin at 360 mg daily, and amikacin at 25 mg/kg daily were reproduced alone and in combination against six imipenem-nonsusceptible P. aeruginosa isolates in an in vitro pharmacodynamic model over 24 h. For I/R alone, the mean reductions in CFU ± the standard errors by 24 h were -2.52 ± 0.49, -1.49 ± 0.49, -1.15 ± 0.67, and -0.61 ± 0.10 log10 CFU/ml against isolates with MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. Amikacin alone also resulted in 24 h CFU reductions consistent with its MIC, while colistin CFU reductions did not differ. Resistant subpopulations were observed after 24 h in 1, 4, and 3 I/R-, colistin-, and amikacin-exposed isolates, respectively. The combination of I/R and colistin resulted in synergistic (n = 1) or additive (n = 2) interactions against three isolates with 24-h CFU reductions ranging from -2.62 to -4.67 log10 CFU/ml. The combination of I/R and amikacin exhibited indifferent interactions against all isolates, with combined drugs achieving -0.51- to -3.33-log10 CFU/ml reductions. No resistant subpopulations were observed during I/R and colistin combination studies, and when added to amikacin, I/R prevented the emergence of amikacin resistance. Against these six multidrug-resistant P. aeruginosa, I/R alone achieved significant CFU reductions against I/R-susceptible isolates. Combinations of I/R plus colistin resulted in additivity or synergy against some P. aeruginosa, whereas the addition of amikacin did not provide further antibacterial efficacy against these isolates.
Collapse
|
21
|
Gill CM, Asempa TE, Nicolau DP. Development and Application of a Pragmatic Algorithm to Guide Definitive Carbapenemase Testing to Identify Carbapenemase-Producing Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9110738. [PMID: 33120865 PMCID: PMC7693613 DOI: 10.3390/antibiotics9110738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
A minimum inhibitory concentration (MIC) derived algorithm, predictive of carbapenemase production, was developed using a challenge set (n = 92) of Pseudomonas aeruginosa (PA), including carbapenemase-producing (CP), cephalosporinase and/or efflux/porin mutation, and wild-type isolates. Broth microdilution MICs to clinically relevant anti-pseudomonal agents were utilized. The algorithm was applied to 1209 clinical PA isolates from a US surveillance program. Confirmatory genotypic (Xpert® Carba-R assay) and phenotypic (mCIM/eCIM) testing for carbapenemases was conducted on algorithm-derived isolates. With the algorithm, carbapenem resistance alone resulted in poor specificity to identify CP-PA (54%) within the challenge set of isolates. Inclusion of cefepime, ceftazidime, and piperacillin/tazobactam non-susceptibility resulted in a specificity of 66%. Ceftolozane/tazobactam resistance further improved specificity (89%). Of the 1209 isolates, 116 met criteria (carbapenem-resistant and non-susceptibility to cefepime, ceftazidime, and piperacillin/tazobactam) for confirmatory testing. Carba-R and mCIM/eCIM identified five (all blaVIM-positive) and seven carbapenemase-producing isolates, respectively. This MIC algorithm combined with genotypic/phenotypic carbapenemase testing is a pragmatic and streamlined approach to identify CP-PA.
Collapse
Affiliation(s)
- Christian M. Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
| | - Tomefa E. Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT 06102, USA
- Correspondence: ; Tel.: +1-860-972-3941
| |
Collapse
|
22
|
Silva Júnior VV, Raposo BL, Lopes ACS, Araújo PSR, Fontes A, Cabral Filho PE, Maciel MAV. Activity of carbonyl cyanide-3-chlorophenylhydrazone on biofilm formation and antimicrobial resistance in Pseudomonas aeruginosa using quantum dots-meropenem conjugates as nanotools. Methods Appl Fluoresc 2020; 8:045005. [PMID: 33021210 DOI: 10.1088/2050-6120/aba7a2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hospital infections associated with multidrug-resistant (MDR) Pseudomonas aeruginosa are a worldwide public health problem. Efflux systems and biofilm formation are mechanisms related to resistance to carbapenemics. In this study, quantum dots (QDs) were used to evaluate the effect of carbonyl cyanide-3-chlorophenylhydrazone (CCCP), an efflux pump system inhibitor, on biofilm formation and antimicrobial resistance profile of P. aeruginosa strains. For this, QDs were covalently conjugated to meropenem (MPM) and incubated with a P. aeruginosa resistant isolate (P118) or a control sensitive strain (ATCC Pa27853). P118 was also analyzed with conjugates after previous CCCP efflux inhibitor incubation. Fluorescence microscopy images showed that both sensitive and resistant bacteria were efficiently labeled. Nevertheless, P118 isolates presented fluorescent cell agglomerates, suggesting biofilm formation. The addition of the CCCP changed the labeling profile of the resistant isolate, and the absence of agglomerates was observed, indicating no biofilm formation. Genetic assays revealed the presence of MexA and MexE genes encoding channel proteins from efflux pump systems in both resistant and sensitive strains. Disk-diffusion and broth microdilution tests determined drug susceptibility profiles in the presence and absence of CCCP for P118 isolates. We verified that the CCCP efflux system inhibitor may contribute to P. aeruginosa resistant phenotype reduction for some antimicrobials. This study verified the efficiency of QD-MPM conjugates to trigger and study biofilm formation, or its inhibition, before and after CCCP addition. QDs conjugated to antimicrobials can be used as nanotools to investigate multidrug-resistant bacterial strains on biofilm formation.
Collapse
Affiliation(s)
- Valdemir V Silva Júnior
- Coordenação de Área Medicina Tropical, Centro de Ciências Médicas, Universidade Federal de Pernambuco, 50670-901, Recife, Pernambuco, Brasil
| | | | | | | | | | | | | |
Collapse
|
23
|
Unresolved issues in the identification and treatment of carbapenem-resistant Gram-negative organisms. Curr Opin Infect Dis 2020; 33:482-494. [PMID: 33009141 DOI: 10.1097/qco.0000000000000682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Carbapenem-resistant organisms (CROs), including Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacterales, are a threat worldwide. This review will cover mechanisms of resistance within CROs and challenges with identification and treatment of these organisms while pointing out unresolved issues and ongoing challenges. RECENT FINDINGS The treatment of CROs has expanded through newer therapeutic options. Guided utilization through genotypic and phenotypic testing is necessary in order for these drugs to target the appropriate mechanisms of resistance and select optimal antibiotic therapy. SUMMARY Identification methods and treatment options need to be precisely understood in order to limit the spread and maximize outcomes of CRO infections.
Collapse
|
24
|
Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48:835-851. [PMID: 32875545 PMCID: PMC7461763 DOI: 10.1007/s15010-020-01520-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbapanems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clinical data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their use against CAPT-resistant GNB requires further study.
Collapse
|
25
|
Puzniak L, DePestel DD, Yu K, Ye G, Gupta V. Epidemiology and regional variation of nonsusceptible and multidrug-resistant Pseudomonas aeruginosa isolates from intensive versus non-intensive care units across multiple centers in the United States. Diagn Microbiol Infect Dis 2020; 99:115172. [PMID: 33130502 DOI: 10.1016/j.diagmicrobio.2020.115172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Nonsusceptible (NS) and multidrug-resistant (MDR) Pseudomonas aeruginosa (PsA) infections are associated with considerable mortality. This retrospective study assessed NS PsA and MDR PsA prevalence in US intensive care unit (ICU) and non-ICU settings. We evaluated nonduplicate PsA isolates collected in 2017. Data were classified by hospital admission setting. PsA isolates were evaluated for NS to each of 4 drug classes and MDR. Significantly higher rates of NS PsA and MDR PsA were found in ICU versus non-ICU settings (P < .001), except for respiratory isolates, which had high rates regardless of setting; rates also correlated with source, hospital size, urban/rural status, and geographic region. NS PsA isolates for each antibacterial category (except fluoroquinolones) and MDR PsA were significantly more likely to be classified as hospital-onset than admission-onset (P < .001). These data are consistent with previous reports and emphasize the importance of testing for resistant infection upon admission and when treating hospital-acquired infections.
Collapse
Affiliation(s)
- Laura Puzniak
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Daryl D DePestel
- Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | - Kalvin Yu
- Becton, Dickinson and Company, 1 Becton Drive, Franklin Lakes, NJ 07417, USA.
| | - Gang Ye
- Becton, Dickinson and Company, 1 Becton Drive, Franklin Lakes, NJ 07417, USA.
| | - Vikas Gupta
- Becton, Dickinson and Company, 1 Becton Drive, Franklin Lakes, NJ 07417, USA.
| |
Collapse
|
26
|
Suresh M, Skariyachan S, Narayanan N, Pullampara Rajamma J, Panickassery Ramakrishnan MK. Mutational Variation Analysis of oprD Porin Gene in Multidrug-Resistant Clinical Isolates of Pseudomonas aeruginosa. Microb Drug Resist 2020; 26:869-879. [PMID: 32083512 DOI: 10.1089/mdr.2019.0147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The present study deals with the outer membrane OprD porin protein in 29 clinical bacterial isolates of multidrug-resistant Pseudomonas aeruginosa. oprD porin gene expression was investigated using real-time reverse transcription-PCR. Amplicons from oprD and its transcriptional regulator mexT gene were sequenced and analyzed for mutations. Hypothetical models of selected mutant OprD-porin proteins were predicted and refined by homology modeling approach. oprD ampliconic sequences were also screened for restriction fragment length polymorphism (RFLP). The oprD gene was found to be downregulated in 89.7% (n = 26) of the isolates in comparison to the transcript levels in the reference strain P. aeruginosa-PAO (MTCC-3541). Interestingly, all these isolates displayed the presence of a conspicuous 8-bp deletion (GGCCAGCC) at nucleotide position 235 of mexT regulatory gene. Based on the mutational patterns observed in oprD gene, the isolates were classified into categories designated as A, B1-2, C1-4, D1-6, E1-2, and F. Our hypothetical models revealed that mutations were predominantly confined to the extracellular loops emanating from the β-barrel porin protein. These protein models also enabled clear visualization of loss of substantial portions of the truncated polypeptide. Incidentally, since most of the oprD amplicons of the clinical isolates were found to display distinct RFLP banding patterns, our results also provide a useful diagnostic tool for detection of P. aeruginosa porin mutants.
Collapse
Affiliation(s)
- Manju Suresh
- Department of Biotechnology, University of Calicut, Malappuram, India
| | | | - Nithya Narayanan
- Department of Biotechnology, University of Calicut, Malappuram, India
| | | | | |
Collapse
|
27
|
Evaluation of the EDTA-Modified Carbapenem Inactivation Method for Detecting Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. J Clin Microbiol 2020; 58:JCM.02015-19. [PMID: 32238433 DOI: 10.1128/jcm.02015-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing. Identification of carbapenemase-producing P. aeruginosa will have therapeutic, epidemiological, and infection control implications. This study evaluated the performance of the EDTA-modified carbapenem inactivation method (eCIM) in tandem with the modified carbapenem inactivation method (mCIM) against a large collection of clinical P. aeruginosa isolates (n = 103) to provide clinicians a phenotypic test that not only identifies carbapenemase production but also distinguishes between metallo-β-lactamase and serine-carbapenemase production in P. aeruginosa The mCIM test was performed according to Clinical and Laboratory Standards Institute guidelines, while the eCIM was conducted as previously described for Enterobacteriaceae Test performance was compared to the genotypic profile as the reference. mCIM testing successfully categorized 91% (112/123) of P. aeruginosa isolates as carbapenemases or non-carbapenemase producers, with discordant isolates being primarily Guiana extended-spectrum (GES)-type producers. To increase the sensitivity of the mCIM for GES-harboring isolates, a double inoculum, prolonged incubation, or both was evaluated, with each modification improving sensitivity to 100% (12/12). Upon eCIM testing, all Verona integrin-encoded metallo-β-lactamases (VIM; n = 27) and New Delhi metallo-β-lactamases (NDM; n = 13) tested had 100% concordance to their genotypic profiles, whereas all Klebsiella pneumoniae carbapenemase (KPC; n = 8) and GES (n = 12) isolates tested negative, as expected, in the presence of EDTA. The eCIM failed to identify all imipenemase (IMP)-producing (n = 22) and Sao Paulo metallo-β-lactamase (SPM)-producing (n = 14) isolates. KPC-, VIM-, and NDM-producing P. aeruginosa were well defined by the conventional mCIM and eCIM testing methods; additional modifications appear required to differentiate GES-, IMP-, and SPM-producing isolates.
Collapse
|
28
|
Reyes S, Nicolau DP. Precision medicine for the diagnosis and treatment of carbapenem-resistant Enterobacterales: time to think from a different perspective. Expert Rev Anti Infect Ther 2020; 18:721-740. [PMID: 32368940 DOI: 10.1080/14787210.2020.1760844] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Carbapenem-resistant Enterobacterales (CRE) represent a global public health problem. Precision medicine (PM) is a multicomponent medical approach that should be used to individualize the management of patients infected with CRE. AREAS COVERED Here, we differentiate carbapenem-producing CRE (CP-CRE) from non-CP-CRE and the importance of this distinction in clinical practice. The current phenotypic CRE-case definition and its implications are also discussed. Additionally, we summarize data regarding phenotypic and molecular diagnostic tools and available antibiotics. In order to review the most relevant data, a comprehensive literature search of peer-reviewed articles in PubMed and abstracts presented at high-impact conferences was performed. EXPERT OPINION PM in CRE infections entails a multi-step process that includes applying the current phenotypic definition, utilization of the right phenotypic or molecular testing methods, and thorough evaluation of risk factors, source of infection, and comorbidities. A powerful armamentarium is available to treat CRE infections, including recently approved agents. Randomized controlled trials targeting specific pathogens instead of site of infections may be appropriate to fill in the current gaps. In light of the diverse enzymology behind CP-CRE, PM should be employed to provide the best therapy based on the underlying resistance mechanism.
Collapse
Affiliation(s)
- Sergio Reyes
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA
| | - David P Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital , Hartford, CT, USA.,Division of Infectious Diseases, Hartford Hospital , Hartford, CT, USA
| |
Collapse
|
29
|
In Vitro Activity of Imipenem-Relebactam Alone or in Combination with Amikacin or Colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.00997-19. [PMID: 31262769 DOI: 10.1128/aac.00997-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022] Open
Abstract
Relebactam is a novel class A/C β-lactamase inhibitor that restores imipenem in vitro activity against multidrug-resistant and carbapenem-nonsusceptible Pseudomonas aeruginosa Time-kill analyses were performed to evaluate the potential role of imipenem-relebactam in combination with amikacin or colistin against P. aeruginosa Ten clinical P. aeruginosa isolates (9 imipenem nonsusceptible) with imipenem-relebactam MICs ranging from 1/4 to 8/4 μg/ml were included. The isolates had varied susceptibilities to imipenem (1 to 32 μg/ml), amikacin (4 to 128 μg/ml), and colistin (0.5 to 1 μg/ml). Duplicate 24-h time-kill studies were conducted using the average steady-state concentrations (Cssavg) observed after the administration of imipenem-relebactam at 500 mg/250 mg every 6 hours (q6h) alone and in combination with the Cssavg of 25 mg/kg of body weight/day amikacin and 360 mg/day colistin in humans. Imipenem-relebactam alone resulted in 24-h bacterial densities of -2.93 ± 0.38, -1.67 ± 0.29, +0.38 ± 0.96, and +0.15 ± 0.65 log10 CFU/ml at imipenem-relebactam MICs of 1/4, 2/4, 4/4, and 8/4 μg/ml, respectively. No synergy was demonstrated against the single imipenem-susceptible isolate. Against the imipenem-nonsusceptible isolates (n = 9), imipenem-relebactam combined with amikacin resulted in synergy (-2.61 ± 1.50 log10 CFU/ml) against all amikacin-susceptible isolates and in two of three amikacin-intermediate (i.e., MIC, 32 μg/ml) isolates (-2.06 ± 0.19 log10 CFU/ml). Synergy with amikacin was not observed when the amikacin MIC was >32 μg/ml. Imipenem-relebactam combined with colistin demonstrated synergy in eight out of the nine imipenem-resistant isolates (-3.17 ± 1.00 log10 CFU/ml). Against these 10 P. aeruginosa isolates, imipenem-relebactam combined with either amikacin or colistin resulted in synergistic activity against the majority of strains. Further studies evaluating combination therapy with imipenem-relebactam are warranted.
Collapse
|