1
|
Ziaei Chamgordani S, Yadegar A, Ghourchian H. C. difficile biomarkers, pathogenicity and detection. Clin Chim Acta 2024; 558:119674. [PMID: 38621586 DOI: 10.1016/j.cca.2024.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Clostridioides difficile infection (CDI) is the main etiologic agent of antibiotic-associated diarrhea. CDI contributes to gut inflammation and can lead to disruption of the intestinal epithelial barrier. Recently, the rate of CDI cases has been increased. Thus, early diagnosis of C. difficile is critical for controlling the infection and guiding efficacious therapy. APPROACH A search strategy was set up using the terms C. difficile biomarkers and diagnosis. The found references were classified into two general categories; conventional and advanced methods. RESULTS The pathogenicity and biomarkers of C. difficile, and the collection manners for CDI-suspected specimens were briefly explained. Then, the conventional CDI diagnostic methods were subtly compared in terms of duration, level of difficulty, sensitivity, advantages, and disadvantages. Thereafter, an extensive review of the various newly proposed techniques available for CDI detection was conducted including nucleic acid isothermal amplification-based methods, biosensors, and gene/single-molecule microarrays. Also, the detection mechanisms, pros and cons of these methods were highlighted and compared with each other. In addition, approximately complete information on FDA-approved platforms for CDI diagnosis was collected. CONCLUSION To overcome the deficiencies of conventional methods, the potential of advanced methods for C. difficile diagnosis, their direction, perspective, and challenges ahead were discussed.
Collapse
Affiliation(s)
- Sepideh Ziaei Chamgordani
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hedayatollah Ghourchian
- Laboratory of Bioanalysis, Institute of Biochemistry & Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Yu L, Li H, Zhao X, Wang X, Wei X, Lin W, Li P, Cui L, Yuan J. Rapid visual detection of binary toxin producing Clostridium difficile by loop-mediated isothermal amplification. Exp Ther Med 2017; 14:4781-4788. [PMID: 29201180 PMCID: PMC5704324 DOI: 10.3892/etm.2017.5178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/27/2017] [Indexed: 01/05/2023] Open
Abstract
The binary toxin Clostridium difficile transferase (CDT) is frequently observed in C. difficile strains and is associated with an increased severity of C. difficile infection. CDT-producing C. difficile infections cause higher fatality rates than infections with CDT negative isolates. Thus, the rapid and accurate identification of a CDT positive C. difficile infection is critical for effective treatment. The present study demonstrates how loop-mediated isothermal amplification (LAMP) can be used to detect CDT-producing C. difficile based on visual observation. This is a low complexity, rapid molecular method that has the potential to be used within a point of care setting. The specificity and sensitivity of the primers in the LAMP reactions for CDT detection were determined using two different methods, a real-time turbidity monitor and visual detection after the addition of calcein to the reaction tube. The results revealed that target DNA was amplified and visualized by these two detection methods within 60 min at a temperature of 60°C. The sensitivity of the LAMP assay was identified to be 10-fold greater than that of polymerase chain reaction analysis. When 25 alternative bacterial strains lacking CDT were tested, the results of the amplification were negative, confirming the specificity of the primers. In conclusion, the visual LAMP method established in the present study may be a rapid, reliable and cost-effective tool for detecting CDT-producing C. difficile strains at the point of care.
Collapse
Affiliation(s)
- Lan Yu
- Department of Gastroenterology, Navy General Hospital, Beijing 100048, P.R. China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Weishi Lin
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Puyuan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| | - Lihong Cui
- Department of Gastroenterology, Navy General Hospital, Beijing 100048, P.R. China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, P.R. China
| |
Collapse
|
3
|
Barreda-García S, Miranda-Castro R, de-Los-Santos-Álvarez N, Miranda-Ordieres AJ, Lobo-Castañón MJ. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection. Anal Bioanal Chem 2017; 410:679-693. [PMID: 28932883 PMCID: PMC7079856 DOI: 10.1007/s00216-017-0620-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/18/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022]
Abstract
Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA) ![]()
Collapse
Affiliation(s)
- Susana Barreda-García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Rebeca Miranda-Castro
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | | | - Arturo J Miranda-Ordieres
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - María Jesús Lobo-Castañón
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
4
|
Li Y, Yang X, Zhao W. Emerging Microtechnologies and Automated Systems for Rapid Bacterial Identification and Antibiotic Susceptibility Testing. SLAS Technol 2017; 22:585-608. [PMID: 28850804 DOI: 10.1177/2472630317727519] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rapid bacterial identification (ID) and antibiotic susceptibility testing (AST) are in great demand due to the rise of drug-resistant bacteria. Conventional culture-based AST methods suffer from a long turnaround time. By necessity, physicians often have to treat patients empirically with antibiotics, which has led to an inappropriate use of antibiotics, an elevated mortality rate and healthcare costs, and antibiotic resistance. Recent advances in miniaturization and automation provide promising solutions for rapid bacterial ID/AST profiling, which will potentially make a significant impact in the clinical management of infectious diseases and antibiotic stewardship in the coming years. In this review, we summarize and analyze representative emerging micro- and nanotechnologies, as well as automated systems for bacterial ID/AST, including both phenotypic (e.g., microfluidic-based bacterial culture, and digital imaging of single cells) and molecular (e.g., multiplex PCR, hybridization probes, nanoparticles, synthetic biology tools, mass spectrometry, and sequencing technologies) methods. We also discuss representative point-of-care (POC) systems that integrate sample processing, fluid handling, and detection for rapid bacterial ID/AST. Finally, we highlight major remaining challenges and discuss potential future endeavors toward improving clinical outcomes with rapid bacterial ID/AST technologies.
Collapse
Affiliation(s)
- Yiyan Li
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,7 Department of Physics and Engineering, Fort Lewis College, Durango, Colorado, USA
| | | | - Weian Zhao
- 1 Sue and Bill Gross Stem Cell Research Center, University of California-Irvine, Irvine, CA, USA.,6 Department of Biological Chemistry, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Ao W, Clifford A, Corpuz M, Jenison R. A novel approach to eliminate detection of contaminating Staphylococcal species introduced during clinical testing. PLoS One 2017; 12:e0171915. [PMID: 28225823 PMCID: PMC5321469 DOI: 10.1371/journal.pone.0171915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/27/2017] [Indexed: 01/28/2023] Open
Abstract
We describe here a strategy that can distinguish between Staphylococcus species truly present in a clinical sample from contaminating Staphylococcus species introduced during the testing process. Contaminating Staphylococcus species are present at low levels in PCR reagents and colonize lab personnel. To eliminate detection of contaminants, we describe an approach that utilizes addition of sufficient quantities of either non-target Staphylococcal cells (Staphylococcus succinus or Staphylococcus muscae) or synthetic oligonucleotide templates to helicase dependent isothermal amplification reactions to consume Staphylococcus-specific tuf and mecA gene primers such that contaminating Staphylococcus amplification is suppressed to below assay limits of detection. The suppressor template DNA is designed with perfect homology to the primers used in the assay but an internal sequence that is unrelated to the Staphylococcal species targeted for detection. Input amount of the suppressor is determined by a mathematical model described herein and is demonstrated to completely suppress contaminating levels of Staphylococcus while not negatively impacting the appropriate clinical assay limit of detection. We have applied this approach to improve the specificity of detection of Staphylococcus species present in positive blood cultures using a chip-based array that produces results visible to the unaided eye.
Collapse
Affiliation(s)
- Wanyuan Ao
- Great Basin Corporation, Salt Lake City, Utah, United States of America
| | - Adrianne Clifford
- Great Basin Corporation, Salt Lake City, Utah, United States of America
| | - Maylene Corpuz
- Great Basin Corporation, Salt Lake City, Utah, United States of America
| | - Robert Jenison
- Great Basin Corporation, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
6
|
Fidan Z, Wende A, Resch-Genger U. Visible and red emissive molecular beacons for optical temperature measurements and quality control in diagnostic assays utilizing temperature-dependent amplification reactions. Anal Bioanal Chem 2016; 409:1519-1529. [DOI: 10.1007/s00216-016-0088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/31/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
7
|
Burd EM, Hinrichs BH. Gastrointestinal Infections. MOLECULAR PATHOLOGY IN CLINICAL PRACTICE 2016. [PMCID: PMC7123654 DOI: 10.1007/978-3-319-19674-9_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Establishing a specific etiology for gastrointestinal infections can be challenging because of the common clinical features and wide variety of causative microorganisms. In many cases, the etiologic agent cannot be determined using traditional diagnostic methods and may result in unnecessary antibiotic use or prolonged periods of illness. Molecular tests provide many advantages over traditional laboratory methods but, with the exception of a few analytes, are still largely in the developmental phase for gastrointestinal pathogens and are not widely used. The main advantages of molecular tests include increased sensitivity and the ability to detect agents which will not grow in culture. To test for all possible gastrointestinal pathogens at one time would require a large panel that would include a variety of bacterial, viral and parasitic agents. Challenges inherent in developing diagnostic molecular panels include ensuring that all variants of a particular microorganism can be detected as well as the rapid evolution of pathogens. In this chapter, the diagnostic merit of molecular tests as well as available tests will be presented for the major groups of gastrointestinal pathogens.
Collapse
|
8
|
Zhao X, He X, Li H, Zhao J, Huang S, Liu W, Wei X, Ding Y, Wang Z, Zou D, Wang X, Dong D, Yang Z, Yan X, Huang L, Du S, Yuan J. Detection of Streptococcus pyogenes using rapid visual molecular assay. FEMS Microbiol Lett 2015; 362:fnv148. [PMID: 26319025 DOI: 10.1093/femsle/fnv148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2015] [Indexed: 11/14/2022] Open
Abstract
Streptococcus pyogenes is an increasingly important pathogen in many parts of the world. Rapid and accurate detection of S. pyogenes aids in the control of the infection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for the specific detection of S. pyogenes. The assay incorporates two methods: a chromogenic analysis using a calcein/Mn(2+) complex and real-time turbidity monitoring to assess the reaction. Both methods detected the target DNA within 60 min under 64°C isothermal conditions. The assay used specifically designed primers to target spy1258, and correctly identified 111 strains of S. pyogenes and 32 non-S. pyogenes strains, including other species of the genus Streptococcus. Tests using reference strains showed that the LAMP assay was highly specific. The sensitivity of the assay, with a detection limit of 1.49 pg DNA, was 10-fold greater than that of PCR. The LAMP assay established in this study is simple, fast and sensitive, and does not rely upon any special equipment; thus, it could be employed in clinical diagnosis.
Collapse
Affiliation(s)
- Xiangna Zhao
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiaoming He
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Huan Li
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Jiangtao Zhao
- Emergency Center, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Simo Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Wei Liu
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiao Wei
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Yiwei Ding
- Clinical Laboratory, Navy general hospital, Beijing 100048, China
| | - Zhaoyan Wang
- Department of Pediatrics, Navy general hospital, Beijing 100048, China
| | - Dayang Zou
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xuesong Wang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Derong Dong
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Zhan Yang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Xiabei Yan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Liuyu Huang
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jing Yuan
- Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing 100071, China
| |
Collapse
|
9
|
Jenison R, Jaeckel H, Klonoski J, Latorra D, Wiens J. Rapid amplification/detection of nucleic acid targets utilizing a HDA/thin film biosensor. Analyst 2015; 139:3763-9. [PMID: 24899216 DOI: 10.1039/c4an00418c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thin film biosensors exploit a flat, optically coated silicon-based surface whereupon formation of nucleic acid hybrids are enzymatically transduced in a molecular thin film that can be detected by the unaided human eye under white light. While the limit of sensitivity for detection of nucleic acid targets is at sub-attomole levels (60 000 copies) many clinical specimens containing bacterial pathogens have much lower levels of analyte present. Herein, we describe a platform, termed HDA/thin film biosensor, which performs helicase-dependant nucleic acid amplification on a thin film biosensor surface to improve the limit of sensitivity to 10 copies of the mecA gene present in methicillin-resistant strains of Staphylococcus. As double-stranded DNA is unwound by helicase it was either bound by solution-phase DNA primers to be copied by DNA polymerase or hybridized to surface immobilized probe on the thin film biosensor surface to be detected. Herein, we show that amplification reactions on the thin film biosensor are equivalent to in standard thin wall tubes, with detection at the limit of sensitivity of the assay occurring after 30 minutes of incubation time. Further we validate the approach by detecting the presence of the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA) from positive blood culture aliquots with high specificity (signal/noise ratio of 105).
Collapse
Affiliation(s)
- Robert Jenison
- Great Basin, Corp., 2441 S. 3850 W, Salt Lake City, UT. 84120, USA.
| | | | | | | | | |
Collapse
|
10
|
Tojo M, Nagamatsu M, Hayakawa K, Mezaki K, Kirikae T, Ohmagari N. Evaluation of an automated rapid diagnostic test for detection of Clostridium difficile. PLoS One 2014; 9:e106102. [PMID: 25170836 PMCID: PMC4149505 DOI: 10.1371/journal.pone.0106102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/28/2014] [Indexed: 01/05/2023] Open
Abstract
The Verigene Clostridium difficile Nucleic Acid Test (Verigene CDF Test) (Nanosphere, Northbrook, IL, USA) is a new multiplex qualitative polymerase chain reaction (PCR) test used to detect C. difficile toxin genes in fecal specimens. To evaluate the performance of the new method, we tested 69 fecal samples from patients with suspected C. difficile infection using the Verigene CDF test, an enzyme immunoassay (EIA) and PCR following anaerobic fecal culture. The sensitivity, specificity, and accuracy of the Verigene CDF test were 96.7% (29/30), 97.4% (38/39), and 97.1% (67/69) respectively, using PCR following fecal culture as a reference method. We also analyzed the potential clinical impact of the Verigene CDF test using chart reviews of the 69 patients with suspected C. difficile infection and found that 11 of the 69 patients were incorrectly diagnosed, and the Verigene CDF test would have led to them receiving more appropriate management including practice of treatment and contact precaution, although, of the 69 patients, there are two whose samples were incorrectly identified with the Verigene CDF test. The Verigene CDF test will have a positive impact on patient care.
Collapse
Affiliation(s)
- Masayoshi Tojo
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail:
| | - Maki Nagamatsu
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kazuhisa Mezaki
- Department of Clinical Laboratory, National Center for Global Health and Medicine, Tokyo, Japan
| | - Teruo Kirikae
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Multicenter evaluation of the Quidel Lyra Direct C. difficile nucleic acid amplification assay. J Clin Microbiol 2014; 52:1998-2002. [PMID: 24671790 DOI: 10.1128/jcm.03089-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a Gram-positive bacterium commonly found in health care and long-term-care facilities and is the most common cause of antibiotic-associated diarrhea. Rapid detection of this bacterium can assist physicians in implementing contact precautions and appropriate antibiotic therapy in a timely manner. The purpose of this study was to compare the clinical performance of the Quidel Lyra Direct C. difficile assay (Lyra assay) (Quidel, San Diego, CA) to that of a direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture. This study was performed at three geographically diverse laboratories within the United States using residual stool specimens submitted for routine C. difficile testing. Residual samples were tested using the Lyra assay on three real-time PCR platforms, and results were compared to those for direct CCNA and enhanced toxigenic culture. The test results for all platforms were consistent across all three test sites. The sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500 Fast DX, and ABI QuantStudio DX instruments compared to CCNA were 90.0% and 93.3%, 95.0% and 94.2%, and 93.8% and 95.0%, respectively. Compared to enhanced toxigenic culture, the sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500, and QuantStudio instruments were 82.1% and 96.9%, 89.3% and 98.8%, and 85.7% and 99.0%, respectively. Overall, the Lyra assay is easy to use and versatile and compares well to C. difficile culture methods.
Collapse
|
12
|
Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev 2014; 26:604-30. [PMID: 23824374 DOI: 10.1128/cmr.00016-13] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile is a formidable nosocomial and community-acquired pathogen, causing clinical presentations ranging from asymptomatic colonization to self-limiting diarrhea to toxic megacolon and fulminant colitis. Since the early 2000s, the incidence of C. difficile disease has increased dramatically, and this is thought to be due to the emergence of new strain types. For many years, the mainstay of C. difficile disease diagnosis was enzyme immunoassays for detection of the C. difficile toxin(s), although it is now generally accepted that these assays lack sensitivity. A number of molecular assays are commercially available for the detection of C. difficile. This review covers the history and biology of C. difficile and provides an in-depth discussion of the laboratory methods used for the diagnosis of C. difficile infection (CDI). In addition, strain typing methods for C. difficile and the evolving epidemiology of colonization and infection with this organism are discussed. Finally, considerations for diagnosing C. difficile disease in special patient populations, such as children, oncology patients, transplant patients, and patients with inflammatory bowel disease, are described. As detection of C. difficile in clinical specimens does not always equate with disease, the diagnosis of C. difficile infection continues to be a challenge for both laboratories and clinicians.
Collapse
|
13
|
Le Guern R, Herwegh S, Courcol R, Wallet F. Molecular methods in the diagnosis ofClostridium difficileinfections: an update. Expert Rev Mol Diagn 2014; 13:681-92. [DOI: 10.1586/14737159.2013.829705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Denys GA. Portrait Toxigenic Clostridium difficile assay, an isothermal amplification assay detects toxigenic C. difficile in clinical stool specimens. Expert Rev Mol Diagn 2013; 14:17-26. [PMID: 24308336 DOI: 10.1586/14737159.2014.864239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Portrait Toxigenic Clostridium difficile assay is a rapid, qualitative assay for the detection of the tcdB gene of C. difficile in stool specimens from patients suspected of C. difficile infections, and received 510(k) clearance by the US FDA in March 2012. The Portrait Toxigenic C. difficile assay combines novel blocked-primer-mediated helicase-dependent multiplex amplification (bpHDA) technology and chip-based detection in an automated sample-to-result format. The assay requires minimal sample preparation and results are available within 90 min. In a multicenter evaluation, the Portrait Toxigenic C. difficile assay had a sensitivity of 98.2% and specificity of 92.8% compared with toxigenic culture. A comparative study between the Portrait Toxigenic C. difficile assay and three FDA-cleared molecular assays for the detection of toxigenic C. difficile exhibited a high degree of agreement (93.8-97.5%). The Portrait Toxigenic C. difficile assay provides a simple, cost-effective method with broad applicability to panel-based approaches, potentially simplifying workflow.
Collapse
Affiliation(s)
- Gerald A Denys
- Department of Pathology and Laboratory Medicine, Division of Clinical Microbiology, Indiana University School of Medicine, 350 West 11th Street, Room 6027B, Indianapolis, IN, USA
| |
Collapse
|
15
|
Multicenter evaluation of the Verigene Clostridium difficile nucleic acid assay. J Clin Microbiol 2013; 51:4120-5. [PMID: 24088862 DOI: 10.1128/jcm.01690-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Verigene Clostridium difficile Nucleic Acid test (Verigene CDF test) (Nanosphere, Northbrook, IL) is a multiplex qualitative PCR assay that utilizes a nanoparticle-based array hybridization method to detect C. difficile tcdA and tcdB in fecal specimens. In addition, the assay detects binary toxin gene sequences and the single base pair deletion at nucleotide 117 (Δ 117) in tcdC to provide a presumptive identification of the epidemic strain 027/NAP1/BI (referred to here as ribotype 027). This study compared the Verigene CDF test with anaerobic direct and enriched toxigenic culture on stool specimens from symptomatic patients among five geographically diverse laboratories within the United States. The Verigene CDF test was performed according to the manufacturer's instructions, and the reference methods performed by a central laboratory included direct culture onto cycloserine cefoxitin fructose agar (CCFA) and enriched culture using cycloserine cefoxitin mannitol broth with taurocholate and lysozyme. Recovered isolates were identified as C. difficile using gas liquid chromatography and were tested for toxin using a cell culture cytotoxicity neutralization assay. Strains belonging to ribotype 027 were determined by PCR ribotyping and bidirectional sequencing for Δ 117 in tcdC. A total of 1,875 specimens were evaluable. Of these, 275 specimens (14.7%) were culture positive by either direct or enriched culture methods. Compared to direct culture alone, the overall sensitivity, specificity, positive predictive value, and negative predictive value for the Verigene CDF test were 98.7%, 87.5%, 42%, and 99.9%, respectively. Compared to combined direct and enriched culture results, the sensitivity, specificity, positive predictive value, and negative predictive values of the Verigene CDF test were 90.9%, 92.5%, 67.6%, and 98.3%, respectively. Of the 250 concordantly culture-positive specimens, 59 (23.6%) were flagged as "hypervirulent"; 53 were confirmed as ribotype 027, and all 59 possessed Δ 117 in tcdC. Time to results was approximately 2.5 h per specimen. The Verigene CDF test is a novel nucleic acid microarray that reliably detects both C. difficile toxins A and B in unformed stool specimens and appears to adequately identify ribotype 027 isolates.
Collapse
|
16
|
Roskos K, Hickerson AI, Lu HW, Ferguson TM, Shinde DN, Klaue Y, Niemz A. Simple system for isothermal DNA amplification coupled to lateral flow detection. PLoS One 2013; 8:e69355. [PMID: 23922706 PMCID: PMC3724848 DOI: 10.1371/journal.pone.0069355] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 02/04/2023] Open
Abstract
Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF) detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb) genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP) or the Exponential Amplification Reaction (EXPAR), both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.
Collapse
Affiliation(s)
- Kristina Roskos
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Anna I. Hickerson
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Hsiang-Wei Lu
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Tanya M. Ferguson
- Claremont BioSolutions, Upland, California, United States of America
| | - Deepali N. Shinde
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Yvonne Klaue
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
| | - Angelika Niemz
- Keck Graduate Institute of Applied Life Sciences, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Brecher SM, Novak-Weekley SM, Nagy E. Laboratory diagnosis of Clostridium difficile infections: there is light at the end of the colon. Clin Infect Dis 2013; 57:1175-81. [PMID: 23788237 DOI: 10.1093/cid/cit424] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Single molecular or multistep assays (glutamate dehydrogenase, toxin A/B, ± molecular) are recommended for the diagnosis of CDI in patients with clinically significant diarrhea. Rapid and accurate tests can improve resource allocations and improve patient care. Enzyme immunoassay (EIA) for toxins A/B is too insensitive for use as a stand-alone assay. This guideline will examine the use of molecular tests and multitest algorithms for the diagnosis of Clostridium difficile infection (CDI). These new tests, alone or in a multistep algorithm consisting of >1 assay, are more expensive than the older EIA assays; however, rapid and accurate testing can save money overall by initiating appropriate treatment and infection control protocols sooner and by possibly reducing length of hospital stay. We recommend testing only unformed stool in patients with clinically significant diarrhea by a molecular method or by a 2- to 3-step algorithm.
Collapse
Affiliation(s)
- Stephen M Brecher
- Pathology and Laboratory Medicine, VA Boston Healthcare System, West Roxbury
| | | | | |
Collapse
|
18
|
Multicenter clinical evaluation of the portrait toxigenic C. difficile assay for detection of toxigenic Clostridium difficile strains in clinical stool specimens. J Clin Microbiol 2012; 50:3932-6. [PMID: 23015667 DOI: 10.1128/jcm.02083-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We compared the Portrait Toxigenic C. difficile Assay, a new semiautomated sample-to-result molecular test, to a toxigenic bacterial culture/cell cytotoxin neutralization assay (TBC/CCNA) for the detection of toxigenic Clostridium difficile in 549 stool specimens. Stool specimens were also tested by one of three alternative FDA-cleared molecular tests for toxigenic C. difficile (Xpert C. difficile, Illumigene C. difficile, or GeneOhm Cdiff). The sensitivities and specificities of the molecular tests compared to TBC/CCNA were as follows: 98.2% and 92.8% for the Portrait assay, 100% and 91.7% for the Xpert assay, 93.3% and 95.1% for the Illumigene assay, and 97.4% and 98.5% for the GeneOhm assay, respectively. The majority of Portrait false-positive results (20/31; 64.5%) were also positive for C. difficile by an alternative molecular test, suggesting an increased sensitivity compared to the culture-based "gold standard" method. The Portrait test detected an assay input of 30 CFU in 100% of spiked samples and detected an input of 10 CFU in 96.7% of samples tested.
Collapse
|
19
|
Frech GC, Munns D, Jenison RD, Hicke BJ. Direct detection of nasal Staphylococcus aureus carriage via helicase-dependent isothermal amplification and chip hybridization. BMC Res Notes 2012; 5:430. [PMID: 22882800 PMCID: PMC3500258 DOI: 10.1186/1756-0500-5-430] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 08/06/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The bacterium Staphylococcus aureus constitutes one of the most important causes of nosocomial infections. One out of every three individuals naturally carries S. aureus in their anterior nares, and nasal carriage is associated with a significantly higher infection rate in hospital settings. Nasal carriage can be either persistent or intermittent, and it is the persistent carriers who, as a group, are at the highest risk of infection and who have the highest nasal S. aureus cell counts. Prophylactic decolonization of S. aureus from patients' noses is known to reduce the incidence of postsurgical infections, and there is a clear rationale for rapid identification of nasal S. aureus carriers among hospital patients. FINDINGS A molecular diagnostic assay was developed which is based on helicase-dependent target amplification and amplicon detection by chip hybridization to a chip surface, producing a visible readout. Nasal swabs from 70 subjects were used to compare the molecular assay against culturing on "CHROMagar Staph aureus" agar plates. The overall relative sensitivity was 89%, and the relative specificity was 94%. The sensitivity rose to 100% when excluding low-count subjects (<100 S. aureus colony-forming units per swab). CONCLUSIONS This molecular assay is much faster than direct culture and has sensitivity that is appropriate for identification of high-count (>100 S. aureus colony-forming units per swab) nasal S. aureus carriers who are at greatest risk for nosocomial infections.
Collapse
Affiliation(s)
- Georges C Frech
- Great Basin Corporation, 2441 South 3850 West, Salt Lake City, UT 84120, USA
| | | | | | | |
Collapse
|