1
|
van der Torre MH, Novak-Frazer L, Rautemaa-Richardson R. Detecting Azole-Antifungal Resistance in Aspergillus fumigatus by Pyrosequencing. J Fungi (Basel) 2020; 6:jof6010012. [PMID: 31936898 PMCID: PMC7151159 DOI: 10.3390/jof6010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Guidelines on the diagnosis and management of Aspergillus disease recommend a multi-test approach including CT scans, culture, fungal biomarker tests, microscopy and fungal PCR. The first-line treatment of confirmed invasive aspergillosis (IA) consists of drugs in the azole family; however, the emergence of azole-resistant isolates has negatively impacted the management of IA. Failure to detect azole-resistance dramatically increases the mortality rates of azole-treated patients. Despite drug susceptibility tests not being routinely performed currently, we suggest including resistance testing whilst diagnosing Aspergillus disease. Multiple tools, including DNA sequencing, are available to screen for drug-resistant Aspergillus in clinical samples. This is particularly beneficial as a large proportion of IA samples are culture negative, consequently impeding susceptibility testing through conventional methods. Pyrosequencing is a promising in-house DNA sequencing method that can rapidly screen for genetic hotspots associated with antifungal resistance. Pyrosequencing outperforms other susceptibility testing methods due to its fast turnaround time, accurate detection of polymorphisms within critical genes, including simultaneous detection of wild type and mutated sequences, and—most importantly—it is not limited to specific genes nor fungal species. Here we review current diagnostic methods and highlight the potential of pyrosequencing to aid in a diagnosis complete with a resistance profile to improve clinical outcomes.
Collapse
Affiliation(s)
- Mireille H. van der Torre
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
| | - Lilyann Novak-Frazer
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
| | - Riina Rautemaa-Richardson
- Mycology Reference Centre, Excellence Centre of Medical Mycology (ECMM), Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK; (M.H.v.d.T.); (L.N.-F.)
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, NIHR Manchester Biomedical Research Centre (BRC) at the Manchester Academic Health Science Centre, The University of Manchester, Manchester M23 9LT, UK
- Department of Infectious Diseases, Manchester University NHS Foundation Trust-Wythenshawe Hospital, Manchester M23 9LT, UK
- Correspondence: ; Tel.: +44-161-291-5941
| |
Collapse
|
2
|
del Rocío Reyes-Montes M, Duarte-Escalante E, Guadalupe Frías-De-León M, Obed Martínez-Herrera E, Acosta-Altamirano G. Molecular Diagnosis of Invasive Aspergillosis. Mol Med 2019. [DOI: 10.5772/intechopen.78694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
3
|
Cruciani M, Mengoli C, Barnes R, Donnelly JP, Loeffler J, Jones BL, Klingspor L, Maertens J, Morton CO, White LP. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev 2019; 9:CD009551. [PMID: 31478559 PMCID: PMC6719256 DOI: 10.1002/14651858.cd009551.pub4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND This is an update of the original review published in the Cochrane Database of Systematic Reviews Issue 10, 2015.Invasive aspergillosis (IA) is the most common life-threatening opportunistic invasive mould infection in immunocompromised people. Early diagnosis of IA and prompt administration of appropriate antifungal treatment are critical to the survival of people with IA. Antifungal drugs can be given as prophylaxis or empirical therapy, instigated on the basis of a diagnostic strategy (the pre-emptive approach) or for treating established disease. Consequently, there is an urgent need for research into both new diagnostic tools and drug treatment strategies. Increasingly, newer methods such as polymerase chain reaction (PCR) to detect fungal nucleic acids are being investigated. OBJECTIVES To provide an overall summary of the diagnostic accuracy of PCR-based tests on blood specimens for the diagnosis of IA in immunocompromised people. SEARCH METHODS We searched MEDLINE (1946 to June 2015) and Embase (1980 to June 2015). We also searched LILACS, DARE, Health Technology Assessment, Web of Science and Scopus to June 2015. We checked the reference lists of all the studies identified by the above methods and contacted relevant authors and researchers in the field. For this review update we updated electronic searches of the Cochrane Central Register of Controlled Trials (CENTRAL; 2018, Issue 3) in the Cochrane Library; MEDLINE via Ovid (June 2015 to March week 2 2018); and Embase via Ovid (June 2015 to 2018 week 12). SELECTION CRITERIA We included studies that: i) compared the results of blood PCR tests with the reference standard published by the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG); ii) reported data on false-positive, true-positive, false-negative and true-negative results of the diagnostic tests under investigation separately; and iii) evaluated the test(s) prospectively in cohorts of people from a relevant clinical population, defined as a group of individuals at high risk for invasive aspergillosis. Case-control and retrospective studies were excluded from the analysis. DATA COLLECTION AND ANALYSIS Authors independently assessed quality and extracted data. For PCR assays, we evaluated the requirement for either one or two consecutive samples to be positive for diagnostic accuracy. We investigated heterogeneity by subgroup analyses. We plotted estimates of sensitivity and specificity from each study in receiver operating characteristics (ROC) space and constructed forest plots for visual examination of variation in test accuracy. We performed meta-analyses using the bivariate model to produce summary estimates of sensitivity and specificity. MAIN RESULTS We included 29 primary studies (18 from the original review and 11 from this update), corresponding to 34 data sets, published between 2000 and 2018 in the meta-analyses, with a mean prevalence of proven or probable IA of 16.3 (median prevalence 11.1% , range 2.5% to 57.1%). Most patients had received chemotherapy for haematological malignancy or had undergone hematopoietic stem cell transplantation. Several PCR techniques were used among the included studies. The sensitivity and specificity of PCR for the diagnosis of IA varied according to the interpretative criteria used to define a test as positive. The summary estimates of sensitivity and specificity were 79.2% (95% confidence interval (CI) 71.0 to 85.5) and 79.6% (95% CI 69.9 to 86.6) for a single positive test result, and 59.6% (95% CI 40.7 to 76.0) and 95.1% (95% CI 87.0 to 98.2) for two consecutive positive test results. AUTHORS' CONCLUSIONS PCR shows moderate diagnostic accuracy when used as screening tests for IA in high-risk patient groups. Importantly the sensitivity of the test confers a high negative predictive value (NPV) such that a negative test allows the diagnosis to be excluded. Consecutive positives show good specificity in diagnosis of IA and could be used to trigger radiological and other investigations or for pre-emptive therapy in the absence of specific radiological signs when the clinical suspicion of infection is high. When a single PCR positive test is used as the diagnostic criterion for IA in a population of 100 people with a disease prevalence of 16.3% (overall mean prevalence), three people with IA would be missed (sensitivity 79.2%, 20.8% false negatives), and 17 people would be unnecessarily treated or referred for further tests (specificity of 79.6%, 21.4% false positives). If we use the two positive test requirement in a population with the same disease prevalence, it would mean that nine IA people would be missed (sensitivity 59.6%, 40.4% false negatives) and four people would be unnecessarily treated or referred for further tests (specificity of 95.1%, 4.9% false positives). Like galactomannan, PCR has good NPV for excluding disease, but the low prevalence of disease limits the ability to rule in a diagnosis. As these biomarkers detect different markers of disease, combining them is likely to prove more useful.
Collapse
Affiliation(s)
- Mario Cruciani
- Azienda ULSS9 ScaligeraAntibiotic Stewardship ProgrammeVeronaItaly37135
| | - Carlo Mengoli
- Università di PadovaDepartment of Histology, Microbiology and Medical BiotechnologyVia Aristide Gabelli, 63PadovaItaly35121
| | - Rosemary Barnes
- Cardiff University School of MedicineInfection, Immunity and BiochemistryHeath ParkCardiffWalesUKCF14 4XN
| | - J Peter Donnelly
- Nijmegen Institute for InfectionDepartment of HaematologyInflammation and ImmunityRadboud University Nijmegen Medical CenterNijmegenNetherlands
| | - Juergen Loeffler
- Julius‐Maximilians‐UniversitatMedizinische Klinik IIKlinikstrasse 6‐8WurzburgGermany97070
| | - Brian L Jones
- Glasgow Royal Infirmary & University of GlasgowDepartment of Medical MicrobiologyGlasgowUK
| | - Lena Klingspor
- Division of Clinical MicrobiologyDepartment of Laboratory MedicineKarolinska University HospitalStockholmSweden
| | - Johan Maertens
- Acute Leukemia and Stem Cell Transplantation UnitDepartment of HematologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Charles O Morton
- Western Sydney UniversitySchool of Science and HealthCampbelltown CampusCampbelltownNew South WalesAustralia2560
| | - Lewis P White
- Microbiology Cardiff, UHWPublic Health WalesHeath ParkCardiffUKCF37 1EN
| | | |
Collapse
|
4
|
Fidler G, Kocsube S, Leiter E, Biro S, Paholcsek M. DNA Barcoding Coupled with High Resolution Melting Analysis Enables Rapid and Accurate Distinction of Aspergillus species. Med Mycol 2018; 55:642-659. [PMID: 27915305 DOI: 10.1093/mmy/myw127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/17/2016] [Indexed: 01/24/2023] Open
Abstract
We describe a high-resolution melting (HRM) analysis method that is rapid, reproducible, and able to identify reference strains and further 40 clinical isolates of Aspergillus fumigatus (14), A. lentulus (3), A. terreus (7), A. flavus (8), A. niger (2), A. welwitschiae (4), and A. tubingensis (2). Asp1 and Asp2 primer sets were designed to amplify partial sequences of the Aspergillus benA (beta-tubulin) genes in a closed-, single-tube system. Human placenta DNA, further Aspergillus (3), Candida (9), Fusarium (6), and Scedosporium (2) nucleic acids from type strains and clinical isolates were also included in this study to evaluate cross reactivity with other relevant pathogens causing invasive fungal infections. The barcoding capacity of this method proved to be 100% providing distinctive binomial scores; 14, 34, 36, 35, 25, 15, 26 when tested among species, while the within-species distinction capacity of the assay proved to be 0% based on the aligned thermodynamic profiles of the Asp1, Asp2 melting clusters allowing accurate species delimitation of all tested clinical isolates. The identification limit of this HRM assay was also estimated on Aspergillus reference gDNA panels where it proved to be 10-102 genomic equivalents (GE) except the A. fumigatus panel where it was 103 only. Furthermore, misidentification was not detected with human genomic DNA or with Candida, Fusarium, and Scedosporium strains. Our DNA barcoding assay introduced here provides results within a few hours, and it may possess further diagnostic utility when analyzing standard cultures supporting adequate therapeutic decisions.
Collapse
Affiliation(s)
- Gabor Fidler
- University of Debrecen, Faculty of Medicine, Department of Human Genetics, Debrecen, Hungary
| | - Sandor Kocsube
- University of Szeged, Faculty of Science & Informatics, Department of Microbiology, Szeged, Hungary
| | - Eva Leiter
- University of Debrecen, Faculty of Science and Technology, Department of Biotechnology and Microbiology, Debrecen, Hungary
| | - Sandor Biro
- University of Debrecen, Faculty of Medicine, Department of Human Genetics, Debrecen, Hungary
| | - Melinda Paholcsek
- University of Debrecen, Faculty of Medicine, Department of Human Genetics, Debrecen, Hungary
| |
Collapse
|
5
|
Rahn S, Schuck A, Kondakci M, Haas R, Neuhausen N, Pfeffer K, Henrich B. A novel comprehensive set of fungal Real time PCR assays (fuPCR) for the detection of fungi in immunocompromised haematological patients—A pilot study. Int J Med Microbiol 2016; 306:611-623. [DOI: 10.1016/j.ijmm.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/12/2016] [Indexed: 01/04/2023] Open
|
6
|
Quantitative Real-Time PCR and Platelia Galactomannan Assay for the Diagnosis of Invasive Pulmonary Aspergillosis: Bronchoalveolar Lavage Fluid Performs Better Than Serum in Non-neutropaenic Patients. Mycopathologia 2016; 181:625-9. [DOI: 10.1007/s11046-016-0024-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/25/2016] [Indexed: 10/21/2022]
|
7
|
Bernal-Martínez L, Alastruey-Izquierdo A, Cuenca-Estrella M. Diagnostics and susceptibility testing in Aspergillus. Future Microbiol 2016; 11:315-28. [PMID: 26848512 DOI: 10.2217/fmb.15.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Invasive aspergillosis is a major cause of morbidity and mortality in immunosuppressed patients. Early diagnosis and correct antifungal treatment have a direct impact on patient survival. A number of newer diagnostic procedures have been developed as alternatives to conventional microbiological methods. The detection of fungal components, largely antigens and DNA, are used in clinical laboratories to diagnose invasive aspergillosis. Other rapid diagnostic tests have been recently developed with promising results. However, antifungal resistance is becoming an emerging problem. The detection of this resistance is important to administer the proper antifungal agent. This text reviews the novelties on new diagnostics Aspergillus spp. PROCEDURES Intrinsic antifungal resistance and mechanisms of secondary resistance to triazoles in A. fumigatus are also reviewed.
Collapse
Affiliation(s)
- Leticia Bernal-Martínez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Comparison of Performance Characteristics of Aspergillus PCR in Testing a Range of Blood-Based Samples in Accordance with International Methodological Recommendations. J Clin Microbiol 2016; 54:705-11. [PMID: 26739157 DOI: 10.1128/jcm.02814-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/30/2015] [Indexed: 01/26/2023] Open
Abstract
Standardized methodologies for the molecular detection of invasive aspergillosis (IA) have been established by the European Aspergillus PCR Initiative for the testing of whole blood, serum, and plasma. While some comparison of the performance of Aspergillus PCR when testing these different sample types has been performed, no single study has evaluated all three using the recommended protocols. Standardized Aspergillus PCR was performed on 423 whole-blood pellets (WBP), 583 plasma samples, and 419 serum samples obtained from hematology patients according to the recommendations. This analysis formed a bicenter retrospective anonymous case-control study, with diagnosis according to the revised European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) consensus definitions (11 probable cases and 36 controls). Values for clinical performance using individual and combined samples were calculated. For all samples, PCR positivity was significantly associated with cases of IA (for plasma, P = 0.0019; for serum, P = 0.0049; and for WBP, P = 0.0089). Plasma PCR generated the highest sensitivity (91%); the sensitivities for serum and WBP PCR were 80% and 55%, respectively. The highest specificity was achieved when testing WBP (96%), which was significantly superior to the specificities achieved when testing serum (69%, P = 0.0238) and plasma (53%, P = 0.0002). No cases were PCR negative in all specimen types, and no controls were PCR positive in all specimens. This study confirms that Aspergillus PCR testing of plasma provides robust performance while utilizing commercial automated DNA extraction processes. Combining PCR testing of different blood fractions allows IA to be both confidently diagnosed and excluded. A requirement for multiple PCR-positive plasma samples provides similar diagnostic utility and is technically less demanding. Time to diagnosis may be enhanced by testing multiple contemporaneously obtained sample types.
Collapse
|
9
|
Abstract
Rapid, accurate diagnostic laboratory tests are needed to improve clinical outcomes of invasive fungal disease (IFD). Traditional direct microscopy, culture and histological techniques constitute the 'gold standard' against which newer tests are judged. Molecular diagnostic methods, whether broad-range or fungal-specific, have great potential to enhance sensitivity and speed of IFD diagnosis, but have varying specificities. The use of PCR-based assays, DNA sequencing, and other molecular methods including those incorporating proteomic approaches such as matrix-assisted laser desorption ionisation-time of flight mass spectroscopy (MALDI-TOF MS) have shown promising results. These are used mainly to complement conventional methods since they require standardisation before widespread implementation can be recommended. None are incorporated into diagnostic criteria for defining IFD. Commercial assays may assist standardisation. This review provides an update of molecular-based diagnostic approaches applicable to biological specimens and fungal cultures in microbiology laboratories. We focus on the most common pathogens, Candida and Aspergillus, and the mucormycetes. The position of molecular-based approaches in the detection of azole and echinocandin antifungal resistance is also discussed.
Collapse
|
10
|
Lu S, Li X, Calderone R, Zhang J, Ma J, Cai W, Xi L. Whole blood Nested PCR and Real-time PCR amplification ofTalaromyces marneffeispecific DNA for diagnosis. Med Mycol 2015; 54:162-8. [DOI: 10.1093/mmy/myv068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 11/12/2022] Open
|
11
|
Cruciani M, Mengoli C, Loeffler J, Donnelly P, Barnes R, Jones BL, Klingspor L, Morton O, Maertens J. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev 2015:CD009551. [PMID: 26424726 DOI: 10.1002/14651858.cd009551.pub3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Invasive aspergillosis (IA) is the most common life-threatening opportunistic invasive mould infection in immunocompromised people. Early diagnosis of IA and prompt administration of appropriate antifungal treatment are critical to the survival of people with IA. Antifungal drugs can be given as prophylaxis or empirical therapy, instigated on the basis of a diagnostic strategy (the pre-emptive approach) or for treating established disease. Consequently there is an urgent need for research into both new diagnostic tools and drug treatment strategies. Newer methods such as polymerase chain reaction (PCR) to detect fungal nucleic acids are increasingly being investigated. OBJECTIVES To provide an overall summary of the diagnostic accuracy of PCR-based tests on blood specimens for the diagnosis of IA in immunocompromised people. SEARCH METHODS We searched MEDLINE (1946 to June 2015) and EMBASE (1980 to June 2015). We also searched LILACS, DARE, Health Technology Assessment, Web of Science and Scopus to June 2015. We checked the reference lists of all the studies identified by the above methods and contacted relevant authors and researchers in the field. SELECTION CRITERIA We included studies that: i) compared the results of blood PCR tests with the reference standard published by the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG); ii) reported data on false-positive, true-positive, false-negative and true-negative results of the diagnostic tests under investigation separately; and iii) evaluated the test(s) prospectively in cohorts of people from a relevant clinical population, defined as a group of individuals at high risk for invasive aspergillosis. Case-control studies were excluded from the analysis. DATA COLLECTION AND ANALYSIS Authors independently assessed quality and extracted data. For PCR assays, we evaluated the requirement for either one or two consecutive samples to be positive for diagnostic accuracy. We investigated heterogeneity by subgroup analyses. We plotted estimates of sensitivity and specificity from each study in receiver operating characteristics (ROC) space and constructed forest plots for visual examination of variation in test accuracy. We performed meta-analyses using the bivariate model to produce summary estimates of sensitivity and specificity. MAIN RESULTS Eighteen primary studies, corresponding to 19 cohorts and 22 data sets, published between 2000 and 2013 were included in the meta-analyses, with a median prevalence of IA (proven or probable) of 12.0% (range 2.5 to 30.8 %). The majority of people had received chemotherapy for a haematological malignancy or had undergone a hematopoietic stem cell transplant. Several PCR techniques were used among the included studies. The sensitivity and specificity of PCR for the diagnosis of IA varied according to the interpretative criteria used to define a test as positive. The mean sensitivity and specificity were 80.5% (95% CI; 73.0 to 86.3) and 78.5% (67.8 to 86.4) for a single positive test result, and 58.0% (36.5 to 76.8) and 96.2% (89.6 to 98.6) for two consecutive positive test results. AUTHORS' CONCLUSIONS PCR shows moderate diagnostic accuracy when used as screening tests for IA in high-risk patient groups. Importantly the sensitivity of the test confers a high negative predictive value (NPV) such that a negative test allows the diagnosis to be excluded. Consecutive positives show good specificity in diagnosis of IA and could be used to trigger radiological and other investigations or for pre-emptive therapy in the absence of specific radiological signs when the clinical suspicion of infection is high. When a single PCR positive test is used as diagnostic criterion for IA in a population of 100 people with a disease prevalence of 13.0% (overall mean prevalence), three people with IA would be missed (sensitivity 80.5%, 19.5% false negatives), and 19 people would be unnecessarily treated or referred for further tests (specificity of 78.5%, 21.5% false positives). If we use the two positive test requirement in a population with the same disease prevalence, it would mean that six IA people would be missed (sensitivity 58.0%, 42.1% false negatives) and three people would be unnecessarily treated or referred for further tests (specificity of 96.2%, 3.8% false positives). Galactomannan and PCR have good NPV for excluding disease but the low prevalence of disease limits the ability to rule in a diagnosis. The biomarkers are detecting different aspects of disease and the combination of both together is likely to be more useful.
Collapse
Affiliation(s)
- Mario Cruciani
- Center of Community Medicine and Infectious Diseases Service, ULSS 20 Verona, Via Germania, 20, Verona, Italy, 37135
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Haidar G, Falcione BA, Nguyen MH. Diagnostic Modalities for Invasive Mould Infections among Hematopoietic Stem Cell Transplant and Solid Organ Recipients: Performance Characteristics and Practical Roles in the Clinic. J Fungi (Basel) 2015; 1:252-276. [PMID: 29376911 PMCID: PMC5753113 DOI: 10.3390/jof1020252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/19/2022] Open
Abstract
The morbidity and mortality of hematopoietic stem cell and solid organ transplant patients with invasive fungal infections (IFIs) remain high despite an increase in the number of effective antifungal agents. Early diagnosis leading to timely administration of antifungal therapy has been linked to better outcomes. Unfortunately, the diagnosis of IFIs remains challenging. The current gold standard for diagnosis is a combination of histopathology and culture, for which the sensitivity is <50%. Over the past two decades, a plethora of non-culture-based antigen and molecular assays have been developed and clinically validated. In this article, we will review the performance of the current commercially available non-cultural diagnostics and discuss their practical roles in the clinic.
Collapse
Affiliation(s)
- Ghady Haidar
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - Bonnie A Falcione
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Pharmacy and Therapeutics, University of Pittsburgh School of Pharmacy, 200 Lothrop St. 301, Pittsburgh, PA 15213, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| | - M Hong Nguyen
- Department of Medicine, University of Pittsburgh Medical Center, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
- Department of Medicine, University of Pittsburgh, Scaife Hall, Suite 871, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
13
|
Cruciani M, Mengoli C, Loeffler J, Donnelly P, Barnes R, Jones BL, Klingspor L, Morton O, Maertens J. Polymerase chain reaction blood tests for the diagnosis of invasive aspergillosis in immunocompromised people. Cochrane Database Syst Rev 2015:CD009551. [PMID: 26343815 DOI: 10.1002/14651858.cd009551.pub2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Invasive aspergillosis (IA) is the most common life-threatening opportunistic invasive mould infection in immunocompromised people. Early diagnosis of IA and prompt administration of appropriate antifungal treatment are critical to the survival of people with IA. Antifungal drugs can be given as prophylaxis or empirical therapy, instigated on the basis of a diagnostic strategy (the pre-emptive approach) or for treating established disease. Consequently there is an urgent need for research into both new diagnostic tools and drug treatment strategies. Newer methods such as polymerase chain reaction (PCR) to detect fungal nucleic acids are increasingly being investigated. OBJECTIVES To provide an overall summary of the diagnostic accuracy of PCR-based tests on blood specimens for the diagnosis of IA in immunocompromised people. SEARCH METHODS We searched MEDLINE (1946 to June 2015) and EMBASE (1980 to June 2015). We also searched LILACS, DARE, Health Technology Assessment, Web of Science and Scopus to June 2015. We checked the reference lists of all the studies identified by the above methods and contacted relevant authors and researchers in the field. SELECTION CRITERIA We included studies that: i) compared the results of blood PCR tests with the reference standard published by the European Organisation for Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG); ii) reported data on false-positive, true-positive, false-negative and true-negative results of the diagnostic tests under investigation separately; and iii) evaluated the test(s) prospectively in cohorts of people from a relevant clinical population, defined as a group of individuals at high risk for invasive aspergillosis. Case-control studies were excluded from the analysis. DATA COLLECTION AND ANALYSIS Authors independently assessed quality and extracted data. For PCR assays, we evaluated the requirement for either one or two consecutive samples to be positive for diagnostic accuracy. We investigated heterogeneity by subgroup analyses. We plotted estimates of sensitivity and specificity from each study in receiver operating characteristics (ROC) space and constructed forest plots for visual examination of variation in test accuracy. We performed meta-analyses using the bivariate model to produce summary estimates of sensitivity and specificity. MAIN RESULTS Eighteen primary studies, corresponding to 19 cohorts and 22 data sets, published between 2000 and 2013 were included in the meta-analyses, with a median prevalence of IA (proven or probable) of 12.0% (range 2.5 to 30.8 %). The majority of people had received chemotherapy for a haematological malignancy or had undergone a hematopoietic stem cell transplant. Several PCR techniques were used among the included studies. The sensitivity and specificity of PCR for the diagnosis of IA varied according to the interpretative criteria used to define a test as positive. The mean sensitivity and specificity were 80.5% (95% CI; 73.0 to 86.3) and 78.5% (67.8 to 86.4) for a single positive test result, and 58.0% (36.5 to 76.8) and 96.2% (89.6 to 98.6) for two consecutive positive test results. AUTHORS' CONCLUSIONS PCR shows moderate diagnostic accuracy when used as screening tests for IA in high-risk patient groups. Importantly the sensitivity of the test confers a high negative predictive value (NPV) such that a negative test allows the diagnosis to be excluded. Consecutive positives show good specificity in diagnosis of IA and could be used to trigger radiological and other investigations or for pre-emptive therapy in the absence of specific radiological signs when the clinical suspicion of infection is high. When a single PCR positive test is used as diagnostic criterion for IA in a population of 100 people with a disease prevalence of 13.0% (overall mean prevalence), three people with IA would be missed (sensitivity 80.5%, 19.5% false negatives), and 19 people would be unnecessarily treated or referred for further tests (specificity of 78.5%, 21.5% false negatives). If we use the two positive test requirement in a population with the same disease prevalence, it would mean that six IA people would be missed (sensitivity 58.0%, 42.1% false negatives) and three people would be unnecessarily treated or referred for further tests (specificity of 96.2%, 3.8% false negatives). Galactamannan and PCR have good NPV for excluding disease but the low prevalence of disease limits the ability to rule in a diagnosis. The biomarkers are detecting different aspects of disease and the combination of both together is likely to be more useful.
Collapse
Affiliation(s)
- Mario Cruciani
- Center of Community Medicine and Infectious Diseases Service, ULSS 20 Verona, Via Germania, 20, Verona, Italy, 37135
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Arvanitis M, Mylonakis E. Diagnosis of invasive aspergillosis: recent developments and ongoing challenges. Eur J Clin Invest 2015; 45:646-52. [PMID: 25851301 DOI: 10.1111/eci.12448] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 04/04/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Invasive aspergillosis is an infection with high morbidity and mortality that affects mostly immunocompromised individuals. Early identification and targeted treatment of the infection is essential to improve survival of affected patients. The purpose of our review is to highlight the most recent developments in diagnosis and screening for invasive aspergillosis (IA) along with the challenges associated with the development and validation of novel diagnostic approaches. METHODS Ovid MEDLINE and The Cochrane library were searched for studies that evaluated serologic, molecular and novel methodologies for the diagnosis of IA. RESULTS Traditional diagnostic approaches, such as histopathology and culture, are still considered the gold standard but lack sufficient sensitivity. Newer serologic techniques, such as galactomannan (GM) and beta-glucan, have already been incorporated into clinical guidelines, but recent evidence suggests that their performance might be limited in certain clinical settings. Molecular methods, such as the Aspergillus spp. polymerase chain reaction (PCR), have not yet found their place in clinical practice mainly due to lack of standardization. Novel methodologies, such as volatile organic compound detection and lateral flow devices, have recently been developed and promise noninvasive and rapid diagnosis of aspergillosis, while diagnostic algorithms that incorporate both GM and PCR have proven to be effective in early randomized trials as screening methods and can reduce the use of antifungal agents. CONCLUSIONS Diagnosis of IA remains challenging. Novel methodologies and the standardization of GM and PCR might provide more reliable diagnostic tools in the future.
Collapse
Affiliation(s)
- Marios Arvanitis
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, USA.,Warren Alpert Medical School of Brown University, Providence, RI, USA.,Internal Medicine Department, Boston Medical Center, Boston, MA, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Rhode Island Hospital, Providence, RI, USA.,Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
15
|
Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 2015; 27:490-526. [PMID: 24982319 DOI: 10.1128/cmr.00091-13] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use.
Collapse
|
16
|
Abstract
Invasive aspergillosis, an infection most frequently induced by Aspergillus fumigatus and Aspergillus flavus, typically occurs in immunocompromised patients and is usually transmitted through inhalation of Aspergillus spores. As the lungs are by far the most common site involved in invasive aspergillosis and invasive aspergillosis in immunocompetent hosts is very rare, there have been a few case reports of extra-pulmonary, disseminated invasive aspergillosis in immunocompetent persons. Herein, we report a case of an adult, male, immunocompetent patient with disseminated invasive aspergillosis that successively spread from the right adrenal gland to the left hepatic lobe. The patient was successfully treated through surgical excisions of his adrenal and hepatic masses followed by voriconazole therapy. To our knowledge, this is the first case report of invasive aspergillosis affecting the adrenal glands.
Collapse
Affiliation(s)
- Liyu Chen
- From the Center for Infectious Diseases, West China Hospital, Sichuan University , Chengdu , China
| | | | | | | |
Collapse
|
17
|
Aguado JM, Vazquez L, Fernandez-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, Silva JT, Batlle M, Solano C, Gallardo D, Heras I, Polo M, Varela R, Vallejo C, Olave T, Lopez-Jimenez J, Rovira M, Parody R, Cuenca-Estrella M, Zarzuela MP, Candel Gonzalez FJ, Amador PM, Mediavilla JD, Camps IR, Barba P, Castillo N, Martin MT, Soriano JA, Fernando IH, Castilla-Llorente C, Cesteros R, Rodriguez Mondejar MR, Vazquez L, Villaescusa T, Caballero D, Garcia JE, Garcia IG, de la Mano Gonzalez S, Fernandez Garcia-Hierro JM, Solano C, Tormo M, Navarro D, Angel Molla M, Vallejo C, Gonzalez AJ, Gonzalez S, Gonzalez AP, Palomo P, Porras RP, Batlle M, Gallardo D, Guardia Sanchez R, Rosario Varela M, Olave Rubio MT, Jimenez JL, Tarrats MR, Grande MSL, Fernandez-Aviles F, Aguado JM, Fernandez-Ruiz M, Silva JT, Cuenca-Estrella M, Buitrago MJ, Amador TM, Bernal-Martinez L. Serum Galactomannan Versus a Combination of Galactomannan and Polymerase Chain Reaction-Based Aspergillus DNA Detection for Early Therapy of Invasive Aspergillosis in High-Risk Hematological Patients: A Randomized Controlled Trial. Clin Infect Dis 2014; 60:405-14. [DOI: 10.1093/cid/ciu833] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Wang L, He Y, Xia Y, Su X, Wang H, Liang S. Retrospective Comparison of Nucleic Acid Sequence–Based Amplification, Real-Time PCR, and Galactomannan Test for Diagnosis of Invasive Aspergillosis. J Mol Diagn 2014; 16:584-590. [DOI: 10.1016/j.jmoldx.2014.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 10/24/2022] Open
|
19
|
PCR in diagnosis of invasive aspergillosis: a meta-analysis of diagnostic performance. J Clin Microbiol 2014; 52:3731-42. [PMID: 25122854 DOI: 10.1128/jcm.01365-14] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Invasive aspergillosis is a difficult-to-diagnose infection with a high mortality rate that affects high-risk groups such as patients with neutropenia and hematologic malignancies. We performed a bivariate meta-analysis of diagnostic data for an Aspergillus sp. PCR assay with blood specimens from high-risk hematology patients. We included all studies involving human subjects that assessed the performance of any PCR assay for invasive aspergillosis in whole blood or serum and that used the European Organization for the treatment of Cancer/Mycoses Study Group criteria as a reference standard. Three investigators independently searched the literature for eligible studies and extracted the data. Out of a total of 37 studies, 25 met strict quality criteria and were included in our evidence synthesis. Twenty-five studies with 2,595 patients were analyzed. The pooled diagnostic performance of whole-blood and serum PCR assays was moderate, with a sensitivity and specificity of 84% (95% confidence interval [CI], 75 to 91%) and 76% (95% CI, 65 to 84%), respectively, suggesting that a positive or negative result is unable, on its own, to confirm or exclude a suspected infection. The performance of a PCR assay of serum was not significantly different from that of whole blood. Notably, at least two positive PCR test results were found to have a specificity of 95% and a sensitivity of 64% for invasive infection, achieving a high positive likelihood ratio of 12.8. Importantly, the European Aspergillus PCR Initiative (EAPCRI) recommendations improved the performance of the PCR even further when at least two positive specimens were used to define PCR positivity. In conclusion, two positive PCR results should be considered highly indicative of an active Aspergillus sp. infection. Use of the EAPCRI recommendations by clinical laboratories can further enhance PCR performance.
Collapse
|
20
|
Chen L, Liu Y, Wang W, Liu K. WITHDRAWN: Adrenal and hepatic aspergillosis in an immunocompetent patient: A case report. IDCases 2014. [DOI: 10.1016/j.idcr.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
21
|
Alanio A, Bretagne S. Difficulties with molecular diagnostic tests for mould and yeast infections: where do we stand? Clin Microbiol Infect 2014; 20 Suppl 6:36-41. [DOI: 10.1111/1469-0691.12617] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Jeddi F, Piarroux R, Mary C. Application of the NucliSENS easyMAG system for nucleic acid extraction: optimization of DNA extraction for molecular diagnosis of parasitic and fungal diseases. ACTA ACUST UNITED AC 2013; 20:52. [PMID: 24331004 PMCID: PMC3859032 DOI: 10.1051/parasite/2013051] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 11/28/2013] [Indexed: 01/29/2023]
Abstract
During the last 20 years, molecular biology techniques have propelled the diagnosis of parasitic diseases into a new era, as regards assay speed, sensitivity, and parasite characterization. However, DNA extraction remains a critical step and should be adapted for diagnostic and epidemiological studies. The aim of this report was to document the constraints associated with DNA extraction for the diagnosis of parasitic diseases and illustrate the adaptation of an automated extraction system, NucliSENS easyMAG, to these constraints, with a critical analysis of system performance. Proteinase K digestion of samples is unnecessary with the exception of solid tissue preparation. Mechanically grinding samples prior to cell lysis enhances the DNA extraction rate of fungal cells. The effect of host-derived nucleic acids on the extraction efficiency of parasite DNA varies with sample host cell density. The optimal cell number for precise parasite quantification ranges from 10 to 100,000 cells. Using the NucliSENS easyMAG technique, the co-extraction of inhibitors is reduced, with an exception for whole blood, which requires supplementary extraction steps to eliminate inhibitors.
Collapse
Affiliation(s)
- Fakhri Jeddi
- Aix-Marseille Université, Faculté de Médecine, UMR MD3, 13284 Marseille, France - APHM, Hôpital de la Timone, Laboratoire de Parasitologie-Mycologie, 13385 Marseille, France
| | - Renaud Piarroux
- Aix-Marseille Université, Faculté de Médecine, UMR MD3, 13284 Marseille, France - APHM, Hôpital de la Timone, Laboratoire de Parasitologie-Mycologie, 13385 Marseille, France
| | - Charles Mary
- Aix-Marseille Université, Faculté de Médecine, UMR MD3, 13284 Marseille, France - APHM, Hôpital de la Timone, Laboratoire de Parasitologie-Mycologie, 13385 Marseille, France
| |
Collapse
|
23
|
Multicenter comparison of serum and whole-blood specimens for detection of Aspergillus DNA in high-risk hematological patients. J Clin Microbiol 2013; 51:1445-50. [PMID: 23426930 DOI: 10.1128/jcm.03322-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Samples from patients at high risk for invasive aspergillosis (IA) were prospectively collected and analyzed for the presence of molecular markers of fungal infection. Serum specimens were screened for galactomannan and Aspergillus DNA, and whole-blood specimens were screened only for Aspergillus DNA. Fungal infections were categorized according to the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group, National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) criteria. Forty-seven cases (proven and probable IA) and 31 controls (no evidence of IA) were selected retrospectively for this case-control study, comprising 803 samples, in order to determine the performance of whole-blood PCR, serum PCR, and serum galactomannan testing. Although no single assay was able to detect every case of IA, a combination of different assays provided the best performance. There was no significant difference between the use of whole-blood and serum specimens for PCR-based diagnosis of IA, but there was a trend for whole blood to be more sensitive (85% versus 79%) and to yield an earlier positive result (36 days versus 15 days) than for serum. However, DNA extraction from serum specimens is easier and faster than that from whole-blood specimens, and it allows the same specimen to be used for both galactomannan and PCR assays. In conclusion, the appropriate sample type for DNA extraction should be determined by the local requirements and the technical platforms available at each individual center. A combination of biomarker tests offered the best diagnostic utility for detecting IA.
Collapse
|
24
|
Cuenca-Estrella M. [Laboratory diagnosis of fungal infection diseases]. Enferm Infecc Microbiol Clin 2012; 30:257-64. [PMID: 22397864 DOI: 10.1016/j.eimc.2012.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/29/2022]
Abstract
A number of newer diagnostic procedures have been developed over the last few years as alternatives to conventional microbiological methods to detect invasive fungal diseases (IFD). This text reviews the performance of alternative methods in clinical settings, and their accuracy compared with that of microscopical examination and microbiological cultures. Some newer techniques considered as complementary and experimental procedures are also reviewed. The text is divided into three sections, including Candida infections, aspergillosis and infections due to rare and emerging fungal species.
Collapse
Affiliation(s)
- Manuel Cuenca-Estrella
- Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, España.
| |
Collapse
|
25
|
Kourkoumpetis TK, Fuchs BB, Coleman JJ, Desalermos A, Mylonakis E. Polymerase chain reaction-based assays for the diagnosis of invasive fungal infections. Clin Infect Dis 2012; 54:1322-31. [PMID: 22362884 DOI: 10.1093/cid/cis132] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Currently accepted fungal diagnostic techniques, such as culture, biopsy, and serology, lack rapidity and efficiency. Newer diagnostic methods, such as polymerase chain reaction (PCR)-based assays, have the potential to improve fungal diagnostics in a faster, more sensitive, and specific manner. Preliminary data indicate that, when PCR-based fungal diagnostic assays guide antifungal therapy, they may lower patient mortality and decrease unnecessary antifungal treatment, improving treatment-associated costs and avoiding toxicity. Moreover, newer PCR techniques can identify antifungal resistance DNA loci, but the clinical correlation between those loci and clinical failure has to be studied further. In addition, future studies need to focus on the implementation of PCR techniques in clinical decision making and on combining them with other diagnostic tests. A consensus on the standardization of PCR techniques, along with validation from large prospective studies, is necessary to allow widespread adoption of these assays.
Collapse
Affiliation(s)
- Themistoklis K Kourkoumpetis
- Department of Medicine, Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston 02214, USA
| | | | | | | | | |
Collapse
|