1
|
Lin F, Han T, Zhang Y, Cheng Y, Xu Z, Mo X, Wang F, Yan C, Sun Y, Wang J, Tang F, Han W, Chen Y, Wang Y, Zhang X, Liu K, Huang X, Xu L. The Incidence, Outcomes, and Risk Factors of Secondary Poor Graft Function in Haploidentical Hematopoietic Stem Cell Transplantation for Acquired Aplastic Anemia. Front Immunol 2022; 13:896034. [PMID: 35615363 PMCID: PMC9124828 DOI: 10.3389/fimmu.2022.896034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 01/05/2023] Open
Abstract
Secondary poor graft function (sPGF) increases the risk of life-threatening complications after hematopoietic stem cell transplantation (HSCT). The incidence, clinical outcomes, and risk factors of sPGF have not been elucidated in haploidentical (haplo-) HSCT for acquired aplastic anemia (AA) patients. We retrospectively reviewed 423 consecutive AA patients who underwent haplo-HSCT between January 2006 and December 2020 and report a 3-year cumulative incidence of 4.62% (95% confidence interval [CI]: 3.92%-10.23%) of sPGF. While no primary PGF occurred. The median time to sPGF was 121 days (range 30-626 days) after transplantation. To clarify the risk factors for sPGF, 17 sPGF cases and 382 without PGF were further analyzed. Compared to patients without PGF, the 2-year overall survival was significantly poorer for sPGF patients (67.7% vs 90.8%, p =.002). Twelve sPGF patients were alive until the last follow-up, and 7 achieved transfusion independency. The multivariable analyses revealed that later neutrophil engraftment (OR 2.819, p=.049) and a history of refractory cytomegalovirus viremia (OR=7.038, p=.002) post-transplantation were associated with sPGF. There was weak evidence that a history of grade 3-4 acute graft-versus-host disease increased the risk of sPGF (p=.063). We advocated better post-transplantation strategies to balance the risk of immunosuppression and viral reactivation for haplo-HSCT in AA patients.
Collapse
Affiliation(s)
- Fan Lin
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Tingting Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuanyuan Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yifei Cheng
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Zhengli Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaodong Mo
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Fengrong Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Chenhua Yan
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuqian Sun
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Jingzhi Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Feifei Tang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Wei Han
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yuhong Chen
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaohui Zhang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Kaiyan Liu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| | - Xiaojun Huang
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
- Peking-Tsinghua Centre for Life Sciences, Beijing, China
| | - Lanping Xu
- Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, National Clinical Research Center for Hematologic Disease, Collaborative Innovation Center of Hematology, Peking University Institute of Hematology, Peking University People’s Hospital, Beijing, China
| |
Collapse
|
3
|
Lino K, Trizzotti N, Carvalho FR, Cosendey RI, Souza CF, Klumb EM, Silva AA, Almeida JR. Pp65 antigenemia and cytomegalovirus diagnosis in patients with lupus nephritis: report of a series. ACTA ACUST UNITED AC 2018; 40:44-52. [PMID: 29796586 PMCID: PMC6533970 DOI: 10.1590/2175-8239-jbn-3838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023]
Abstract
Introduction: In contrast to organ transplantation, few studies correlate the monitoring of
pp65 antigenemia with a diagnosis of cytomegalovirus (CMV) in patients with
systemic lupus erythematosus (SLE). Objective: To highlight the importance of CMV outside transplantation, we monitored pp65
antigenemia in a series of SLE patients. Methods: From March 2015 to March 2016, SLE patients presenting kidney involvement,
fever, and an unclear infection at hospital admission were monitored through
pp65 antigenemia. The pp65 antigenemia assay, revealed by
immunofluorescence, was correlated with clinical and laboratory
findings. Results: We included 19 patients with a suspected unclear infection. A positivity for
pp65 antigenemia was found in seven patients (36.8%). The mean age was 33.5
± 11.2 years, 16 (84%) were females, and 16 (84%) were black. Lymphopenia,
anemia, and higher scores of SLEDAI were significantly more common in
pp65-positive patients. Five patients received antiviral therapy with
ganciclovir. Although receiving specific CMV treatment, one patient died
because of suspected CMV disease. Conclusions: Pp65 antigenemia might be relevant in SLE patients, and studies with a
greater number of patients are needed in order to establish sensitivity and
specificity of pp65 antigenemia in different clinical contexts of SLE
patients.
Collapse
Affiliation(s)
- Katia Lino
- Universidade Federal Fluminense, Niterói, RJ, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Gentile G, Antonelli G. Interplay between β herpesviruses and fungal infections in transplant patients: from the bench to the bedside. Future Virol 2015. [DOI: 10.2217/fvl.15.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT The studies on the interplay between β-herpesviruses (CMV, human herpes viruses 6 and 7) and fungi in immunocompromised hosts, have demonstrated that a detailed knowledge of the interaction between the host and the above infectious agents may have a significant clinical relevance. β-herpesviruses may directly be associated to different pathological conditions and may indirectly be involved in the development of opportunistic infections (e.g., fungal infections), allograft rejection and decreased patient survival. Recent in vitro and in vivo studies have pointed out the importance of the microbiome, exposure to microbes and the innate immune system in determining the risk of developing infections; such microbial interactions may modulate the expression of the infection, change the microbial pathogenicity, or increase the immunosuppression.
Collapse
Affiliation(s)
- Giuseppe Gentile
- Department of Cellular Biotechnologies & Hematology, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|