1
|
Lu W, Qiu Q, Chen K, Zhao R, Li Q, Wu Q. Distribution and Molecular Characterization of Functional Class 2 Integrons in Clinical Proteus mirabilis Isolates. Infect Drug Resist 2022; 15:465-474. [PMID: 35210790 PMCID: PMC8858760 DOI: 10.2147/idr.s347119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Integrons are the main mode of horizontal transmission of drug-resistance genes and are closely related to drug resistance in clinical bacteria. In this study, the distributions of class 1, 2, and 3 integron gene cassettes were investigated in 150 Proteus mirabilis (P. mirabilis) isolates from patients, and molecular characterization of functional class 2 integrons was further analyzed. Methods Class 1, 2, and 3 integrons were screened by polymerase chain reaction (PCR) in 150 clinical P. mirabilis isolates. The variable regions of the integrons were determined by restriction analysis and sequencing. Internal stop codons mutations in class 2 integrons and their common promoters were also determined by sequencing. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) was used to analyze the phylogenetic relations of class 2 integron-positive isolates. Results Class 1 integrons were detected in 69 (46%) of 150 P. mirabilis isolates, and six different gene cassette arrays were detected, with the most prevalent being dfrA32-aadA2. Class 2 integrons were detected in 61 (40.7%) of 150 P. mirabilis isolates, and three different gene cassette arrays were detected, including sat2-aadA1, which was detected for the first time in a class 2 integron. Nearly similar ERIC-PCR fingerprinting patterns were detected in 45 (73.8%) of 61 class 2 integron-positive isolates. The functional class 2 integron was detected in three P. mirabilis isolates having the same gene cassette, dfrA1-sat2-aadA1, in the variable region and four novel open reading frames with unknown functions. Same PintI2 and Pc promoters were detected in these three functional class 2 integron isolates, as was found in other class 2 integron isolates. However, these three strains did not totally show identical homology and drug sensitivity. Conclusion Although functional class 2 integrons have low distribution and relatively conserved molecular characteristics, they can still form clinical dissemination and drug resistance expression.
Collapse
Affiliation(s)
- Wenjun Lu
- Intensive Care Units of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Quedan Qiu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Keda Chen
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Rongqing Zhao
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| | - Qingcao Li
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
- Correspondence: Qingcao Li; Qiaoping Wu, Tel +86-574-55835786, Fax +86-574-55835781, Email ;
| | - Qiaoping Wu
- Clinical Laboratory of Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang Province, People’s Republic of China
| |
Collapse
|
2
|
De Florio L, Riva E, Giona A, Dedej E, Fogolari M, Cella E, Spoto S, Lai A, Zehender G, Ciccozzi M, Angeletti S. MALDI-TOF MS Identification and Clustering Applied to Enterobacter Species in Nosocomial Setting. Front Microbiol 2018; 9:1885. [PMID: 30154783 PMCID: PMC6102349 DOI: 10.3389/fmicb.2018.01885] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/26/2018] [Indexed: 12/22/2022] Open
Abstract
Enterobacter microorganisms cause important bacterial infections in humans. Recently, carbapenem resistant isolates carrying the blaKPC gene were described and their clonal transmission in different nosocomial outbreaks reported. In this study, the relative numbers of Enterobacter species, their antimicrobial susceptibility along 3 years of observation and the identification ability of the two most common MALDI-TOF platforms were evaluated. A clustering analysis was performed to identify changes in the microbial population within the nosocomial environment. Enterobacter were identified using two platforms (MALDI-TOF Biotyper and VITEK MS). Antimicrobial susceptibility was tested by Vitek2 Compact and MIC50 and MIC90 was evaluated using GraphPad software. Clustering analysis was performed by MALDI-TOF and a dendrogram was built with both platforms and compared. The most frequent species isolated were Enterobacter cloacae and Enterobacter aerogenes with a gradual increase of Enterobacter asburiae in 2017. MALDI-TOF platforms showed a very good sensitivity and specificity except for E. asburiae identification that was reliable only by MALDI-TOF MS Biotyper. An increase of resistance for Enterobacter, confirmed by the isolation of extended spectrum beta-lactamase (ESBL) strains and the emergence of E. cloacae multidrug-resistant (MDR) and carbapenem resistant strains, was observed. A clonal route of transmission involving general surgery and geriatric wards was evidenced as previously described for Klebsiella pneumoniae MDR strains in the same nosocomial setting. These data represent an important source of information about the spreading of Enterobacter in the nosocomial environment.
Collapse
Affiliation(s)
- Lucia De Florio
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Elisabetta Riva
- Unit of Virology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Annalisa Giona
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Etleva Dedej
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Marta Fogolari
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| | - Eleonora Cella
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Silvia Spoto
- Internal Medicine Department, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessia Lai
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianguglielmo Zehender
- "L. Sacco" Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, University Campus Bio-Medico of Rome, Rome, Italy
| |
Collapse
|
3
|
Antibiotic combinations for controlling colistin-resistant Enterobacter cloacae. J Antibiot (Tokyo) 2016; 70:122-129. [PMID: 27381521 DOI: 10.1038/ja.2016.77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/16/2016] [Accepted: 05/26/2016] [Indexed: 02/02/2023]
Abstract
Enterobacter cloacae is a Gram-negative bacterium associated with high morbidity and mortality in intensive care patients due to its resistance to multiple antibiotics. Currently, therapy against multi-resistant bacteria consists of using colistin, in spite of its toxic effects at higher concentrations. In this context, colistin-resistant E. cloacae strains were challenged with lower levels of colistin combined with other antibiotics to reduce colistin-associated side effects. Colistin-resistant E. cloacae (ATCC 49141) strains were generated by serial propagation in subinhibitory colistin concentrations. After this, three colistin-resistant and three nonresistant replicates were isolated. The identity of all the strains was confirmed by MALDI-TOF MS, VITEK 2 and MicroScan analysis. Furthermore, cross-resistance to other antibiotics was checked by disk diffusion and automated systems. The synergistic effects of the combined use of colistin and chloramphenicol were observed via the broth microdilution checkerboard method. First, data here reported showed that all strains presented intrinsic resistance to penicillin, cephalosporin (except fourth generation), monobactam, and some associations of penicillin and β-lactamase inhibitors. Moreover, a chloramphenicol and colistin combination was capable of inhibiting the induced colistin-resistant strains as well as two colistin-resistant clinical strains. Furthermore, no cytotoxic effect was observed by using such concentrations. In summary, the data reported here showed for the first time the possible therapeutic use of colistin-chloramphenicol for infections caused by colistin-resistant E. cloacae.
Collapse
|
4
|
Huang LF, Lee CT, Su LH, Chang CL. A Snapshot of Co-Resistance to Carbapenems and Tigecycline in Clinical Isolates of Enterobacter cloacae. Microb Drug Resist 2016; 23:1-7. [PMID: 27136494 DOI: 10.1089/mdr.2015.0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Enterobacter cloacae is one of the most common carbapenem-resistant Enterobacteriaceae (CRE) global wide. Resistance to tigecycline, one of the few therapeutic options for CRE infections, in carbapenem-resistant E. cloacae is of clinical significance. Fourteen E. cloacae clinical isolates (EC1-EC14) co-resistant to tigecycline and carbapenems were studied. Two tigecycline-susceptible/carbapenem-resistant isolates (TS1-TS2) were used for comparison. Genotyping by pulsed-field gel electrophoresis and multilocus sequence typing identified seven pulsotypes and three sequence types (STs). All three STs belonged to the published international clones. Polymerase chain reaction (PCR) and sequence analysis revealed the coexistence of blaSHV-12 and blaIMP-8 in 11 EC isolates from five pulsotypes/two STs. Reverse transcription PCR demonstrated overexpression of the chromosomal AmpC-like β-lactamase in seven EC isolates (four pulsotypes/two STs) and TS1 (pulsotype F/ST78). Reduced expression of outer membrane protein C (OmpC) was found in three EC isolates (all pulsotype C/ST204), whereas reduced expression of OmpF was found in nine EC isolates (three pulsotypes/two STs) and TS2 (pulsotype G/ST114). Overexpression of the efflux pump AcrB was found in all EC isolates although three showed borderline significance. Multiple mechanisms jointly contributed to the observed co-resistance to tigecycline and carbapenems. Some international clones have infiltrated into Taiwan and acquired various resistance traits independently.
Collapse
Affiliation(s)
- Ling-Fu Huang
- 1 Department of Nephrology, Tainan Municipal Hospital , Tainan, Taiwan .,2 Department of Internal Medicine, Tainan Municipal Hospital , Tainan, Taiwan
| | - Chao-Tai Lee
- 3 Department of Clinical Laboratory, Tainan Municipal Hospital , Tainan, Taiwan
| | - Lin-Hui Su
- 4 Department of Laboratory Medicine, Chang Gung Memorial Hospital, Chang Gung University , College of Medicine, Taoyuan, Taiwan
| | - Chin-Lu Chang
- 2 Department of Internal Medicine, Tainan Municipal Hospital , Tainan, Taiwan .,5 Department of Infectious Diseases, Tainan Municipal Hospital , Tainan, Taiwan
| |
Collapse
|
5
|
Mezzatesta ML, Gona F, Stefani S. Enterobacter cloacae complex: clinical impact and emerging antibiotic resistance. Future Microbiol 2014; 7:887-902. [PMID: 22827309 DOI: 10.2217/fmb.12.61] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Species of the Enterobacter cloacae complex are widely encountered in nature, but they can act as pathogens. The biochemical and molecular studies on E. cloacae have shown genomic heterogeneity, comprising six species: Enterobacter cloacae, Enterobacter asburiae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii and Enterobacter nimipressuralis, E. cloacae and E. hormaechei are the most frequently isolated in human clinical specimens. Phenotypic identification of all species belonging to this taxon is usually difficult and not always reliable; therefore, molecular methods are often used. Although the E. cloacae complex strains are among the most common Enterobacter spp. causing nosocomial bloodstream infections in the last decade, little is known about their virulence-associated properties. By contrast, much has been published on the antibiotic-resistance features of these microorganisms. In fact, they are capable of overproducing AmpC β-lactamases by derepression of a chromosomal gene or by the acquisition of a transferable ampC gene on plasmids conferring the antibiotic resistance. Many other resistance determinants that are able to render ineffective almost all antibiotic families have been recently acquired. Most studies on antimicrobial susceptibility are focused on E. cloacae, E. hormaechei and E. asburiae; these studies reported small variations between the species, and the only significant differences had no discriminating features.
Collapse
Affiliation(s)
- Maria Lina Mezzatesta
- Department of Bio-Medical Sciences, Section of Microbiology, University of Catania, Via Androne 81, 95124 Catania, Italy.
| | | | | |
Collapse
|
6
|
Carbapenem Resistance among Enterobacter Species in a Tertiary Care Hospital in Central India. CHEMOTHERAPY RESEARCH AND PRACTICE 2014; 2014:972646. [PMID: 25180095 PMCID: PMC4142386 DOI: 10.1155/2014/972646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/12/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
Objective. To detect genes encoding carbapenem resistance among Enterobacter species in a tertiary care hospital in central India. Methods. Bacterial identification of Enterobacter spp. isolates from various clinical specimens in patients admitted to intensive care units was performed by routine conventional microbial culture and biochemical tests using standard recommended techniques. Antibiotic sensitivity test was performed by standard Kirby Bauer disc diffusion technique. PCR amplification and automated sequencing was carried out. Transfer of resistance genes was determined by conjugation. Results. A total of 70/130 (53.84%) isolates of Enterobacter spp. were found to exhibit reduced susceptibility to imipenem (diameter of zones of inhibition ≤13 mm) by disc diffusion method. Among 70 isolates tested, 48 (68.57%) isolates showed MIC values for imipenem and meropenem ranging from 32 to 64 mg/L as per CLSI breakpoints. All of these 70 isolates were found susceptible to colistin in vitro as per MIC breakpoints (<0.5 mg/L). PCR carried out on these 48 MBL (IP/IPI) E-test positive isolates (12 Enterobacter aerogenes, 31 Enterobacter cloacae, and 05 Enterobacter cloacae complex) was validated by sequencing for beta-lactam resistance genes and result was interpreted accordingly. Conclusion. The study showed MBL production as an important mechanism in carbapenem resistance in Enterobacter spp. and interspecies transfer of these genes through plasmids suggesting early detection by molecular methods.
Collapse
|
7
|
Zhao WH, Hu ZQ. Epidemiology and genetics of VIM-type metallo-β-lactamases in Gram-negative bacilli. Future Microbiol 2011; 6:317-33. [DOI: 10.2217/fmb.11.13] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metallo-β-lactamases (MBLs) are a rapidly evolving group of β-lactamases, which hydrolyze most β-lactams including the carbapenems. Of the known MBLs, VIMs are one of the most common families, with 27 variants detected in at least 23 species of Gram-negative bacilli from more than 40 countries/regions. The amino acid similarities of VIM variants range from 72.9 to 99.6% with 1–72 different residues. Most of the bla VIMs are harbored by a class 1 integron, a genetic platform able to acquire and express gene cassettes. The integrons are usually embedded in transposons and, in turn, accommodated on plasmids, making them highly mobile. Integrons display considerable diversity, with at least 110 different structures associated with the gain and spread of the bla VIMs. In most instances, the bla VIMs co-exist with one or more other resistance genes. The processes for the identification of bacteria harboring bla VIMs are also discussed in this article.
Collapse
Affiliation(s)
| | - Zhi-Qing Hu
- Department of Microbiology & Immunology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142–8555, Japan
| |
Collapse
|