1
|
Xie CX, Hoang U, Smylie J, Aspden C, Button E, Okusi C, Byford R, Ferreira F, Anand S, Agrawal U, Inada-Kim M, Clark T, de Lusignan S. Qualitative evaluation of a molecular point-of-care testing study for influenza in UK primary care. BJGP Open 2024; 8:BJGPO.2024.0112. [PMID: 38981656 PMCID: PMC11687256 DOI: 10.3399/bjgpo.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Influenza contributes to the surge in winter infections and the consequent winter pressures on the health service. Molecular point-of-care testing (POCT) for influenza may improve patient management by providing rapid and accurate clinical diagnosis to inform the timely initiation of antiviral therapy and reduce unnecessary admissions and antibiotics use. AIM To explore factors that influence the adoption or non-adoption of POCT in English general practices and provide insights to enable its integration into routine practice workflows. DESIGN & SETTING A qualitative implementation evaluation was conducted in 10 general practices within the English national sentinel network (Oxford RCGP Research and Surveillance Centre), from April-July 2023. METHOD Using the Non-adoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework, data collection and analysis were conducted across 10 practices. We made ethnographic observations of the POCT workflow and surveyed the practice staff for their perspectives on POCT implementation. Data were analysed using a mix of descriptive statistics, graphical modelling techniques, and framework analysis. RESULTS Ethnographic observations identified the following two modes of POCT integration into practice workflow: (1) clinician POCT workflow, which typically involved batch testing owing to time constraints; and (2) research nurse or healthcare assistant POCT workflow, which was characterised by immediate testing of individual patients. Survey data indicated that most primary care staff considered the POCT training offered was sufficient and these practices were ready for change. Some participants agreed that there was the capacity and resources to integrate POCT into workflows. It was uncertain as to whether POCT required changes to organisational routines and processes. CONCLUSION General practices should demonstrate flexibility in the workflow and workforce they deploy to integrate POCT into routine clinical workflow.
Collapse
Affiliation(s)
- Charis Xuan Xie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
- Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Uy Hoang
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Jessica Smylie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Carole Aspden
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Elizabeth Button
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Cecilia Okusi
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Rachel Byford
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Filipa Ferreira
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sneha Anand
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Utkarsh Agrawal
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Matthew Inada-Kim
- Royal Hampshire County Hospital, Hampshire Hospitals Foundation Trust, Winchester, UK
| | - Tristan Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Simon de Lusignan
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Zhang XL, Zhang X, Hua W, Xie ZD, Liu HM, Zhang HL, Chen BQ, Chen Y, Sun X, Xu Y, Shu SN, Zhao SY, Shang YX, Cao L, Jia YH, Lin LN, Li J, Hao CL, Dong XY, Lin DJ, Xu HM, Zhao DY, Zeng M, Chen ZM, Huang LS. Expert consensus on the diagnosis, treatment, and prevention of respiratory syncytial virus infections in children. World J Pediatr 2024; 20:11-25. [PMID: 38064012 PMCID: PMC10828005 DOI: 10.1007/s12519-023-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading global cause of respiratory infections and is responsible for about 3 million hospitalizations and more than 100,000 deaths annually in children younger than 5 years, representing a major global healthcare burden. There is a great unmet need for new agents and universal strategies to prevent RSV infections in early life. A multidisciplinary consensus development group comprising experts in epidemiology, infectious diseases, respiratory medicine, and methodology aims to develop the current consensus to address clinical issues of RSV infections in children. DATA SOURCES The evidence searches and reviews were conducted using electronic databases, including PubMed, Embase, Web of Science, and the Cochrane Library, using variations in terms for "respiratory syncytial virus", "RSV", "lower respiratory tract infection", "bronchiolitis", "acute", "viral pneumonia", "neonatal", "infant" "children", and "pediatric". RESULTS Evidence-based recommendations regarding diagnosis, treatment, and prevention were proposed with a high degree of consensus. Although supportive care remains the cornerstone for the management of RSV infections, new monoclonal antibodies, vaccines, drug therapies, and viral surveillance techniques are being rolled out. CONCLUSIONS This consensus, based on international and national scientific evidence, reinforces the current recommendations and integrates the recent advances for optimal care and prevention of RSV infections. Further improvements in the management of RSV infections will require generating the highest quality of evidence through rigorously designed studies that possess little bias and sufficient capacity to identify clinically meaningful end points.
Collapse
Affiliation(s)
- Xian-Li Zhang
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Xi Zhang
- Clinical Research Unit, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Hua
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Zheng-De Xie
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Han-Min Liu
- Department of Pediatric Pulmonology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hai-Lin Zhang
- Department of Pediatric Pulmonology, the Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bi-Quan Chen
- Department of Infectious Disease, Anhui Provincial Children's Hospital, Hefei, China
| | - Yuan Chen
- Department of Pediatrics, the Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Xu
- Department of Infectious Disease, Guangzhou Women and Children's Medicine Center, Guangzhou Medicine University, Guangzhou, China
| | - Sai-Nan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun-Ying Zhao
- Department of Respiratory Disease, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yun-Xiao Shang
- Department of Pediatric Respiratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ling Cao
- Respiratory Department, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yan-Hui Jia
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Luo-Na Lin
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China
| | - Jiong Li
- Department of Clinical Epidemiology, Aarhus University, Aarhus, Denmark
| | - Chuang-Li Hao
- Department of Respirology, Children's Hospital of Soochow University, Suzhou, China
| | - Xiao-Yan Dong
- Department of Respiratory, Children's Hospital of Shanghai, Children's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dao-Jiong Lin
- Department of Infectious Disease, Hainan Women and Children's Medical Center, Haikou, China
| | - Hong-Mei Xu
- Department of Infectious Disease, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - De-Yu Zhao
- Department of Respiratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| | - Zhi-Min Chen
- Department of Respiratory Diseases, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China.
| | - Li-Su Huang
- Department of Infectious Disease, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Binjiang District, Hangzhou, 310052, China.
| |
Collapse
|
3
|
Abstract
The practical challenges of point-of-care testing (POCT) include analytical performance and quality compared with testing performed in a central laboratory and higher cost per test compared with laboratory-based tests. These challenges can be addressed with new test technology, consensus, and practice guidelines for the use of POCT, instituting a quality management system and data connectivity in the POCT setting, and studies that demonstrate evidence of clinical and economic value of POCT.
Collapse
Affiliation(s)
- Daniel A Ortiz
- Microbiology and Molecular Pathology, Department of Pathology, Oakland University William Beaumont School of Medicine, Beaumont Health, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | | |
Collapse
|
4
|
Bernstein DI, Mejias A, Rath B, Woods CW, Deeter JP. Summarizing Study Characteristics and Diagnostic Performance of Commercially Available Tests for Respiratory Syncytial Virus: A Scoping Literature Review in the COVID-19 Era. J Appl Lab Med 2023; 8:353-371. [PMID: 35854475 PMCID: PMC9384538 DOI: 10.1093/jalm/jfac058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/07/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Nonpharmaceutical interventions to prevent the spread of coronavirus disease 2019 also decreased the spread of respiratory syncytial virus (RSV) and influenza. Viral diagnostic testing in patients with respiratory tract infections (RTI) is a necessary tool for patient management; therefore, sensitive and specific tests are required. This scoping literature review aimed to summarize the study characteristics of commercially available sample-to-answer RSV tests. CONTENT PubMed and Embase were queried for studies reporting on the diagnostic performance of tests for RSV in patients with RTI (published January 2005-January 2021). Information on study design, patient and setting characteristics, and published diagnostic performance of RSV tests were extracted from 77 studies that met predefined inclusion criteria. A literature gap was identified for studies of RSV tests conducted in adult-only populations (5.3% of total subrecords) and in outpatient (7.5%) or household (0.8%) settings. Overall, RSV tests with analytical time >30 min had higher published sensitivity (62.5%-100%) vs RSV tests with analytical time ≤30 min (25.7%-100%); this sensitivity range could be partially attributed to the different modalities (antigen vs molecular) used. Molecular-based rapid RSV tests had higher published sensitivity (66.7%-100%) and specificity (94.3%-100%) than antigen-based RSV tests (sensitivity: 25.7%-100%; specificity:80.3%-100%). SUMMARY This scoping review reveals a paucity of literature on studies of RSV tests in specific populations and settings, highlighting the need for further assessments. Considering the implications of these results in the current pandemic landscape, the authors preliminarily suggest adopting molecular-based RSV tests for first-line use in these settings.
Collapse
Affiliation(s)
- David I Bernstein
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Asuncion Mejias
- Department of Pediatrics, Division of Infectious Diseases, Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, USA
- Center for Vaccines and Immunity, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Barbara Rath
- Vienna Vaccine Safety Initiative, Berlin, Germany
- Université de Bourgogne Franche-Comté, Besançon, France
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
| | - Christopher W Woods
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Infectious Diseases Division, Duke University Medical Center, Durham, NC, USA
| | - Jamie Phillips Deeter
- ESCMID Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland
- Roche Diagnostics Corporation, Indianapolis, IN, USA
| |
Collapse
|
5
|
Banerjee D, Hassan F, Avadhanula V, Piedra PA, Boom J, Sahni LC, Weinberg GA, Lindstrom S, Rha B, Harrison CJ, Selvarangan R. Comparative analysis of three multiplex platforms for the detection of respiratory viral pathogens. J Clin Virol 2022; 156:105274. [PMID: 36099751 DOI: 10.1016/j.jcv.2022.105274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Acute viral respiratory infections are a major health burden in children worldwide. In recent years, rapid and sensitive multiplex nucleic acid amplification tests (NAATs) have replaced conventional methods for routine virus detection in the clinical laboratory. OBJECTIVE/STUDY DESIGN We compared BioFire® FilmArray® Respiratory Panel (FilmArray V1.7), Luminex NxTag® Respiratory Pathogen Panel (NxTag RPP) and Applied Biosystems TaqMan Array Card (TAC) for the detection of eight viruses in pediatric respiratory specimens. Results from the three platforms were analyzed with a single-plex real-time RT-PCR (rRT-PCR) assay for each virus. RESULTS Of the 170/210 single-plex virus-positive samples, FilmArray detected a virus in 166 (97.6%), TAC in 163 (95.8%) and NxTag RPP in 160 (94.1%) samples. The Positive Percent Agreement (PPA) of FilmArray, NxTag RPP and TAC was highest for influenza B (100%, 100% and 95.2% respectively) and lowest for seasonal coronaviruses on both FilmArray (90.2%) and NxTag RPP (81.8%), and for parainfluenza viruses 1- 4 on TAC (84%). The Negative Percent Agreement (NPA) was lowest for rhinovirus/enterovirus (92.9%, 96.7% and 97.3%) on FilmArray, NxTag RPP and TAC respectively. NPA for all three platforms was highest (100%) for both parainfluenza viruses 1- 4 and influenza A and B, and 100% for human metapneumovirus with TAC as well. CONCLUSION All three multiplex platforms displayed high overall agreement (>90%) and high NPA (>90%), while PPA was pathogen dependent and varied among platforms; high PPA (>90%) was observed for FilmArray for all eight viruses, TAC for six viruses and NxTag RPP for 4 viruses.
Collapse
Affiliation(s)
- Dithi Banerjee
- Children's Mercy Hospital, Kansas City, MO, United States of America
| | - Ferdaus Hassan
- Children's Mercy Hospital, Kansas City, MO, United States of America
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Pedro A Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America; Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America
| | - Julie Boom
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Immunization Project, Baylor College of Medicine, Houston, TX, United States of America
| | - Leila C Sahni
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States of America; Texas Children's Hospital, Immunization Project, Baylor College of Medicine, Houston, TX, United States of America
| | - Geoffrey A Weinberg
- University of Rochester School of Medicine & Dentistry, Rochester, NY, United States of America
| | - Stephen Lindstrom
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | - Brian Rha
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States of America
| | | | | |
Collapse
|
6
|
Yin H, Tong Z, Shen C, Xu X, Ma H, Wu Z, Qi Y, Mao H. Micro-PCR chip-based multifunctional ultrafast SARS-CoV-2 detection platform. LAB ON A CHIP 2022; 22:2671-2681. [PMID: 35543190 DOI: 10.1039/d2lc00101b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
When dealing with infectious pathogens, the point-of-care screening and diagnosis strategy should be low-cost, simple, rapid and accurate. Here, we report a multifunctional rapid PCR platform allowing both simultaneous screening of suspected cases and accurate identification and quantification of the virus. Based on the platform, samples suspected of being infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are screened first, after which subsequent precise quantification of the virus (SARS-CoV-2) can be performed if necessary. This fast screening technique offers a detection limit of 10 nucleic acid copies per test during the entire running time of 15 minutes, with a throughput of 9 samples at a time. Besides, depending on a droplet microfluidic chip, this platform could also provide assays of nucleic acids across four orders of magnitude of concentration within less than 15 minutes. Additionally, we successfully use the platform to quickly distinguish between positive and negative cases in clinical samples and rapidly quantify the viral load in each sample, which is consistent with standard RT-qPCR tests. As such, we demonstrate a promising and versatile rapid PCR platform for point-of-care diagnosis of infectious diseases.
Collapse
Affiliation(s)
- Hao Yin
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Yong Qi
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, Jiangsu, 210000, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Direct PCR with the CDC 2019 SARS-CoV-2 assay: optimization for limited-resource settings. Sci Rep 2022; 12:11756. [PMID: 35817781 PMCID: PMC9272867 DOI: 10.1038/s41598-022-15356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/15/2022] [Indexed: 12/03/2022] Open
Abstract
PCR-based diagnostics generally require nucleic acid extraction from patient specimens prior to amplification. As highlighted early in the COVID-19 pandemic, extraction steps may be difficult to scale during times of massive demand and limited reagent supply. Forgoing an extraction step, we previously reported that the N1 primer/probe-set of the widespread CDC COVID-19 assay maintains high categorical sensitivity (95%) and specificity (100%) with direct inoculation of viral transport media (VTM) into qRT-PCR reactions. In contrast, the N2 set demonstrated a prominent Ct delay and low sensitivity (33%) without extraction. In the current study, we have improved the performance of this modified CDC assay (in particular the N2 set) by incorporating N1/N2/RNase P multiplexing and dissecting the effects of annealing temperature, VTM interference, and inoculum volume. The latter two factors exerted a more prominent effect on the performance of N2 than N1, although these effects were largely overcome through elevated annealing temperature. This unextracted/multiplex protocol was evaluated with 41 SARS-CoV-2 positive and 43 negative clinical samples, demonstrating a categorical sensitivity of 92.7% and specificity of 100% versus the unmodified CDC methodology. Overall, this work offers a generalizable strategy to maximize testing capabilities for COVID-19 or other emerging pathogens when resources are constrained.
Collapse
|
8
|
Gong L, Wang X, Li Z, Huang G, Zhang W, Nie J, Wu C, Liu D. Integrated Trinity Test With RPA-CRISPR/Cas12a-Fluorescence for Real-Time Detection of Respiratory Syncytial Virus A or B. Front Microbiol 2022; 13:819931. [PMID: 35432263 PMCID: PMC9008541 DOI: 10.3389/fmicb.2022.819931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common virus that causes respiratory infection, especially severe respiratory infection in infants and young children, the elderly people over 65 years old, and people with weak immunity. Currently, RSV infection has no effective vaccine and antiviral treatment. The number of deaths due to RSV infection increases every year. Moreover, RSV A infection occurs in a large number and has severe clinical symptoms and complications than RSV B infection. Therefore, the development of a simple, rapid, and inexpensive detection method with high amplification efficiency, high sensitivity, and specificity is very important for the diagnosis of RSV A or RSV B infection, which can help in the early clinical medication and prevent the progress of the disease. Therefore, we developed an integrated trinity test with an RPA-CRISPR/Cas12a-fluorescence (termed IT-RAISE) assay system to detect RSV A or RSV B. The characteristic of the IT-RAISE system is that after target recognition, the reporter single-stranded DNA (ssDNA) is cleaved by Cas12a that is activated by different crRNAs to detect the generated fluorescent signal. This method is simple and helps in adding all reagents rapidly. It is a high-sensitive method that can detect 1.38 × 101 copies/μl of the target sequences, and it can distinguish RSV A or RSV B infection within 37 min. In addition, clinical specimens were detected for IT-RAISE system. It was found that the sensitivity and specificity of RSV A were 73.08 and 90%, respectively, and those of RSV B were 42.86 and 93.33%, respectively. The cost of ONE specimen for IT-RAISE system was approximately $ 2.6 (excluding rapid RNA extraction and reverse transcription costs). IT-RAISE system has good clinical application prospects for detecting RSV A or RSV B infection; it is a simple, rapid, and inexpensive method with high amplification efficiency, high sensitivity, and high specificity. The IT-RAISE system might also detect other viral or bacterial infections.
Collapse
Affiliation(s)
- Ling Gong
- The First Clinical Medical College, Jinan University, Guangzhou, China
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Xiaowen Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Zhu Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Guichuan Huang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Wei Zhang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Jin Nie
- Department of Respiratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chunyan Wu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, China
| | - Daishun Liu
- Department of Basic Medicine, Zunyi Medical University, Zunyi, China
- *Correspondence: Daishun Liu, , orcid.org/0000-0002-8889-2909
| |
Collapse
|
9
|
Lin X, Gu J. A biochemiluminescent assay for rapid diagnosis of influenza. Clin Exp Med 2022; 22:577-581. [PMID: 35001207 DOI: 10.1007/s10238-021-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
A biochemiluminescent assay of influenza diagnosis is presented. The assay diagnoses influenza based on detection of the influenza viral neuraminidase activity. An instrument designed for the assay is also reported. This assay solves the problem that current influenza virus diagnosis assays are susceptible to virus mutation. A luciferase-based complex is synthesized as biochemiluminescent substrate. The substrate is cleaved to free luciferin with presence of influenza neuraminidase in specimen. Luciferase is oxidized to oxyluciferin with luciferin as catalyzer resulting in luminescence, which is proportional to the neuraminidase activity and measured by instrument. The instrument uses a photomultiplier tube as sensor, with 24 test channels. Fine optical arrangements enable the instrument with high sensitivity and accuracy. A total of 389 clinical specimens were collected to evaluate the performance of the assay in clinical settings. This assay had a sensitivity and specificity of 95.92% (95% confidence interval 91.38-98.12%) and 97.93% (95% confidence interval 95.26-99.11%), respectively, compared to the colloidal gold assay. As a biochemiluminscence assay, this assay is advantageous in sensitivity and specificity. It does not require any washing or separation steps, which makes the instrument simple in design and easy to operate or maintenance. The assay is suitable for the rapid diagnosis of influenza virus in point-of-care settings.
Collapse
Affiliation(s)
- Xuexiang Lin
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia Gu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
10
|
Clinical performance of the Xpert® Xpress Flu/RSV assay for the detection of Influenza A, B, and respiratory syncytial virus on ESwab™ medium. JOURNAL OF CLINICAL VIROLOGY PLUS 2022. [DOI: 10.1016/j.jcvp.2022.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Ultrafast bacterial cell lysis using a handheld corona treater and loop-mediated isothermal amplification for rapid detection of foodborne pathogens. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Loevinsohn G, Hamahuwa M, Sinywimaanzi P, Fenstermacher KZJ, Shaw-Saliba K, Pekosz A, Monze M, Rothman RE, Simulundu E, Thuma PE, Sutcliffe CG. Facility-based surveillance for influenza and respiratory syncytial virus in rural Zambia. BMC Infect Dis 2021; 21:986. [PMID: 34548020 PMCID: PMC8453466 DOI: 10.1186/s12879-021-06677-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND While southern Africa experiences among the highest mortality rates from respiratory infections, the burden of influenza and respiratory syncytial virus (RSV) in rural areas is poorly understood. METHODS We implemented facility-based surveillance in Macha, Zambia. Outpatients and inpatients presenting with influenza-like illness (ILI) underwent testing for influenza A, influenza B, and RSV and were prospectively followed for 3 to 5 weeks to assess clinical course. Log-binomial models assessed correlates of infection and clinical severity. RESULTS Between December 2018 and December 2019, 17% of all outpatients presented with ILI and 16% of inpatients were admitted with an acute respiratory complaint. Influenza viruses and RSV were detected in 17% and 11% of outpatient participants with ILI, and 23% and 16% of inpatient participants with ILI, respectively. Influenza (July-September) and RSV (January-April) prevalence peaks were temporally distinct. RSV (relative risk [RR]: 1.78; 95% confidence interval [CI] 1.51-2.11), but not influenza, infection was associated with severe disease among patients with ILI. Underweight patients with ILI were more likely to be infected with influenza A (prevalence ratio [PR]: 1.72; 95% CI 1.04-2.87) and to have severe influenza A infections (RR: 2.49; 95% CI 1.57-3.93). CONCLUSIONS Populations in rural Zambia bear a sizeable burden of viral respiratory infections and severe disease. The epidemiology of infections in this rural area differs from that reported from urban areas in Zambia.
Collapse
Affiliation(s)
- Gideon Loevinsohn
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6535, Baltimore, MD, 21205, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Pekosz
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mwaka Monze
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Philip E Thuma
- Macha Research Trust, Macha, Choma, Zambia
- Department of Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Catherine G Sutcliffe
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, 615 N. Wolfe Street, Room E6535, Baltimore, MD, 21205, USA.
| |
Collapse
|
13
|
Benedetti G, Krause TG, Schneider UV, Lisby JG, Voldstedlund M, Bang D, Trebbien R, Emborg HD. Spotlight influenza: Influenza surveillance before and after the introduction of point-of-care testing in Denmark, season 2014/15 to 2018/19. Euro Surveill 2021; 26. [PMID: 34533117 PMCID: PMC8447826 DOI: 10.2807/1560-7917.es.2021.26.37.2000724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background In Denmark, influenza surveillance is ensured by data capturing from existing population-based registers. Since 2017, point-of-care (POC) testing has been implemented outside the regional clinical microbiology departments (CMD). Aim We aimed to assess influenza laboratory results in view of the introduction of POC testing. Methods We retrospectively observed routine surveillance data on national influenza tests before and after the introduction of POC testing as available in the Danish Microbiological Database. Also, we conducted a questionnaire study among Danish CMD about influenza diagnostics. Results Between the seasons 2014/15 and 2018/19, 199,744 influenza tests were performed in Denmark of which 44,161 were positive (22%). After the introduction of POC testing, the overall percentage of positive influenza tests per season did not decrease. The seasonal influenza test incidence was higher in all observed age groups. The number of operating testing platforms placed outside a CMD and with an instrument analytical time ≤ 3 h increased after 2017. Regionally, the number of tests registered as POC in the Danish Microbiological Database and the number of tests performed with an instrument analytical time ≤ 3 h or outside a CMD partially differed. Where comparable (71% of tests), the relative proportion of POC tests out of all tests increased from season 2017/18 to 2018/19. In both seasons, the percentage of positive POC tests resulted slightly lower than for non-POC tests. Conclusion POC testing integrated seamlessly into national influenza surveillance. We propose the use of POC results in the routine surveillance of seasonal influenza.
Collapse
Affiliation(s)
- Guido Benedetti
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Tyra Grove Krause
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark
| | - Marianne Voldstedlund
- Department of Data Integration and Analysis, Statens Serum Institut, Copenhagen, Denmark
| | - Didi Bang
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark
| | - Ramona Trebbien
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Hanne-Dorthe Emborg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| |
Collapse
|
14
|
Liu YL, Xie TA, Lin GL, Deng W, Lin QR, Pan ZY, Fan SJ, Li ZX, Ouyang S, Zhu GD, Ji TX, Wu LJ, Xia Y, Guo XG. Diagnostic accuracy of Xpert Xpress Flu/RSV for detection of Influenza and Respiratory syncytial virus. Jpn J Infect Dis 2021; 75:183-191. [PMID: 34053954 DOI: 10.7883/yoken.jjid.2020.987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Xpert Xpress Flu/RSV is a fast and automated real-time nucleic acid amplification tool for detecting influenza virus and respiratory syncytial virus (RSV). The aim of this study was to verify the accuracy of Xpert Xpress Flu/RSV in detecting influenza virus and RSV. PubMed, EMBASE, Cochrane Library, and Web of Science were searched up to October 2020. The quality of original research was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 guidelines. Meta-DiSc 1.4 software was used to analyze the sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and Summary receiver operating characteristic curve. Deek's funnel plot asymmetry test was used to evaluate the publication bias by Stata 12.0. Ten studies with 25 fourfold tables were included in this analysis. The sensitivity of Xpert Xpress Flu/RSV in detecting influenza A, influenza B, and RSV was 0.97, 0.98, 0.96, respectively, and the specificity was 0.97, 1.00, 1.00, respectively. Compared with other common clinical real-time reverse transcriptase PCR (RT-PCR), Xpert Xpress Flu/RSV is a valuable tool for diagnosing influenza virus and RSV with high sensitivity and specificity.
Collapse
Affiliation(s)
- Ye-Ling Liu
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Tian-Ao Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Geng-Ling Lin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Wei Deng
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Qin-Rong Lin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Zhi-Yong Pan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Shu-Jin Fan
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China
| | - Zhen-Xing Li
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China
| | - Shi Ouyang
- Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, China
| | - Guo-Dong Zhu
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, China
| | - Tian-Xing Ji
- Department of Clinical Medicine, The Second Affiliated Hospital of Guangzhou Medical University, China
| | - Li-Juan Wu
- Baoan Maternal and Child Health Hospital of Jinan University, China
| | - Yong Xia
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, China.,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, China
| |
Collapse
|
15
|
Zhao X, Meng Y, Li D, Feng Z, Huang W, Li X, Wei H, Zeng X, Wang D. Retrospective study of clinical characteristics and viral etiologies of patients with viral pneumonia in Beijing. Pulm Circ 2021; 11:20458940211011027. [PMID: 34221349 PMCID: PMC8221751 DOI: 10.1177/20458940211011027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/30/2021] [Indexed: 12/31/2022] Open
Abstract
Aims The virus is common in patients with viral pneumonia. However, the viral etiology and clinical features of patients with viral pneumonia in China remain unclear. The main purpose of this study was to analyze the viral causes and epidemiology of patients with viral pneumonia in Beijing, which can significantly improve the pertinence and accuracy of clinical treatment of the disease. Methods Firstly, 1539 respiratory specimens of pneumonia (oropharyngeal swabs, nasopharyngeal swabs, saliva samples and bronchoalveolar lavage fluid) were collected from 19 hospitals in Beijing from September 2015 to August 2018. Then, TaqMan low-density microfluidic chip technology was used to detect viral pneumonia specimens in 1539 respiratory tract specimens of pneumonia and determine the types of viral bacteria in them. Lastly, the analysis of demographic, clinical and etiological data of patients with viral pneumonia was performed. Results The results showed that among the 1539 respiratory tract specimens with pneumonia, 760 were detected as viral pneumonia specimens, with a positive rate of 49.4%. Among which, 467 were infected with mono-viral and 293 were infected with multi-viral. Influenza A virus (Flu A), mycoplasma pneumoniae (MPn), Ebola virus (EBV) and herpes simplex virus type 1 (HSV-1) were the major viral components in the samples of these patients. Furthermore, these viral species were significantly associated with sample sources, onset season and certain clinical characteristics. Discussion Our findings may provide corresponding treatment strategies for viral pneumonia patients infected with specific viruses.
Collapse
Affiliation(s)
- Xiang Zhao
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Yao Meng
- Department of Influenza, Shaanxi Provincial Center for Disease Control and Prevention, Xian City, PR China
| | - Duo Li
- Department of Influenza, Yunnan Provincial Center for Disease Control and Prevention, Kunming City, PR China
| | - Zhaomin Feng
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Weijuan Huang
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Xiyan Li
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Hejiang Wei
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Xiaoxu Zeng
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| | - Dayan Wang
- Department of Influenza, WHO Collaborating Centre for Reference and Research on Influenza, Chinese National Influenza Centre, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, PR China
| |
Collapse
|
16
|
Teirlinck AC, Broberg EK, Berg AS, Campbell H, Reeves RM, Carnahan A, Lina B, Pakarna G, Bøås H, Nohynek H, Emborg HD, Nair H, Reiche J, Oliva JA, Gorman JO, Paget J, Szymanski K, Danis K, Socan M, Gijon M, Rapp M, Havlíčková M, Trebbien R, Guiomar R, Hirve SS, Buda S, van der Werf S, Meijer A, Fischer TK. Recommendations for respiratory syncytial virus surveillance at national level. Eur Respir J 2021; 58:13993003.03766-2020. [PMID: 33888523 PMCID: PMC8485062 DOI: 10.1183/13993003.03766-2020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Respiratory syncytial virus (RSV) is a common cause of acute lower respiratory tract infections and hospitalisations among young children and is globally responsible for many deaths in young children, especially in infants aged <6 months. Furthermore, RSV is a common cause of severe respiratory disease and hospitalisation among older adults. The development of new candidate vaccines and monoclonal antibodies highlights the need for reliable surveillance of RSV. In the European Union (EU), no up-to-date general recommendations on RSV surveillance are currently available. Based on outcomes of a workshop with 29 European experts in the field of RSV virology, epidemiology and public health, we provide recommendations for developing a feasible and sustainable national surveillance strategy for RSV that will enable harmonisation and data comparison at the European level. We discuss three surveillance components: active sentinel community surveillance, active sentinel hospital surveillance and passive laboratory surveillance, using the EU acute respiratory infection and World Health Organization (WHO) extended severe acute respiratory infection case definitions. Furthermore, we recommend the use of quantitative reverse transcriptase PCR-based assays as the standard detection method for RSV and virus genetic characterisation, if possible, to monitor genetic evolution. These guidelines provide a basis for good quality, feasible and affordable surveillance of RSV. Harmonisation of surveillance standards at the European and global level will contribute to the wider availability of national level RSV surveillance data for regional and global analysis, and for estimation of RSV burden and the impact of future immunisation programmes. Recommendations for developing a feasible and sustainable national surveillance strategy for respiratory syncytial virus that will enable harmonisation and data comparison at the European level.https://bit.ly/3rWUOOI
Collapse
Affiliation(s)
- Anne C Teirlinck
- National Institute for Public Health and the Environment (RIVM) - Centre for Infectious Disease Control, Bilthoven, the Netherlands
| | - Eeva K Broberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | | | | | | | | | | | - Håkon Bøås
- Norwegian Institute of Public Health, Oslo, Norway
| | - Hanna Nohynek
- Finnish National Institute for Health and Welfare, Finland
| | | | - Harish Nair
- Usher Institute, University of Edinburgh, Edinburgh, UK
| | | | - Jesus Angel Oliva
- Instituto de Salud Carlos III Madrid, CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - John Paget
- Netherlands Institute for Health Services Research (Nivel), Utrecht, the Netherlands
| | | | - Kostas Danis
- Santé publique France (SpFrance), the French national public health agency, Saint-Maurice, France
| | - Maja Socan
- Public Health Institute, Ljubljana, Slovenia
| | | | - Marie Rapp
- Public Health Agency Stockholm, Solna, Sweden
| | | | | | | | | | | | | | - Adam Meijer
- National Institute for Public Health and the Environment (RIVM) - Centre for Infectious Disease Control, Bilthoven, the Netherlands
| | - Thea K Fischer
- Statens Serum Institut, Copenhagen, Denmark.,Department of Clinical Research, Nordsjaellands Hospital, Hilleroed, Denmark and Department of Global Health and Infectious Diseases, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
17
|
Clark TW, Beard KR, Brendish NJ, Malachira AK, Mills S, Chan C, Poole S, Ewings S, Cortes N, Nyimbili E, Presland L. Clinical impact of a routine, molecular, point-of-care, test-and-treat strategy for influenza in adults admitted to hospital (FluPOC): a multicentre, open-label, randomised controlled trial. THE LANCET. RESPIRATORY MEDICINE 2021; 9:419-429. [PMID: 33285143 PMCID: PMC9764870 DOI: 10.1016/s2213-2600(20)30469-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Diagnosis of influenza in patients admitted to hospital is delayed due to long turnaround times with laboratory testing, leading to inappropriate and late antiviral treatment and isolation facility use. Molecular point-of-care tests (mPOCTs) are highly accurate, easy to use, and generate results in less than 1 h, but high-quality evidence for their effect on management and clinical outcomes is needed. The aim of this study was to assess the clinical impact of an mPOCT on influenza detection, antiviral use, infection control measures, and clinical outcomes in adults admitted to hospital with acute respiratory illness. METHODS In this multicentre, pragmatic, open-label, randomised controlled trial (FluPOC), we recruited adults admitted to hospital with acute respiratory illness during influenza seasons from two hospitals in Hampshire, UK. Eligible patients were aged 18 years and older, with acute respiratory illness of 10 days or fewer duration before admission to hospital, who were recruited within 16 h of admission to hospital. Participants were randomly assigned (1:1), using random permuted blocks of varying sizes (4, 6 and 8), to receive mPOCT for influenza or routine clinical care (control group). The primary outcome was the proportion of patients infected with influenza who were treated appropriately with antivirals (neuraminidase inhibitors) within 5 days of admission. Safety was assessed in all patients. Secondary outcomes included time to antivirals, isolation facility use, and clinical outcomes. This study is registered with the ISRCTN registry, ISRCTN17197293, and is now complete. FINDINGS Between Dec 12, 2017, and May 3, 2019, over two influenza seasons, 613 patients were enrolled, of whom 307 were assigned to the mPOCT group and 306 to the control group, and all were analysed. Median age was 62 years (IQR 45-75) and 332 (54%) of 612 participants with data were female. 100 (33%) of 307 patients in the mPOCT group and 102 (33%) of 306 in the control group had influenza. 100 (100%) of 100 patients with influenza were diagnosed in the mPOCT group and 60 (59%) of 102 were diagnosed though routine clinical care in the control group (relative risk 1·7, 95% CI 1·7-1·7; p<0·0001). 99 (99%) of 100 patients with influenza in the mPOCT group were given antiviral treatment within 5 days of admission versus 63 (62%) 102 in the control group (relative risk 1·6, 95% CI 1·4-1·9; p<0·0001). Median time to antivirals was 1·0 h (IQR 0·0 to 2·0) in the mPOCT group versus 6·0 h (0·0 to 12·0) in the control group (difference of 5·0 h [95% CI 0·0-6·0; p=0·0039]). 70 (70%) of 100 patients with influenza in the mPOCT group were isolated to single-room accommodation versus 39 (38%) of 102 in the control group (relative risk 1·8 [95% CI 1·4-2·4; p<0·0001]). 19 adverse events occurred among patients with influenza in the mPOCT group compared with 34 events in the control group. No patients with influenza died in the mPOCT group and two (2%) died in the control group (p=0·16). INTERPRETATION Routine mPOCT for influenza was associated with improved influenza detection and improvements in appropriate and timely antiviral and isolation facility use. Routine mPOCT should replace laboratory-based diagnostics for acute admissions to hospital during the influenza season. FUNDING National Institute for Health Research.
Collapse
Affiliation(s)
- Tristan W Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Kate R Beard
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Nathan J Brendish
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ahalya K Malachira
- Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Samuel Mills
- Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Cathleen Chan
- Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Stephen Poole
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK; Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sean Ewings
- School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nick Cortes
- Department of Microbiology, Hampshire Hospitals Foundation NHS Trust, Winchester, UK
| | - Esther Nyimbili
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Laura Presland
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
18
|
Zuurbier RP, Bont LJ, Langedijk AC, Hamer M, Korsten K, Drysdale SB, Snape MD, Robinson H, Pollard AJ, Martinón-Torres F, Rodríguez-Tenreiro Sánchez C, Gómez-Carballa A, Dacosta-Urbieta AI, Heikkinen T, Cunningham S, van Houten MA, Wildenbeest JG. Low Sensitivity of BinaxNOW RSV in Infants. J Infect Dis 2021; 222:S640-S647. [PMID: 32227106 DOI: 10.1093/infdis/jiaa050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a major cause of hospitalization in infants. Early detection of RSV can optimize clinical management and minimize use of antibiotics. BinaxNOW RSV (BN) is a rapid antigen detection test that is widely used. We aimed to validate the sensitivity of BN in hospitalized and nonhospitalized infants against the gold standard of molecular diagnosis. METHODS We evaluated the performance of BN in infants with acute respiratory tract infections with different degrees of disease severity. Diagnostic accuracy of BN test results were compared with molecular diagnosis as reference standard. RESULTS One hundred sixty-two respiratory samples from 148 children from October 2017 to February 2019 were studied. Sixty-six (40.7%) samples tested positive for RSV (30 hospitalizations, 31 medically attended episodes not requiring hospitalization, and 5 nonmedically attended episodes). Five of these samples tested positive with BN, leading to an overall sensitivity of BN of 7.6% (95% confidence interval [CI], 3.3%-16.5%) and a specificity of 100% (95% CI, 96.2%-100%). Sensitivity was low in all subgroups. CONCLUSIONS We found a low sensitivity of BN for point-of-care detection of RSV infection. BinaxNOW RSV should be used and interpreted with caution.
Collapse
Affiliation(s)
- Roy P Zuurbier
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands.,Spaarne Gasthuis Academy, Hoofddorp and Haarlem, Hoofddorp, Netherlands
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands
| | - Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands
| | - Mirjam Hamer
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands
| | - Koos Korsten
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Carmen Rodríguez-Tenreiro Sánchez
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Gómez-Carballa
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Ana Isabel Dacosta-Urbieta
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain.,Genetics, Vaccines and Infections Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Terho Heikkinen
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Steve Cunningham
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Joanne G Wildenbeest
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, Netherlands
| | | |
Collapse
|
19
|
Schneider UV, Holm MKA, Bang D, Petersen RF, Mortensen S, Trebbien R, Lisby JG. Point-of-care tests for influenza A and B viruses and RSV in emergency departments - indications, impact on patient management and possible gains by syndromic respiratory testing, Capital Region, Denmark, 2018. ACTA ACUST UNITED AC 2021; 25. [PMID: 33153518 PMCID: PMC7645972 DOI: 10.2807/1560-7917.es.2020.25.44.1900430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Point-of-care tests (POCT) for influenza A and B viruses and respiratory syncytial virus (RSV) were implemented in emergency departments of all hospitals in the Capital Region of Denmark in 2018. Aim To establish whether POC testing for influenza viruses or RSV is based on a valid respiratory symptom indication, whether changes in patient management based on a positive result are safe and whether syndromic POC testing may benefit patients with influenza or RSV. Methods Samples from 180 children (< 18 years) and 375 adults tested using POCT between February and July 2018 were retested for 26 respiratory pathogens. Diagnosis, indication for POC testing, hospitalisation time, antimicrobial therapy and readmission or death within one month of testing were obtained from patient records. Results A valid indication for POC testing was established in 168 (93.3%) of children and 334 (89.1%) of adults. A positive POCT result significantly reduced antibiotic prescription and median hospitalisation time by 44.3 hours for adults and 14.2 hours for children, and significantly increased antiviral treatment in adults. Risk of readmission or death was not significantly altered by a positive result. Testing for 26 respiratory pathogens established that risk of coinfection is lower with increasing age and that POCT for adults should be restricted to the influenza and RSV season. Conclusion Positive POCT resulted in changed patient management for both children and adults, and was deemed safe. POCT for additional pathogens may be beneficial in children below 5 years of age and outside the influenza and RSV season.
Collapse
Affiliation(s)
- Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | | | - Didi Bang
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Randi Føns Petersen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Shila Mortensen
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Ramona Trebbien
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Jan Gorm Lisby
- Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
20
|
Morris TC, Bird PW, Horvath-Papp E, Dhillon JK, May S, Tang JW. Xpert Xpress Flu/RSV: Validation and impact evaluation at a large UK hospital trust. J Med Virol 2021; 93:5146-5151. [PMID: 33559907 DOI: 10.1002/jmv.26860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/31/2021] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
Despite vaccination programs and antivirals, influenza remains a prominent cause of morbidity and mortality. The Xpert Xpress Flu/respiratory syncytial virus (RSV) test is a leading influenza point-of-care test, but its evaluation has been limited to nasopharyngeal samples. In addition, the clinical impacts of Xpress Flu/RSV have not yet been quantified. We evaluated the performance of Xpress Flu/RSV at three locations in a UK Hospital Trust against an existing laboratory assay. Multiple upper respiratory tract sample types were included. In addition, we calculated time saved by Xpert, and the associations between Xpert use and rates of early patient isolation and antiviral prescription as recorded at the time of the laboratory result being telephoned out. A total of 642 patients were included in the diagnostic performance analysis. There were 177 laboratory-confirmed cases of influenza A, 7 influenza B and 86 RSV. For influenza A, sensitivity and specificity were 96.6% (95% confidence interval [CI]: 92.8%-98.8%) and 98.1% (CI: 96.4%-99.1%), respectively. This was sustained across all locations and sample types. The negative predictive value was 98.7% (CI: 97.2%-99.4%). The median amount of time saved was 27.1 h. Xpert use was associated with sixfold higher rates of isolation and threefold higher rates of antiviral prescribing by the time the laboratory result was available. Sensitivity for RSV was lower at 86.0% (95% CI: 76.9%-92.6%). Xpert Xpress Flu/RSV reliably detects influenza A infection and has significant clinical impacts. Cartridge optimization is required to enable accurate multiplexing, including from a range of sample types.
Collapse
Affiliation(s)
- Thomas C Morris
- Department of Infectious Diseases, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Paul W Bird
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Eva Horvath-Papp
- Department of Paediatrics, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jasminder K Dhillon
- Point of Care Testing Team, Department of Pathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Shoshanna May
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Julian W Tang
- Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
21
|
Kim H, Huh HJ, Park E, Chung DR, Kang M. Multiplex Molecular Point-of-Care Test for Syndromic Infectious Diseases. BIOCHIP JOURNAL 2021; 15:14-22. [PMID: 33613852 PMCID: PMC7883532 DOI: 10.1007/s13206-021-00004-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
Point-of-care (POC) molecular diagnostics for clinical microbiology and virology has primarily focused on the detection of a single pathogen. More recently, it has transitioned into a comprehensive syndromic approach that employs multiplex capabilities, including the simultaneous detection of two or more pathogens. Multiplex POC tests provide higher accuracy to for actionable decisionmaking in critical care, which leads to pathogen-specific treatment and standardized usages of antibiotics that help prevent unnecessary processes. In addition, these tests can be simple enough to operate at the primary care level and in remote settings where there is no laboratory infrastructure. This review focuses on state-of-the-art multiplexed molecular point-of-care tests (POCT) for infectious diseases and efforts to overcome their limitations, especially related to inadequate throughput for the identification of syndromic diseases. We also discuss promising and imperative clinical POC approaches, as well as the possible hurdles of their practical applications as front-line diagnostic tests.
Collapse
Affiliation(s)
- Hanbi Kim
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Eunkyoung Park
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| | - Doo-Ryeon Chung
- Center for Infection Prevention and Control, Samsung Medical Center, Seoul, 06351 South Korea.,Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, 06367 South Korea.,Division of Infectious Diseases, Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351 South Korea
| | - Minhee Kang
- Biomedical Engineering Research Center, Smart Healthcare Research Institute, Samsung Medical Center, Seoul, 06351 South Korea.,Department of Medical Device Management and Research, SAIHST (Samsung Advanced Institute for Health Sciences & Technology), Sungkyunkwan University, Seoul, 06355 South Korea
| |
Collapse
|
22
|
Courtney SJ, Stromberg ZR, Kubicek-Sutherland JZ. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. BIOSENSORS-BASEL 2021; 11:bios11020047. [PMID: 33673035 PMCID: PMC7918464 DOI: 10.3390/bios11020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Influenza virus poses a threat to global health by causing seasonal outbreaks as well as three pandemics in the 20th century. In humans, disease is primarily caused by influenza A and B viruses, while influenza C virus causes mild disease mostly in children. Influenza D is an emerging virus found in cattle and pigs. To mitigate the morbidity and mortality associated with influenza, rapid and accurate diagnostic tests need to be deployed. However, the high genetic diversity displayed by influenza viruses presents a challenge to the development of a robust diagnostic test. Nucleic acid-based tests are more accurate than rapid antigen tests for influenza and are therefore better candidates to be used in both diagnostic and surveillance applications. Here, we review various nucleic acid-based techniques that have been applied towards the detection of influenza viruses in order to evaluate their utility as both diagnostic and surveillance tools. We discuss both traditional as well as novel methods to detect influenza viruses by covering techniques that require nucleic acid amplification or direct detection of viral RNA as well as comparing advantages and limitations for each method. There has been substantial progress in the development of nucleic acid-based sensing techniques for the detection of influenza virus. However, there is still an urgent need for a rapid and reliable influenza diagnostic test that can be used at point-of-care in order to enhance responsiveness to both seasonal and pandemic influenza outbreaks.
Collapse
|
23
|
Blairon L, Thomas I, Lê PQ, Beukinga I, Tré-Hardy M. Diagnosis of respiratory syncytial virus and influenza A and B with cobas® Liat® from nasopharyngeal aspirations in pediatrics. Diagn Microbiol Infect Dis 2021; 100:115326. [PMID: 33581424 DOI: 10.1016/j.diagmicrobio.2021.115326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
The cobas® Liat® Influenza A/B and respiratory syncytial virus assay was tested on nasopharyngeal aspirates. The resolution of invalid samples was performed using a preanalytical step. cobas® Liat® can be used on nasopharyngeal aspirates with a preanalytical processing step, with a slightly diminished performances in detecting respiratory syncytial virus but not for influenza.
Collapse
Affiliation(s)
- Laurent Blairon
- Laboratory Medicine, Iris Hospitals South, Brussels, Belgium.
| | | | - Phu-Quoc Lê
- Department of Pediatrics, Iris Hospitals South, Brussels, Belgium
| | - Ingrid Beukinga
- Laboratory Medicine, Iris Hospitals South, Brussels, Belgium
| | - Marie Tré-Hardy
- Laboratory Medicine, Iris Hospitals South, Brussels, Belgium; Faculty of Medicine, Université libre de bruxelles, Brussels, Belgium; Department of Pharmacy, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
24
|
[Virological diagnosis of lower respiratory tract infections]. Rev Mal Respir 2021; 38:58-73. [PMID: 33461842 DOI: 10.1016/j.rmr.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 08/06/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION The etiological diagnosis of bronchopulmonary infections cannot be assessed with clinical, radiological and epidemiological data alone. Viruses have been demonstrated to cause a large proportion of these infections, both in children and adults. BACKGROUND The diagnosis of viral bronchopulmonary infections is based on the analysis of secretions, collected from the lower respiratory tract when possible, by techniques that detect either influenza and respiratory syncytial viruses, or a large panel of viruses that can be responsible for respiratory disease. The latter, called multiplex PCR assays, allow a syndromic approach to respiratory infection. Their high cost for the laboratory raises the question of their place in the management of patients in terms of antibiotic economy and isolation. In the absence of clear recommendations, the strategy and equipment are very unevenly distributed in France. OUTLOOK Medico-economic analyses need to be performed in France to evaluate the place of these tests in the management of patients. The evaluation of the role of the different viruses often detected in co-infection, especially in children, also deserves the attention of virologists and clinicians. CONCLUSIONS The availability of new diagnostic technologies, the recent emergence of SARS-CoV-2, together with the availability of new antiviral drugs are likely to impact future recommendations for the management of viral bronchopulmonary infections.
Collapse
|
25
|
Matic N, Ritchie G, Lawson T, Karakas L, Romney MG, Lowe CF. Relevance of reviewing endpoint analysis for negative results on the Xpert Xpress Flu/RSV. J Med Virol 2020; 92:3839-3842. [PMID: 32249955 DOI: 10.1002/jmv.25836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/02/2019] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
After the implementation of the Xpert Xpress Flu/respiratory syncytial virus (RSV) assay for rapid respiratory molecular testing, we investigated the significance of reported endpoint values for influenza A, influenza B, and RSV). This study prospectively analyzed nasopharyngeal swabs submitted to our virology laboratory in the 2018/19 influenza season. Initial testing was performed on the Xpress Flu/RSV assay. Samples were further tested on a laboratory-developed multiplex polymerase chain reaction (laboratory-developed multiplex respiratory test [LDT]) if the sample was reported as negative by the Xpress Flu/RSV but had an elevated endpoint value ≥5 for any respiratory virus target. There were 1040 negative results on the Xpress Flu/RSV; thirty-one had at least one endpoint value ≥5 [influenza A (25), influenza B (1), RSV (2), influenza A/RSV (1), and influenza A/B/RSV (2)]. Five samples (5/31, 16.1%) were positive on the LDT for influenza A or RSV. In contrast, the positivity rate on the LDT for negative Xpress Flu/RSV samples with endpoint values less than 5 was 0.35% (P < .0001). A threshold for endpoint values could not reliably be established to differentiate a potential influenza A positive result from a negative result on the LDT. Routine evaluation ofendpoint values should be a consideration for laboratories implementing Xpress Flu/RSV, in addition to supplementary respiratory virus testing for clinically relevant situations.
Collapse
Affiliation(s)
- Nancy Matic
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Ritchie
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tanya Lawson
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Loretta Karakas
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
| | - Marc G Romney
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher F Lowe
- Division of Medical Microbiology and Virology, St Paul's Hospital, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Loevinsohn G, Hardick J, Sinywimaanzi P, Fenstermacher KZJ, Shaw-Saliba K, Monze M, Gaydos CA, Rothman RE, Pekosz A, Thuma PE, Sutcliffe CG. Respiratory pathogen diversity and co-infections in rural Zambia. Int J Infect Dis 2020; 102:291-298. [PMID: 33127501 PMCID: PMC7817328 DOI: 10.1016/j.ijid.2020.10.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Objectives: The role of respiratory co-infections in modulating disease severity remains understudied in southern Africa, particularly in rural areas. This study was performed to characterize the spectrum of respiratory pathogens in rural southern Zambia and the prognostic impact of co-infections. Methods: Respiratory specimens collected from inpatient and outpatient participants in a viral surveillance program in 2018–2019 were tested for selected viruses and a typical bacteria using the Xpert Xpress Flu/RSV assay and FilmArray Respiratory Panel EZ. Participants were followed for 3–5 weeks to assess their clinical course. Multivariable regression was used to examine the role of co-infections in influencing disease severity. Results: A respiratory pathogen was detected in 63.2% of samples from 671 participants who presented with influenza-like illness. Common pathogens identified included influenza virus (18.2% of samples), respiratory syncytial virus (RSV) (11.8%), rhinovirus (26.4%), and coronavirus (6.0%). Overall, 6.4% of participants were co-infected with multiple respiratory pathogens. Compared to mono-infections, co-infections were found not to be associated with severe clinical illness either overall (relative risk (RR) 0.72, 95% confidence interval (CI) 0.39–1.32) or specifically with influenza virus (RR 0.80, 95% CI 0.14–4.46) or RSV infections (RR 0.44, 95% CI 0.17–1.11). Conclusions: Respiratory infections in rural southern Zambia were associated with a wide range of viruses. Respiratory co-infections in this population were not associated with clinical severity.
Collapse
Affiliation(s)
- Gideon Loevinsohn
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin Hardick
- Division of Infectious Diseases, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Kathryn Shaw-Saliba
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mwaka Monze
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Charlotte A Gaydos
- Division of Infectious Diseases, Department of Medicine Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard E Rothman
- Department of Emergency Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Philip E Thuma
- Macha Research Trust, Macha, Zambia; Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Catherine G Sutcliffe
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
27
|
Analytical Performances of the Panther Fusion System for the Detection of Respiratory Viruses in the French National Reference Centre of Lyon, France. Microorganisms 2020; 8:microorganisms8091371. [PMID: 32906749 PMCID: PMC7563737 DOI: 10.3390/microorganisms8091371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
Respiratory infection are mainly caused by viral pathogens. During the 2017-2018 epidemic season, Panther Fusion® Respiratory kits (Influenza virus A&B (FluA&B), respiratory syncytial virus (RSV), adenovirus (ADV), metapneumovirus (MPV), rhinovirus (RV), parainfluenzae virus (PIV), were compared to the Respiratory MultiWells System r-gene. Respiratory clinical specimens were tested retrospectively (n = 268) and prospectively (n = 463). Analytical performances were determined (sensitivity -Sep-, specificity -Spe- and κ) considering concordances of ≥2 molecular testing specific to each viral target (discrepant results were verified at the National Reference Centres for Enteroviruses or Respiratory viruses, Lyon, France). After retrospective (and prospective) testing, Sep, Spe, and κ were 100% (97.7%), 100% (99%) and 100% (94%) for FluA: 100% (95.5%), 100% (99.3%) and 100% (94%) for FluB, and 100% (88.5%), 100% (98.7%) and 100% (89%) for RSV; 82.1% (41.7%), 100% (99.5%) and 86% (54%) for ADV; 94.7% (73.7%), 96.1% (98.0%) and 91% (65%) for MPV; 96.1% (94.6%), 90.2% (98.5%) and 86% (91%) for HRV; and 90% (72.7%), 100% (99.3%) and 91% (72%), respectively, for PIV. Analytical performances were above 85% for all viruses except for ADV, MPV and PIV, confirming the analytical performance of the Panther Fusion system, a high throughput system with reduced turn-around-time, when compared to non-automated systems.
Collapse
|
28
|
Allen AJ, Gonzalez-Ciscar A, Lendrem C, Suklan J, Allen K, Bell A, Baxter F, Crulley S, Fairlie L, Hardy D, Johnston L, McKenna J, Richards N, Shovlin G, Simmister C, Waugh S, Woodsford P, Graziadio S, Power M, Simpson AJ, Kumar P, Eastham K, Brodlie M. Diagnostic and economic evaluation of a point-of-care test for respiratory syncytial virus. ERJ Open Res 2020; 6:00018-2020. [PMID: 32832529 PMCID: PMC7430145 DOI: 10.1183/23120541.00018-2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus is a common cause of bronchiolitis. Historically, point-of-care tests have involved antigen detection technology with limited sensitivity. The aim of this study was to prospectively evaluate the diagnostic accuracy and model the economic impact of the Roche cobas® Liat® point-of-care influenza A/B and respiratory syncytial virus test. The “DEC-RSV” study was a multi-centre, prospective, observational study in children under 2 years presenting with viral respiratory symptoms. A nasopharyngeal aspirate sample was tested using the point-of-care test and standard laboratory-based procedures. The primary outcome was accuracy of respiratory syncytial virus detection. The cost implications of adopting a point-of-care test were modelled using study data. A total of 186 participants were recruited, with both tests performed on 177 samples. The point-of-care test was invalid for 16 samples (diagnostic yield 91%) leaving 161 available for primary analysis. After resolving discrepancies, the cobas® Liat® respiratory syncytial virus test had 100.00% (95% CI 96.07%–100.00%) sensitivity and 98.53% (95% CI 92.08%–99.96%) specificity. Median time to result was 0.6 h (interquartile range (IQR) 0.5–1) for point-of-care testing and 28.9 h (IQR 26.3–48.1) for standard laboratory testing. Estimated non-diagnostic cost savings for 1000 patients, based on isolation decision-making on point-of-care test result, were £57 010, which would increase to £94 847 when cohort nursing is used. In young children the cobas® Liat® point-of-care respiratory syncytial virus test has high diagnostic accuracy using nasopharyngeal aspirates (currently an off-licence sample type). Time to result is clinically important and was favourable compared to laboratory-based testing. The potential exists for cost savings when adopting the point-of-care test. This prospective evaluation of the cobas Liat point-of-care RSV test in children demonstrated high diagnostic accuracy using nasopharyngeal aspirate samples, with favourable time to result compared to usual laboratory-based testing procedureshttps://bit.ly/2yKKmUB
Collapse
Affiliation(s)
- A Joy Allen
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrea Gonzalez-Ciscar
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Clare Lendrem
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jana Suklan
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Karen Allen
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ashley Bell
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Frances Baxter
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Stephen Crulley
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Louise Fairlie
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Danielle Hardy
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Louise Johnston
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Joanne McKenna
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | - Nicole Richards
- Pathology Dept, Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Gavin Shovlin
- Pathology Dept, Gateshead Health NHS Foundation Trust, Gateshead, UK
| | - Clare Simmister
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sheila Waugh
- Microbiology and Virology Dept, Freeman Hospital, Newcastle upon Tyne NHS Hospitals Foundation Trust, Newcastle upon Tyne, UK
| | - Philip Woodsford
- Paediatric Research Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sara Graziadio
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael Power
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Prashant Kumar
- South Tyneside and Sunderland NHS Foundation Trust, Sunderland, UK
| | | | - Malcolm Brodlie
- NIHR Newcastle In Vitro Diagnostics Co-operative, Translational and Clinical Research Institute, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.,Paediatric Respiratory Medicine, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Verbakel JY, Matheeussen V, Loens K, Kuijstermans M, Goossens H, Ieven M, Butler CC. Performance and ease of use of a molecular point-of-care test for influenza A/B and RSV in patients presenting to primary care. Eur J Clin Microbiol Infect Dis 2020; 39:1453-1460. [PMID: 32172369 PMCID: PMC7343728 DOI: 10.1007/s10096-020-03860-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Annual influenza epidemics cause substantial morbidity and mortality, and the majority of patients with influenza-like illness present to primary care. Point-of-care influenza tests could support treatment decisions. It is critical to establish analytic performance of these platforms in real-life patient samples before uptake can be considered. We aimed to assess the analytical performance and ease of use of the cobas® Liat® PCR POCT in detecting influenza A/B and RSV in samples collected from patients with influenza-like illness in primary care. Sensitivity and specificity of the cobas® Liat® POCT are calculated in comparison with a commercial laboratory-based PCR test (Fast-Track Respiratory Pathogens 21 Plus kit (Fast-Track Diagnostics)). Samples with discordant results were analysed additionally by the RespiFinder 2Smart (PathoFinder) using an Extended Gold Standard (EGS). Acceptability was scored on a five-point Likert scale as well as a failure mode analysis of the cobas® Liat® POCT was performed. Nasal and oropharyngeal swabs were obtained from 140 children and nasopharyngeal swabs from 604 adults (744 patients). The cobas® Liat® POCT had a sensitivity and specificity of 100% (95% CI 99-100%) and 98.1% (95%CI 96.3-99%) for influenza A, 100% (95% CI 97.7-100%) and 99.7% (95%CI 98.7-99.9%) for influenza B and 100% (95% CI 87.1-100%) and 99.4% (95%CI 98.6-99.8%) for RSV, respectively. According to trained lab technicians, the cobas® Liat® POCT was considered easy-to-use, with a fast turn-around-time. Cobas® Liat® POCT is a promising decentralised test platform for influenza A/B and RSV in primary care as it provides fairly rapid results with excellent analytic performance. Point-of-care influenza tests could support treatment decisions in primary care. Cobas® Liat® POCT is a promising decentralised test platform for influenza A/B and RSV in primary care as it provides fairly rapid results with excellent analytic performance.
Collapse
Affiliation(s)
- Jan Y Verbakel
- NIHR Community Healthcare MIC, Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, Oxfordshire, OX26GG, UK.
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium.
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, Oxfordshire, OX26GG, UK.
| | - Veerle Matheeussen
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Katherine Loens
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Mandy Kuijstermans
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Margareta Ieven
- Laboratory of Clinical Microbiology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Christopher C Butler
- NIHR Community Healthcare MIC, Nuffield Department of Primary Care Health Sciences, University of Oxford, Woodstock Road, Oxford, Oxfordshire, OX26GG, UK
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, 3000, Leuven, Belgium
| |
Collapse
|
30
|
Lu H, Stratton CW, Tang YW. An evolving approach to the laboratory assessment of COVID-19. J Med Virol 2020; 92:1812-1817. [PMID: 32347966 PMCID: PMC7267292 DOI: 10.1002/jmv.25954] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023]
Abstract
As the 2019 novel coronavirus disease (COVID‐19) outbreak has evolved in each country, the approach to the laboratory assessment of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection has had to evolve as well. This review addresses the evolving approach to the laboratory assessment of COVID‐19 and discusses how algorithms for testing have been driven, in part, by the demand for testing overwhelming the capacity to accomplish such testing. This review focused on testing in the USA, as this testing is evolving, whereas in China and other countries such as South Korea testing is widely available and includes both molecular testing for SARS‐CoV‐2 as well as serological testing using both enzyme‐linked immunosorbent assay methodology and lateral flow immunoassay methodology. Although commercial testing systems are becoming available, there will likely be insufficient numbers of such tests due to high demand. Serological testing will be the next testing issue as the COVID‐19 begins to subside. This will allow immunity testing as well as will allow the parameters of the COVID‐19 outbreak to be defined.
Collapse
Affiliation(s)
- Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Charles W Stratton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yi-Wei Tang
- Cepheid, Danaher Diagnostic Platform, Shanghai, China
| |
Collapse
|
31
|
Zidovec Lepej S, Poljak M. Portable molecular diagnostic instruments in microbiology: current status. Clin Microbiol Infect 2020; 26:411-420. [DOI: 10.1016/j.cmi.2019.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/25/2022]
|
32
|
Ganzenmueller T, Kaiser R, Baier C, Wehrhane M, Hilfrich B, Witthuhn J, Flucht S, Heim A. Comparison of the performance of the Panther Fusion respiratory virus panel to R-Gene and laboratory developed tests for diagnostic and hygiene screening specimens from the upper and lower respiratory tract. J Med Microbiol 2020; 69:427-435. [DOI: 10.1099/jmm.0.001133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction. Diagnosis of acute respiratory infections (ARIs) can be facilitated by the Panther Fusion (PF) automatic, random access PCR system for the detection of influenzavirus A (Flu A) and B (Flu B), parainfluenzavirus (Paraflu), respiratory syncytial virus (RSV), human metapneumovirus (hMPV), rhinovirus (RV) and human adenovirus (AdV) in nasopharyngeal swabs.
Aim. To evaluate the performance of PF in comparison with established methods, including subsets of (1) lower respiratory tract (LRT) specimens and (2) upper respiratory tract (URT) hygiene screening specimens of patients without ARI symptoms.
Methodology. The performance characteristics of PF were compared with bioMérieux R-Gene and laboratory-developed PCR tests (LDTs). Overall, 1544 specimens with 6658 individual diagnostic requests were analysed.
Results. The overall concordances of PF and LDTs for Flu A, Flu B and AdV were 98.4, 99.9 and 96.1%, respectively; by re-testing of discrepant specimens concordances increased to 99.4, 99.9 and 98.0%, respectively. Initial concordances of PF and R-Gene assays for RSV, Paraflu, hMPV and RV were 98.4, 96.3, 99.3 and 96.0%, respectively, and retest concordances were 99.7, 97.9, 99.9 and 98.9%, respectively. No differences to the overall performance were found for the subgroups of LRT and hygiene screening specimens. PCR cycle threshold (Ct) values correlated very well between methods, indicating that a semi-quantitative diagnostic approach using Ct values (e.g. highly vs. weakly positive) could augment the diagnostic information.
Conclusion. PF performed similar to R-Gene and LDTs not only for its intended use but also for LRT and hygiene screening specimens with shorter hands-on and turnaround times.
Collapse
Affiliation(s)
- Tina Ganzenmueller
- Institute for Medical Virology, University Hospital Tuebingen, Tuebingen, Germany
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Rolf Kaiser
- Institute for Virology, University Hospital Cologne, Cologne, Germany
| | - Claas Baier
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Marlies Wehrhane
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | | | - Jenny Witthuhn
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Sandra Flucht
- Institute for Virology, Hannover Medical School, Hannover, Germany
| | - Albert Heim
- Institute for Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
33
|
Boerger AC, Binnicker MJ. Comparison of the Panther Fusion respiratory panels to routine methods for detection of viruses in upper and lower respiratory tract specimens. Diagn Microbiol Infect Dis 2020; 97:115014. [PMID: 32192787 DOI: 10.1016/j.diagmicrobio.2020.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Viral respiratory infections remain a significant cause of morbidity and mortality in pediatric, elderly, and immunocompromised patients. The Panther Fusion respiratory panels consist of 3 separate multiplex assays that test for 1) influenza A, influenza B, and RSV; 2) parainfluenza virus types 1-4; or 3) adenovirus, human metapneumovirus, and rhinovirus. This study evaluated the performance of the Fusion assays for both upper and lower respiratory tract specimens in comparison to routine methods, including viral culture and targeted real-time polymerase chain reaction assays. Following discordant resolution, the Fusion assays demonstrated high overall correlation (98.6% [648/657]) with routine methods. In addition, prospective testing of respiratory specimens (n = 146) submitted for viral culture showed a ~10-fold increase in detection by the Fusion panels compared to viral culture (28.1% versus 2.7% positivity). The Fusion respiratory panels offer a flexible, more targeted approach to respiratory virus testing with a turnaround time comparable to other molecular assays.
Collapse
Affiliation(s)
- Aimee C Boerger
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - Matthew J Binnicker
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
34
|
Folgueira L, Moral N, Pascual C, Delgado R. Comparison of the Panther Fusion and Allplex assays for the detection of respiratory viruses in clinical samples. PLoS One 2019; 14:e0226403. [PMID: 31881030 PMCID: PMC6934309 DOI: 10.1371/journal.pone.0226403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Respiratory viral infections are the most frequent clinical syndrome affecting both children and adults, and early detection is fundamental to avoid infection-related risks and reduce the healthcare costs incurred by unnecessary antibiotic treatments. In this study, performance characteristics of two commercial methods, the Panther Fusion® assay (Hologic Inc., San Diego, CA, USA) were compared to Allplex™ respiratory panels (Seegene, Seoul, South Korea) for the detection of influenza A (Flu A), influenza B (Flu B), respiratory syncytial virus (RSV), parainfluenza virus (PIV), human metapneumovirus (hMPV), rhinovirus (RV) and adenovirus (AdV) targets. A total of 865 specimens collected prospectively and retrospectively were included, and discordant results were further examined using another commercial product, R-GENE™ respiratory kits (bioMérieux, Marcy l'Etoile, France). There was high agreement between both methods, with 98.6% concordance and a kappa (k) value of 0.9 (95% CI: 0.89-0.92). A specific analysis of both methods for each viral agent demonstrated comparable sensitivity and specificity, both ranging from 0.83 to 1 with good predictive values for the prospective part of the study. Good agreement between both methods was also found for the κ values obtained (ranging from 97.55% to 98.9%), with the lowest for hMPV (k = 0.83, 95% CI: 0.75-0.91) and RV (k = 0.73, 95% CI: 0.65-0.81). Amplification efficiency, measured according to the value of the cycle threshold (Ct) obtained in each of the amplifications in both tests, was significantly better with Panther Fusion for Flu A, Flu B, hMPV and RV. Regarding discordant results, R-GENE showed higher agreement with Panther Fusion-positive specimens (negative for Allplex; n = 28/71, 34.9%) than with Allplex-positive samples (negative for Panther Fusion; n = 7/49, 14.3%). In summary, Panther Fusion proved to be a more efficient fully-automated methodology, requiring shorter hands-on and turnaround times than Allplex.
Collapse
Affiliation(s)
- Lola Folgueira
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Noelia Moral
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Consuelo Pascual
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rafael Delgado
- Microbiology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
- Biomedical Research Institute imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Medicine, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
35
|
Performance evaluation of the Panther Fusion® respiratory tract panel. J Clin Virol 2019; 123:104232. [PMID: 31869661 PMCID: PMC7172494 DOI: 10.1016/j.jcv.2019.104232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
Abstract
Clinical specificity of Panther Fusion® is between 96 %–100 %, compared to LDT. Clinical sensitivity Panther Fusion® is between 71.9 %–100 %, compared to LDT. Overall linear regression showed good correlations between LDT and Panther Fusion® for all viruses, except RV and PIV-4. The Panther Fusion® provides a random-access system with continuous loading and shorter sample-to-answer times compared to LDT. Background Respiratory tract infections are among the most common infections during winter season. Rapid diagnostics is required for clinical decision making regarding isolation of patients and appropriate therapy. Objectives The aim of this study was to evaluate the analytical and clinical performance characteristics of the Panther Fusion® respiratory panel using published laboratory-developed real-time PCR assays (LDT). Study design Analytical sensitivity of Panther Fusion® Flu A/B/RSV was assessed by testing dilutions of cell culture isolates. Clinical performance assessment included the complete Panther Fusion® respiratory panel (Flu-A/B/RSV, PIV 1-4 and AdV/hMPV/RV) and consisted of a retrospective and a prospective study-arm. The retrospective evaluation included 201, stored (−80 °C) samples collected between February 2006 and January 2017. Prospective evaluation was performed on 1045 unselected pretreated respiratory tract samples from patients presented to our hospital between November 2017 and May 2018. Results Analytical sensitivity was generally slightly lower for the Panther Fusion® assays. Clinical specificity and sensitivity was between 96 %–100 % and 71.9 %–100 %, respectively. Discrepant results were found in 146 samples of which 88 samples tested LDT positive / Panther Fusion® negative and 58 samples were LDT negative / Panther Fusion® positive. A total of ten discrepant samples with Ct-values <30 were sequenced to confirm the presence of 7 RV-C not-detected by LDT and 1 RV-A and 2 ADV-2 not detected by Panther Fusion®. Conclusions The Panther Fusion® provides a random-access system with continuous loading and much shorter sample-to-answer times compared to LDT, albeit with a slightly less clinical sensitivity compared to the LDT.
Collapse
|
36
|
Stellrecht KA, Cimino JL, Wilson LI, Maceira VP, Butt SA. Panther Fusion® Respiratory Virus Assays for the detection of influenza and other respiratory viruses. J Clin Virol 2019; 121:104204. [PMID: 31743836 PMCID: PMC7172166 DOI: 10.1016/j.jcv.2019.104204] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Nucleic acid amplification tests (NAATs), such as PCR, are preferred for respiratory virus testing, due to superior diagnostic accuracy and faster turnaround time. Panther Fusion® Respiratory Assays (Fusion), which includes FluA/B/RSV (FFABR), Paraflu and AdV/hMPV/RV, offers a modular approach to syndromic testing on a fully automated platform while improving gene targets and expanding the test menu. OBJECTIVES AND STUDY DESIGN We evaluated Fusion using 275 consecutive nasopharyngeal specimens previously used in an analysis of five PCRs, as well as 225 archived specimens. RESULTS Of the combined 500 specimens, 134 were positive for influenza A (FluA), 54 for FluB, 65 for RSV, 64 for parainfluenza (PIV), 24 for adenovirus (AdV), 21 for humanmetapneumovirus (hMPV), and 40 for rhinovirus (RV) with Fusion. Of the positive samples Fusion correlated with historical results for all but one, despite multiple freeze-thaws cycles of this collection. Fusion was positive for an additional 33 samples, including 11 FluAs, 7 RSVs, 3 PIV3s, 3 AdV, 6 hMPV and 3 RVs. These samples were retested with corresponding Prodesse (Pro) assays using quadruple sample volume. This resolver test confirmed Fusion results for an additional 4 FluAs, 4 RSVs, 1 PIV3 and 3 AdVs. The sensitivity and specificity ranges of Fusion were 99-100% and 98-100%. Limit of detection (LOD) analyses were performed on a variety of Flu isolates. The LODs ranged from 2.69 to 2.99 log copies/ml and demonstrated superior LOD as compared to previously published data for some assays or to concurrent analyses with two new commercial tests.
Collapse
Affiliation(s)
- Kathleen A Stellrecht
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York, United States; Department of Immunology and Microbial Diseases, Albany Medical College, Albany, New York, United States; Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States.
| | - Jesse L Cimino
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Lisa I Wilson
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Vincente P Maceira
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| | - Shafiq A Butt
- Department of Pathology and Laboratory Medicine, Albany Medical Center Hospital, Albany, New York, United States
| |
Collapse
|
37
|
Hui DS, Ng SS. Recommended hospital preparations for future cases and outbreaks of novel influenza viruses. Expert Rev Respir Med 2019; 14:41-50. [PMID: 31648548 DOI: 10.1080/17476348.2020.1683448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Seasonal influenza epidemics and periodic pandemics are important causes of morbidity and mortality. Influenza transmits predominantly by respiratory droplets and fomites but opportunistic airborne transmission may occur in the hospital setting due to overcrowding, poor compliance with infection control measures, and performance of aerosol-generating procedures.Areas covered: This article reviews the risk factors of nosocomial influenza outbreaks and discusses clinical, diagnostic, and treatment aspects of seasonal and avian influenza to facilitate hospital preparations for future influenza outbreaks. Literature search was conducted through PubMed of relevant peer-reviewed full papers in English journals with inclusion of relevant publications by the WHO and US CDC.Expert opinion: Accurate and rapid identification of an influenza outbreak is important to facilitate patient care and prevent nosocomial transmission. Timely treatment with a neuraminidase inhibitor (NAI) for adults hospitalized with severe influenza is associated with lower mortality and better clinical outcomes. Baloxavir, a polymerase endonuclease inhibitor, offers a new treatment alternative and its role in combination with NAI for treatment of severe influenza is being investigated. High-dose systemic corticosteroids are associated with worse outcomes in patients with severe influenza. It is important to develop more effective antiviral and immuno-modulating therapies for the treatment of influenza infections.
Collapse
Affiliation(s)
- David Sc Hui
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Stanley Ho Center for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susanna Ss Ng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
38
|
Evaluation of the reverse transcription strand invasion based amplification (RT-SIBA) RSV assay, a rapid molecular assay for the detection of respiratory syncytial virus. Diagn Microbiol Infect Dis 2019; 95:55-58. [DOI: 10.1016/j.diagmicrobio.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 02/03/2023]
|
39
|
Zhang H, Wang Y, Porter E, Lu N, Li Y, Yuan F, Lohman M, Noll L, Zheng W, Stoy C, Lang Y, Huber VC, Ma W, Peddireddi L, Fang Y, Shi J, Anderson G, Liu X, Bai J. Development of a multiplex real-time RT-PCR assay for simultaneous detection and differentiation of influenza A, B, C, and D viruses. Diagn Microbiol Infect Dis 2019; 95:59-66. [PMID: 31130238 PMCID: PMC6697560 DOI: 10.1016/j.diagmicrobio.2019.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Abstract
Influenza is a common and contagious respiratory disease caused by influenza A, B, C, and D viruses (IAV, IBV, ICV, and IDV). A multiplex real-time RT-PCR assay was developed for simultaneous detection of IAV, IBV, ICV, and IDV. The assay was designed to target unique sequences in the matrix gene of IBV and ICV, the RNA polymerase subunit PB1 of IDV, and combined with USDA and CDC IAV assays, both target the matrix gene. The host 18S rRNA gene was included as an internal control. In silico analyses indicated high strain coverages: 97.9% for IBV, 99.5% for ICV, and 100% for IDV. Transcribed RNA, viral isolates and clinical samples were used for validation. The assay specifically detected target viruses without cross-reactivity, nor detection of other common pathogens. The limit of detection was approximately 30 copies for each viral RNA template, which was equivalent to a threshold cycle value of ~37.
Collapse
Affiliation(s)
- Hewei Zhang
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, Henan, China
| | - Yin Wang
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Elizabeth Porter
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yanhua Li
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Fangfeng Yuan
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Molly Lohman
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wanglong Zheng
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Colin Stoy
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yuekun Lang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Victor C Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Lalitha Peddireddi
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Ying Fang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Gary Anderson
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Xuming Liu
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA; Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
40
|
Abstract
The timely and accurate diagnosis of respiratory virus infections has the potential to optimize downstream (posttesting) use of limited health care resources, including antibiotics, antivirals, ancillary testing, and inpatient and emergency department beds. Cost-effective algorithms for respiratory virus testing must take into consideration numerous factors, including which patients should be tested, what testing should be performed (for example, antigen testing versus reverse transcription-PCR testing or influenza A/B testing versus testing with a comprehensive respiratory virus panel), and the turnaround time necessary to achieve the desired posttesting outcomes. Despite the clinical impact of respiratory virus infections, the cost-effectiveness of respiratory virus testing is incompletely understood. In this article, we review the literature pertaining to the cost-effectiveness of respiratory virus testing in pediatric and adult patient populations, in emergency department, outpatient, and inpatient clinical settings. Furthermore, we consider the cost-effectiveness of a variety of testing methods, including rapid antigen tests, direct fluorescent antibody assays, and nucleic acid amplification tests.
Collapse
|
41
|
Banerjee D, Kanwar N, Hassan F, Lankachandra K, Selvarangan R. Comparative analysis of Four sample-to-answer influenza A/B and RSV nucleic acid amplification assays using adult respiratory specimens. J Clin Virol 2019; 118:9-13. [PMID: 31302479 DOI: 10.1016/j.jcv.2019.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/14/2019] [Accepted: 07/03/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND The use of Sample-to-answer (STA) platforms for the detection of influenza A/B and respiratory syncytial virus (RSV) have greatly improved patient care. These diagnostic assays based on nucleic acid amplification are rapid, accurate and relatively easy to perform. OBJECTIVES We compared four such platforms for detecting FluA, FluB, and RSV from adult respiratory specimens: Hologic Panther Fusion® Flu A/B/RSV (Fusion), Cobas® Influenza A/B & RSV (Liat), Luminex Aries® Flu A/B & RSV (Aries), and Diasorin SimplexaTM Flu A/B & RSV (Simplexa). STUDY DESIGN Nasopharyngeal (NP) swabs (n = 224) from adults were tested on these platforms and results were compared to Center for Disease Control and Prevention recommended real-time RT-PCR assay for influenza A/B and RSV. Subtyping for FluA and FluB was performed for discrepant analysis where applicable. RESULTS Of the 82 FluA, 26 FluB, 15 RSV-positive specimens tested, the positive and negative percentage agreements (PPA and NPA respectively) for FluA detection were 100/100 (Fusion), 95.1/100 (Liat), 92.5/100 (Aries), and 84.1/99.3 (Simplexa); PPA and NPA for FluB detection were 92.3/99.5 (Fusion), 96/99.5 (Liat), 100/99.5 (Aries), and 80.8/100 (Simplexa); and for RSV detection were 100/100 (Fusion), 100/100 (Liat), 88.6/99.5 (Aries), and 73.3/100 (Simplexa). 82 confirmed FluA included 23 pH1N1 and 57 H3N2 strains with 2 strains remaining untyped. Of the 26 confirmed FluB, 25 were of the Yamagata lineage and 1 of unknown lineage. CONCLUSION Only 2 STA platforms demonstrated >95% PPA for the detection of all three targets while all the 4 platforms demonstrated >95% NPA for FluA, FluB and RSV.
Collapse
Affiliation(s)
- Dithi Banerjee
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA.
| | - Neena Kanwar
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Ferdaus Hassan
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Kamani Lankachandra
- Department of Pathology and Laboratory Medicine, Truman Medical Center, Kansas City, Missouri, USA
| | - Rangaraj Selvarangan
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, Missouri, USA
| |
Collapse
|
42
|
Babady NE, Dunn JJ, Madej R. CLIA-waived molecular influenza testing in the emergency department and outpatient settings. J Clin Virol 2019; 116:44-48. [PMID: 31102924 DOI: 10.1016/j.jcv.2019.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Respiratory tract infections are a common cause of visits to emergency departments and outpatient settings. Infections with influenza viruses A and B in particular, are responsible for significant morbidity and mortality in both pediatric and adult populations worldwide. A significant number of influenza diagnoses occur in the emergency departments with many being performed using rapid influenza diagnostic tests (RIDT) which have sensitivities as low as 30% depending on the specific RIDT and patient population. More recently, rapid molecular tests for the detection of influenza viruses A and B have become commercially available as point-of-care platforms. In the United States, several of these new tests are approved by the Food and Drug Administration as CLIA-waived tests. In this report, we review the data on the analytical and clinical performance of RIDTs and CLIA-waived molecular tests, present and discuss potential key challenges and opportunities for implementation of CLIA-waived molecular tests at or near point of care in the emergency departments and outpatient settings.
Collapse
Affiliation(s)
- N Esther Babady
- Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - James J Dunn
- Texas Children's Hospital, Houston, TX, United States
| | | |
Collapse
|
43
|
Rahamat‐Langendoen J, Groenewoud H, Kuijpers J, Melchers WJ, van der Wilt GJ. Impact of molecular point-of-care testing on clinical management and in-hospital costs of patients suspected of influenza or RSV infection: a modeling study. J Med Virol 2019; 91:1408-1414. [PMID: 30950066 PMCID: PMC7166495 DOI: 10.1002/jmv.25479] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/19/2019] [Indexed: 01/25/2023]
Abstract
Background At hospital admission, patients suspected of infection with influenza or respiratory syncytial virus (RSV) are placed in isolation, pending the outcome of diagnostics. In a significant number, isolated care proves unnecessary. We investigated the potential impact of molecular point‐of‐care (POC) diagnostics on patient management and in‐hospital costs. Method Prospective collection of data on resource utilization within the hospital from consecutive patients 18 years or older presenting at our university medical center with symptoms of respiratory tract infection from December 2016 to April 2017. A cost analysis was conducted using Markov modeling comparing the actual course of events (on the basis of routine diagnostic tests) with two hypothetical scenarios: when POC would impact time to diagnosis only (scenario 1) or on discharge from the hospital, too (scenario 2). Results A total of 283 patients were included, of whom 217 (76.7%) were admitted. Influenza and RSV were detected in 31% and 7% of the patients, respectively. Fifty‐four percent of patients tested negative, of which 79% were kept in isolated care waiting for test results, with a median duration of 24 hours. Median length of stay was 6.0 days. Mean total in‐hospital costs per patient were € 5243. Introducing POC would lower mean costs per patient to € 4904 (scenario 1) and € 4206 (scenario 2). At the hospital level, this would result in a total cost reduction of € 95 937 to € 293 471 in a single influenza season. Conclusions Introducing POC testing for patients presenting with symptoms of viral respiratory tract infection can reduce time‐to‐diagnosis, hospital stay and, thereby, in‐hospital costs.
Collapse
Affiliation(s)
| | - Hans Groenewoud
- Department of Health EvidenceRadboud University Medical CenterNijmegenThe Netherlands
| | - Judith Kuijpers
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Willem J.G. Melchers
- Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
| | - Gert Jan van der Wilt
- Department of Health EvidenceRadboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
44
|
Kuypers J. Impact of Rapid Molecular Detection of Respiratory Viruses on Clinical Outcomes and Patient Management. J Clin Microbiol 2019; 57:e01890-18. [PMID: 30651392 PMCID: PMC6440761 DOI: 10.1128/jcm.01890-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine if rapid molecular testing for respiratory viruses in patients with respiratory illnesses can provide advantages to patients and hospitals, rigorous investigations on the impacts of using these assays are required. Well-conducted studies are needed to inform decisions about implementation of new rapid assays to replace standard molecular testing or to initiate testing in laboratories that are currently not doing molecular tests for respiratory viruses due to the complex nature of standard panels. In this issue of the Journal of Clinical Microbiology, N. Wabe et al. (J Clin Microbiol 57:e01727-18, 2019, https://doi.org/10.1128/JCM.01727-18) report the results of their evaluation of the impact of using a rapid molecular test for influenza A/influenza B and RSV on outcomes for adults hospitalized with respiratory illness. The median time from admission to test result of the rapid test was 7.5 h compared to 40.3 h for the standard PCR assay. Compared to the use of the standard molecular assay, use of a rapid test significantly shortened time in the hospital and reduced the number of other microbiology tests performed. The authors concluded that rapid PCR testing of adults hospitalized with respiratory illnesses could provide benefits to both the patients and the hospital. Patients were able to leave the hospital earlier and a greater proportion of them had received their test results before discharge, which would allow appropriate treatment to be provided more quickly.
Collapse
Affiliation(s)
- Jane Kuypers
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
45
|
Eigner U, Reucher S, Hefner N, Staffa-Peichl S, Kolb M, Betz U, Holfelder M, Spier G, Pfefferle S, Lütgehetmann M. Clinical evaluation of multiplex RT-PCR assays for the detection of influenza A/B and respiratory syncytial virus using a high throughput system. J Virol Methods 2019; 269:49-54. [PMID: 30946852 DOI: 10.1016/j.jviromet.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Lower respiratory tract infections are a major threat to public health systems worldwide, with RSV and influenza being the main agents causing hospitalization. In outbreak situations, high-volume respiratory testing is needed. In this study, we evaluated the analytical and clinical performance of a pre-designed primer/probe set for the simultaneous multiplex detection of both viruses on a high-throughput platform, the cobas® 6800, using the "open channel" of the system for integration of lab-developed assays for the detection of influenza and RSV. RESULTS Using the influenza/RSV qPCR Assay with swabs, LoD (95%) in TCID50/mL for influenza-A was 0.009, influenza-B 0.003, RSV-A 0.202, and RSV-B 0.009. Inter-run variability (3xLoD) was low (<1 Ct for all targets). Of 371 clinical respiratory specimens analyzed, results were concordant for 358 samples. The calculated sensitivity and specificity of the assay were 98.3% and 98.4% for Flu-A, 100% and 98.5% for Flu-B, and 98.6% and 99.7% for RSV. All quality assessment panel specimens (N = 63, including avian influenza strains) were correctly identified. None of the tested microorganisms showed cross-reactivity. CONCLUSION Compared with CE-IVD assays, the assay evaluated here showed good analytical and clinical sensitivity and specificity with broad coverage of different virus strains. It offers high-throughput capacity with low hands-on time, facilitating the laboratory management of large respiratory outbreaks.
Collapse
Affiliation(s)
- Ulrich Eigner
- MVZ Laboratory Dr. Limbach, Heidelberg, Germany; University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Svenja Reucher
- University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | | | | | - Ulrike Betz
- MVZ Laboratory Dr. Limbach, Heidelberg, Germany
| | | | - Gene Spier
- Roche Molecular Systems, Pleasanton, CA, USA
| | | | | |
Collapse
|
46
|
Lisby JG, Schneider UV. Concerns regarding the validity of the conclusion in a recently published paper on Roche Liat implementation. J Hosp Infect 2019; 102:355-356. [PMID: 30802525 DOI: 10.1016/j.jhin.2019.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/16/2023]
Affiliation(s)
- J G Lisby
- Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark.
| | - U V Schneider
- Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|