1
|
Projahn M, Lamparter MC, Ganas P, Goehler A, Lorenz-Wright SC, Maede D, Fruth A, Lang C, Schuh E. Genetic diversity and pathogenic potential of Shiga toxin-producing Escherichia coli (STEC) derived from German flour. Int J Food Microbiol 2021; 347:109197. [PMID: 33895597 DOI: 10.1016/j.ijfoodmicro.2021.109197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/17/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause severe human illness, which are frequently linked to the consumption of contaminated beef or dairy products. However, recent outbreaks associated with contaminated flour and undercooked dough in the United States and Canada, highlight the potential of plant based food as transmission routes for STEC. In Germany STEC has been isolated from flour, but no cases of illness have been linked to flour. In this study, we characterized 123 STEC strains isolated from flour and flour products collected between 2015 and 2019 across Germany. In addition to determination of serotype and Shiga toxin subtype, whole genome sequencing (WGS) was used for isolates collected in 2018 to determine phylogenetic relationships, sequence type (ST), and virulence-associated genes (VAGs). We found a high diversity of serotypes including those frequently associated with human illness and outbreaks, such as O157:H7 (stx2c/d, eae), O145:H28 (stx2a, eae), O146:H28 (stx2b), and O103:H2 (stx1a, eae). Serotypes O187:H28 (ST200, stx2g) and O154:H31 (ST1892, stx1d) were most prevalent, but are rarely linked to human cases. However, WGS analysis revealed that these strains, as well as, O156:H25 (ST300, stx1a) harbour high numbers of VAGs, including eae, nleB and est1a/sta1. Although STEC-contaminated flour products have yet not been epidemiologically linked to human clinical cases in Germany, this study revealed that flour can serve as a vector for STEC strains with a high pathogenic potential. Further investigation is needed to determine the sources of STEC contamination in flour and flour products particularly in regards to these rare serotypes.
Collapse
Affiliation(s)
- Michaela Projahn
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Marina C Lamparter
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Petra Ganas
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - André Goehler
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Sandra C Lorenz-Wright
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany
| | - Dietrich Maede
- Institute for Consumer Protection Saxony-Anhalt, Halle, Germany
| | - Angelika Fruth
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Christina Lang
- Robert Koch Institute, Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Elisabeth Schuh
- German Federal Institute for Risk Assessment, Department of Biological Safety, National Reference Laboratory for Escherichia coli including VTEC, Berlin, Germany.
| |
Collapse
|
2
|
Shridhar PB, Patel IR, Gangiredla J, Noll LW, Shi X, Bai J, Nagaraja TG. DNA Microarray-Based Genomic Characterization of the Pathotypes of Escherichia coli O26, O45, O103, O111, and O145 Isolated from Feces of Feedlot Cattle †. J Food Prot 2019; 82:395-404. [PMID: 30794460 DOI: 10.4315/0362-028x.jfp-18-393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) serogroups O26, O45, O103, O111, O121, and O145, referred to as the top six non-O157 serogroups, are responsible for more than 70% of human non-O157 STEC infections in North America. Cattle harbor non-O157 strains in the hindgut and shed them in the feces. The objective of this study was to use the U.S. Food and Drug Administration (FDA) E. coli identification (ECID) DNA microarray to identify the serotype, assess the virulence potential of each, and determine the phylogenetic relationships among five of the six non-O157 E. coli serogroups isolated from feedlot cattle feces. Forty-four strains of STEC, enterohemorrhagic E. coli (EHEC), enteropathogenic E. coli (EPEC), or putative nonpathotype E. coli (NPEC) of cattle origin and five human clinical strains of EHEC were assayed with the FDA-ECID DNA microarray. The cattle strains harbored diverse flagellar genes. The bovine and human strains belonging to serogroups O26, O45, and O103 carried stx1 only, O111 carried both stx1 and stx2, and O145 carried either stx1 or stx2. The strains were also positive for various subtypes of intimin and other adhesins (IrgA homologue adhesin, long polar fimbriae, mannose-specific adhesin, and curli). Both human and cattle strains were positive for LEE-encoded type III secretory system genes and non-LEE-encoded effector genes. SplitsTree4, a program used to determine the phylogenetic relationship among the strains, revealed that the strains within each serogroup clustered according to their pathotype. In addition to genes encoding Shiga toxins, bovine non-O157 E. coli strains possessed other major virulence genes, including those for adhesins, type III secretory system proteins, and plasmid-borne virulence genes, similar to human clinical strains. Because virulence factors encoded by these genes are involved in the pathogenesis of various pathotypes of E. coli, the bovine non-O157 strains could cause human illness. The FDA-ECID DNA microarray assay rapidly provided a profile of the virulence genes for assessment of the virulence potential of each strain.
Collapse
Affiliation(s)
- Pragathi B Shridhar
- 1 Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - Isha R Patel
- 2 U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Laurel, Maryland 20708, USA
| | - Jayanthi Gangiredla
- 2 U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Laurel, Maryland 20708, USA
| | - Lance W Noll
- 1 Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - Xiaorong Shi
- 1 Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| | - Jianfa Bai
- 3 Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas 66506
| | - T G Nagaraja
- 1 Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
3
|
Um MM, Brugère H, Kérourédan M, Oswald E, Bibbal D. Antimicrobial Resistance Profiles of Enterohemorrhagic and Enteropathogenic Escherichia coli of Serotypes O157:H7, O26:H11, O103:H2, O111:H8, O145:H28 Compared to Escherichia coli Isolated from the Same Adult Cattle. Microb Drug Resist 2018; 24:852-859. [PMID: 29723122 DOI: 10.1089/mdr.2017.0106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to compare the antimicrobial resistance profiles of top five enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) to E. coli isolated from the fecal flora of the same adult cattle. Previous prevalence studies had led to the isolation by immunomagnetic separation (IMS) of 39 EHEC and 80 EPEC. Seven EHEC were resistant (17.9%), and six were multidrug resistant (MDR) (15.4%). None of the top five EHEC was resistant to azithromycin. Nine EPEC O26:H11 (11.3%) were resistant. They were all resistant to tetracycline, and four were MDR (5.0%). An E. coli strain was isolated from the feces (without preselection by IMS) of 97 bovine carriers of top 5 strains. All these strains were susceptible to antibiotics. Comparative analyses did not reveal any differences between the cytotoxic activities of resistant EHEC and their susceptible counterparts or in the production of attachment and effacement lesions. These results highlighted the higher percentage of resistance of EHEC and EPEC strains compared to other E. coli. They also showed that resistance traits did not have any impact on the expression of virulence phenotypes in EHEC strains.
Collapse
Affiliation(s)
- Maryse Michèle Um
- 1 IRSD, Université de Toulouse , INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hubert Brugère
- 1 IRSD, Université de Toulouse , INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Monique Kérourédan
- 1 IRSD, Université de Toulouse , INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Eric Oswald
- 1 IRSD, Université de Toulouse , INSERM, INRA, ENVT, UPS, Toulouse, France .,2 CHU de Toulouse, Hôpital Purpan , Toulouse, France
| | - Delphine Bibbal
- 1 IRSD, Université de Toulouse , INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
4
|
Falardeau J, Johnson RP, Pagotto F, Wang S. Occurrence, characterization, and potential predictors of verotoxigenic Escherichia coli, Listeria monocytogenes, and Salmonella in surface water used for produce irrigation in the Lower Mainland of British Columbia, Canada. PLoS One 2017; 12:e0185437. [PMID: 28953937 PMCID: PMC5617201 DOI: 10.1371/journal.pone.0185437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
Produce has become a major source of foodborne illness, and may become contaminated through surface water irrigation. The objectives of this study were to (i) determine the frequency of verotoxigenic E. coli (VTEC), Listeria monocytogenes, and Salmonella in surface waters used for irrigation in the Lower Mainland of British Columbia, (ii) assess the suitability of fecal coliforms and generic E. coli as hygiene indicators, and (iii) investigate the correlations of environmental factors with pathogen occurrence. Water samples were collected semi-monthly for 18 months from seven irrigation ditches across the Serpentine and Sumas watersheds. VTEC colonies on water filters were detected using a verotoxin colony immunoblot, and the presence of virulence genes vt1 and vt2 was ascertained via multiplex PCR. Detection of L. monocytogenes and Salmonella was completed using standard, Health Canada Compendium of Analytical Methods. Fecal coliforms and generic E. coli were enumerated by 3M™ Petrifilm™ and filtration methods, and meteorological and geographic data were collected from government records. VTEC, L. monocytogenes, and Salmonella were detected in 4.93%, 10.3%, and 2.69% of 223 samples, respectively. L. monocytogenes occurrence was greatest in the Serpentine watershed (χ2; p < 0.05), and was most common during the winter and fall (Fisher exact test; p < 0.05). Site dependence of VTEC and Salmonella occurrence was observed within watersheds (Fisher's exact test; p < 0.10). Pathogen occurrence correlated with fecal coliform counts (r = 0.448), while VTEC occurrence also correlated with precipitation over the five days before sampling (r = 0.239). The density of upstream livestock correlated with VTEC (rs = 0.812), and L. monocytogenes (rs = 0.841) detection. These data show that foodborne pathogens are present in the waters used for irrigation in the Lower Mainland of British Columbia, but their frequency may depend on spatial and temporal factors.
Collapse
Affiliation(s)
- Justin Falardeau
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Franco Pagotto
- Listeriosis Reference Service, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
5
|
Baranzoni GM, Fratamico PM, Gangiredla J, Patel I, Bagi LK, Delannoy S, Fach P, Boccia F, Anastasio A, Pepe T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:574. [PMID: 27148249 PMCID: PMC4838603 DOI: 10.3389/fmicb.2016.00574] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.
Collapse
Affiliation(s)
- Gian Marco Baranzoni
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Pina M Fratamico
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Lori K Bagi
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Sabine Delannoy
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Patrick Fach
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| |
Collapse
|
6
|
Söderlund R, Hurel J, Jinnerot T, Sekse C, Aspán A, Eriksson E, Bongcam-Rudloff E. Genomic comparison of Escherichia coli serotype O103:H2 isolates with and without verotoxin genes: implications for risk assessment of strains commonly found in ruminant reservoirs. Infect Ecol Epidemiol 2016; 6:30246. [PMID: 26895282 PMCID: PMC4759829 DOI: 10.3402/iee.v6.30246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Escherichia coli O103:H2 occurs as verotoxigenic E. coli (VTEC) carrying only vtx1 or vtx2 or both variants, but also as vtx-negative atypical enteropathogenic E. coli (aEPEC). The majority of E. coli O103:H2 identified from cases of human disease are caused by the VTEC form. If aEPEC strains frequently acquire verotoxin genes and become VTEC, they must be considered a significant public health concern. In this study, we have characterized and compared aEPEC and VTEC isolates of E. coli O103:H2 from Swedish cattle. Methods Fourteen isolates of E. coli O103:H2 with and without verotoxin genes were collected from samples of cattle feces taken during a nationwide cattle prevalence study 2011–2012. Isolates were sequenced with a 2×100 bp setup on a HiSeq2500 instrument producing >100× coverage per isolate. Single-nucleotide polymorphism (SNP) typing was performed using the genome analysis tool kit (GATK). Virulence genes and other regions of interest were detected. Susceptibility to transduction by two verotoxin-encoding phages was investigated for one representative aEPEC O103:H2 isolate. Results and Discussion This study shows that aEPEC O103:H2 is more commonly found (64%) than VTEC O103:H2 (36%) in the Swedish cattle reservoir. The only verotoxin gene variant identified was vtx1a. Phylogenetic comparison by SNP analysis indicates that while certain subgroups of aEPEC and VTEC are closely related and have otherwise near identical virulence gene repertoires, they belong to separate lineages. This indicates that the uptake or loss of verotoxin genes is a rare event in the natural cattle environment of these bacteria. However, a representative of a VTEC-like aEPEC O103:H2 subgroup could be stably lysogenized by a vtx-encoding phage in vitro.
Collapse
Affiliation(s)
- Robert Söderlund
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden.,Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden;
| | - Julie Hurel
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Tomas Jinnerot
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Camilla Sekse
- Department of Laboratory Services, Norwegian Veterinary Institute (NVI), Oslo, Norway
| | - Anna Aspán
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU Global Bioinformatics Centre, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| |
Collapse
|
7
|
L'Abée-Lund TM, Jørgensen HJ, O'Sullivan K, Bohlin J, Ligård G, Granum PE, Lindbäck T. The highly virulent 2006 Norwegian EHEC O103:H25 outbreak strain is related to the 2011 German O104:H4 outbreak strain. PLoS One 2012; 7:e31413. [PMID: 22403614 PMCID: PMC3293862 DOI: 10.1371/journal.pone.0031413] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 01/10/2012] [Indexed: 11/28/2022] Open
Abstract
In 2006, a severe foodborne EHEC outbreak occured in Norway. Seventeen cases were recorded and the HUS frequency was 60%. The causative strain, Esherichia coli O103:H25, is considered to be particularly virulent. Sequencing of the outbreak strain revealed resemblance to the 2011 German outbreak strain E. coli O104:H4, both in genome and Shiga toxin 2-encoding (Stx2) phage sequence. The nucleotide identity between the Stx2 phages from the Norwegian and German outbreak strains was 90%. During the 2006 outbreak, stx2-positive O103:H25 E. coli was isolated from two patients. All the other outbreak associated isolates, including all food isolates, were stx-negative, and carried a different phage replacing the Stx2 phage. This phage was of similar size to the Stx2 phage, but had a distinctive early phage region and no stx gene. The sequence of the early region of this phage was not retrieved from the bacterial host genome, and the origin of the phage is unknown. The contaminated food most likely contained a mixture of E. coli O103:H25 cells with either one of the phages.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Toril Lindbäck
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, Oslo, Norway
- * E-mail:
| |
Collapse
|
8
|
Abstract
Verotoxin-producing Escherichia coli (VTEC) is annually incriminated in more than 100,000 cases of enteric foodborne human disease and in losses amounting to $US 2.5 billion every year. A number of genotyping methods have been developed to track VTEC infections and determine diversity and evolutionary relationships among these microorganisms. These methods have facilitated monitoring and surveillance of foodborne VTEC outbreaks and early identification of outbreaks or clusters of outbreaks. Pulsed-field gel electrophoresis (PFGE) has been used extensively to track and differentiate VTEC because of its high discriminatory power, reproducibility and ease of standardization. Multiple-locus variable-number tandem-repeats analysis (MLVA) and microarrays are the latest genotyping methods that have been applied to discriminate VTEC. MLVA, a simpler and less expensive method, is proving to have a discriminatory power comparable to that of PFGE. Microarrays are successfully being applied to differentiate VTEC and make inferences on genome diversification. Novel methods that are being evaluated for subtyping VTEC include the detection of single nucleotide polymorphisms and optical mapping. This review discusses the principles, applications, advantages and disadvantages of genotyping methods that have been used to differentiate VTEC strains. These methods have been mainly used to differentiate strains of O157:H7 VTEC and to a lesser extent non-O157 VTEC.
Collapse
Affiliation(s)
- M Karama
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
9
|
Souza MRSM, Klassen G, Toni FD, Rigo LU, Henkes C, Pigatto CP, Dalagassa CDB, Fadel-Picheth CMT. Biochemical properties, enterohaemolysin production and plasmid carriage of Shiga toxin-producing Escherichia coli strains. Mem Inst Oswaldo Cruz 2010; 105:318-21. [PMID: 20512247 DOI: 10.1590/s0074-02762010000300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/26/2010] [Indexed: 11/22/2022] Open
Abstract
Thirty-eight strains of Shiga toxin-producing Escherichia coli (STEC) were characterised in terms of biochemical properties, enterohaemolysin production and plasmid carriage. A wide variation in the biochemical properties was observed among the STEC, with 14 distinct biotypes identified. Biotype 1 was the most common, found in 29% of the strains. Enterohaemolysin production was detected in 29% of the strains. Most of the bacterial strains (95%) carried one or more plasmids and considerable heterogeneity in size and combinations was observed. Seven distinct plasmid profiles were identified. The most common profile, characterised by the presence of a single plasmid of ~90 kb, was found in 50% of these strains. These data indicate extensive diversity among STEC strains. No correlation was found among biotype, serotype, enterohaemolysin production and plasmid profile.
Collapse
Affiliation(s)
- Mario R S M Souza
- Departamento de Patologia Médica, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Feng PCH, Keys C, Lacher D, Monday SR, Shelton D, Rozand C, Rivas M, Whittam T. Prevalence, characterization and clonal analysis of Escherichia coli O157: non-H7 serotypes that carry eae alleles. FEMS Microbiol Lett 2010; 308:62-7. [PMID: 20487015 DOI: 10.1111/j.1574-6968.2010.01990.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
We examined O157:non-H7 strains isolated from various sources and geographical locations and found 15/57 strains to carry eae alleles, including alpha, beta, epsilon and kappa/delta, suggesting that these strains may be prevalent. All strains were serologically and genetically confirmed to be O157, but none were the H7 serotype or carried any trait virulence factors of the Escherichia coli O157:H7 serotype. Genetic H typing of the eae-positive strains showed that the alpha-eae-bearing strain was H45, while the beta- and epsilon-eae strains were H16 and the kappa/delta-eae strains were H39. The beta- and epsilon-eae-bearing O157:H16 strains shared approximately 90% pulsed-field gel electrophoresis (PFGE) similarity and were distinct from the other strains that had other eae alleles. Interestingly, an epsilon-eae O157:H16 strain isolated from meat in France shared PFGE similarity to the O157:H16 strains from water in the United States. Multilocus sequence typing showed that there is clonal diversity within the O157 serogroup, as some O157:non-H7 strains clustered with EPEC clonal groups, while others clustered within the ST-171 group of diverse strains and serotypes that had not previously included any strains from the O157 serogroup. Clonal analysis also showed that none of the eae-positive O157:non-H7 strains we examined were closely related to the pathogenic O157:H7 serotype.
Collapse
|
11
|
Production of verotoxin and distribution of O islands 122 and 43/48 among verotoxin-producing Escherichia coli O103:H2 isolates from cattle and humans. Appl Environ Microbiol 2008; 75:268-70. [PMID: 18997029 DOI: 10.1128/aem.01445-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study investigated variations in the occurrence of markers of O islands 122 and 43/48 and in verotoxin 1 production in 91 verotoxin-producing Escherichia coli (VTEC) O103:H2 strains of bovine and human origins. None of the genes that were investigated appear to be virulence indicators for human O103:H2 VTEC.
Collapse
|