1
|
Gil E, Hatcher J, Saram SD, Guy RL, Lamagni T, Brown JS. Streptococcus intermedius: an underestimated pathogen in brain infection? Future Microbiol 2025; 20:163-177. [PMID: 39552595 DOI: 10.1080/17460913.2024.2423524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Streptococcus intermedius is an oral commensal organism belonging to the Streptococcus anginosus group (SAG). S. intermedius causes periodontitis as well as invasive, pyogenic infection of the central nervous system, pleural space or liver. Compared with other SAG organisms, S. intermedius has a higher mortality as well as a predilection for intracranial infection, suggesting it is likely to possess virulence factors that mediate specific interactions with the host resulting in bacteria reaching the brain. The mechanisms involved are not well described. Intracranial suppuration (ICS) due to S. intermedius infection can manifest as an abscess within the brain parenchyma, or a collection of pus (empyema) in the sub- or extra-dural space. These infections necessitate neurosurgery and prolonged antibiotic treatment and are associated with a considerable burden of morbidity and mortality. The incidence of ICS is increasing in several settings, with SAG species accounting for an increasing proportion of cases. There is a paucity of published literature regarding S. intermedius pathogenesis as well as few published genomes, hampering molecular epidemiological research. This perspective evaluates what is known about the clinical features and pathogenesis of ICS due to S. intermedius and explores hypothetical explanations why the incidence of these infections may be increasing.
Collapse
Affiliation(s)
- Eliza Gil
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
| | - James Hatcher
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Sophia de Saram
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
| | - Rebecca L Guy
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Theresa Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
| |
Collapse
|
2
|
De Carolis E, Ivagnes V, Magrì C, Falasca B, Spanu T, Sanguinetti M. Evaluation of Autof MS2600 and MBT Smart MALDI-TOF MS Systems for Routine Identification of Clinical Bacteria and Yeasts. Microorganisms 2024; 12:382. [PMID: 38399786 PMCID: PMC10892063 DOI: 10.3390/microorganisms12020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The identification of microorganisms at the species level has always constituted a diagnostic challenge for clinical microbiology laboratories. The aim of the present study has been the evaluation in a real-time assay of the performance of Autobio in comparison with the Bruker mass spectrometry system for the identification of bacteria and yeasts. A total of 535 bacteria and yeast were tested in parallel with the two systems by direct smear or fast formic acid extraction for bacteria and yeasts, respectively. Discordant results were verified by 16S, ITS rRNA or specific gene sequencing. Beyond giving comparable results for bacteria with respect to the MBT smart system, Autof MS2600 mass spectrometer provided excellent accuracy for the identification of yeast species of clinical interest.
Collapse
Affiliation(s)
- Elena De Carolis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (V.I.); (C.M.); (B.F.); (T.S.)
| | | | | | | | | | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (V.I.); (C.M.); (B.F.); (T.S.)
| |
Collapse
|