1
|
Vega AD, DeRonde K, Jimenez A, Piazza M, Vu C, Martinez O, Rojas LJ, Marshall S, Yasmin M, Bonomo RA, Abbo LM. Difficult-to-treat (DTR) Pseudomonas aeruginosa harboring Verona-Integron metallo-β-lactamase ( blaVIM): infection management and molecular analysis. Antimicrob Agents Chemother 2024; 68:e0147423. [PMID: 38602418 PMCID: PMC11064525 DOI: 10.1128/aac.01474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Pseudomonas aeruginosa harboring Verona Integron-encoded metallo-β-lactamase enzymes (VIM-CRPA) have been associated with infection outbreaks in several parts of the world. In the US, however, VIM-CRPA remain rare. Starting in December 2018, we identified a cluster of cases in our institution. Herein, we present our epidemiological investigation and strategies to control/manage these challenging infections. This study was conducted in a large academic healthcare system in Miami, FL, between December 2018 and January 2022. Patients were prospectively identified via rapid molecular diagnostics when cultures revealed carbapenem-resistant P. aeruginosa. Alerts were received in real time by the antimicrobial stewardship program and infection prevention teams. Upon alert recognition, a series of interventions were performed as a coordinated effort. A retrospective chart review was conducted to collect patient demographics, antimicrobial therapy, and clinical outcomes. Thirty-nine VIM-CRPA isolates led to infection in 21 patients. The majority were male (76.2%); the median age was 52 years. The majority were mechanically ventilated (n = 15/21; 71.4%); 47.6% (n = 10/21) received renal replacement therapy at the time of index culture. Respiratory (n = 20/39; 51.3%) or bloodstream (n = 13/39; 33.3%) were the most common sources. Most infections (n = 23/37; 62.2%) were treated with an aztreonam-avibactam regimen. Six patients (28.6%) expired within 30 days of index VIM-CRPA infection. Fourteen isolates were selected for whole genome sequencing. Most of them belonged to ST111 (12/14), and they all carried blaVIM-2 chromosomally. This report describes the clinical experience treating serious VIM-CRPA infections with either aztreonam-ceftazidime/avibactam or cefiderocol in combination with other agents. The importance of implementing infection prevention strategies to curb VIM-CRPA outbreaks is also demonstrated.
Collapse
Affiliation(s)
- Ana D. Vega
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Kailynn DeRonde
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Adriana Jimenez
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Epidemiology, Florida International University, Miami, Florida, USA
| | - Michael Piazza
- Department of Medicine, Virtua Medical Group, Medford, New Jersey, USA
| | - Christine Vu
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
| | - Octavio Martinez
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Laura J. Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Steven Marshall
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Mohamad Yasmin
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Medicine, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Proteomics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lilian M. Abbo
- Department of Pharmacy, Jackson Health System, Miami, Florida, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Penha Filho RAC, Ferreira JC, Kanashiro AMI, Berchieri Junior A, Darini ALDC. Emergent multidrug-resistant nontyphoidal Salmonella serovars isolated from poultry in Brazil coharboring bla CTX-M-2 and qnrB or bla CMY-2 in large plasmids. Diagn Microbiol Infect Dis 2019; 95:93-98. [PMID: 31221507 DOI: 10.1016/j.diagmicrobio.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 02/08/2023]
Abstract
The number of foodborne gastroenteritis caused by nontyphoidal Salmonella (NTS) worldwide is estimated to be 80.3 million each year. Currently, antimicrobial-resistant NTS disseminated in the animal environment increases the risk of aggravated foodborne outbreaks. Poultry are important source of foodborne NTS infections. This study was conducted to evaluate the phenotypic and genotypic characteristics of 83 NTS isolates from poultry, classified within 36 different serovars. The most prevalent serovar was S. Schwarzengrund (10/83), from which 8/10 were multidrug resistant (MDR). The antimicrobial susceptibility testing showed a total of 18 MDR isolates, from which 8/18 coharbored blaCTX-M-2 and qnrB5. The genes qnrB5, blaCTX-M-2, qnrB2, or blaCMY-2 were also found alone in other MDR isolates. All resistance genes were harbored in large plasmids, ranging from 30 to 270 kb. The pColE replicon was present in 8 MDR isolates; however it was not associated with resistance. ISCR1 and class I integron structures were always associated with blaCTX-M-2.
Collapse
Affiliation(s)
| | - Joseane Cristina Ferreira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil, 14040-903
| | | | - Angelo Berchieri Junior
- School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil, 14884-900
| | - Ana Lúcia da Costa Darini
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil, 14040-903
| |
Collapse
|
3
|
Febrile Neutropenia in Transplant Recipients. PRINCIPLES AND PRACTICE OF TRANSPLANT INFECTIOUS DISEASES 2019. [PMCID: PMC7122322 DOI: 10.1007/978-1-4939-9034-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Febrile neutropenic patients are at increased risk of developing infections. During the initial stages of neutropenia, most of these infections are bacterial. The spectrum of bacterial infections depends to some extent on whether or not patients receive antimicrobial prophylaxis when neutropenic. Since most transplant recipients do, Gram-positive organisms predominate, due to the fact prophylaxis is directed primarily against Gram-negative organisms. Staphylococcus species (often methicillin-resistant), Streptococcus species (viridans group streptococci, beta-hemolytic streptococci), and Enterococcus species (including vancomycin-resistant strains) are isolated most often. Therefore, potent empiric Gram-positive coverage is recommended by many in this setting. Escherichia coli, Pseudomonas aeruginosa, and Klebsiella species are the most common Gram-negative pathogens isolated. Non-fermentative Gram-negative bacilli (Stenotrophomonas maltophilia, Acinetobacter species) are emerging as important pathogens. Many of these organisms acquire multiple mechanisms of resistance that render them multidrug resistant. The administration of prompt, broad-spectrum, empiric, antimicrobial therapy is essential and is generally based on local epidemiology and susceptibility/resistance patterns. Response rate to the initial regimen is generally in the range of 75–85%. Fungal infections develop in patients with prolonged neutropenia (greater than 7–10 days). Candida species and Aspergillus species are the predominant fungal pathogens, although many other fungi are opportunistic pathogens in this setting. Fungal infections are seldom documented microbiologically or on histopathology, and the administration of empiric antifungal therapy, when such infections are suspected, is the norm. Therapy is often prolonged, and outcomes are still suboptimal. The importance of infection control and antimicrobial stewardship cannot be overemphasized.
Collapse
|
4
|
El Chakhtoura NG, Saade E, Iovleva A, Yasmin M, Wilson B, Perez F, Bonomo RA. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward 'molecularly targeted' therapy. Expert Rev Anti Infect Ther 2018; 16:89-110. [PMID: 29310479 PMCID: PMC6093184 DOI: 10.1080/14787210.2018.1425139] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.
Collapse
Affiliation(s)
- Nadim G. El Chakhtoura
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Elie Saade
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Alina Iovleva
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Mohamad Yasmin
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brigid Wilson
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Federico Perez
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Robert A. Bonomo
- Medicine Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Services Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Medicine, University Hospitals Cleveland Medical Center Case Western Reserve University School of Medicine, Cleveland, Ohio
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
5
|
Balero de Paula S, Cayô R, Streling AP, Silva Nodari C, Pereira Matos A, Eches Perugini MR, Gales AC, Carrara-Marroni FE, Yamada-Ogatta SF. Detection of blaVIM-7 in an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST1284 in Brazil. Diagn Microbiol Infect Dis 2017; 89:80-82. [DOI: 10.1016/j.diagmicrobio.2017.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/06/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
|
6
|
Tamma PD, Suwantarat N, Rudin SD, Logan LK, Simner PJ, Rojas LJ, Mojica MF, Carroll KC, Bonomo RA. First Report of a Verona Integron-Encoded Metallo-β-Lactamase-Producing Klebsiella pneumoniae Infection in a Child in the United States. J Pediatric Infect Dis Soc 2016; 5:e24-7. [PMID: 27147714 PMCID: PMC5125454 DOI: 10.1093/jpids/piw025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/29/2016] [Indexed: 11/13/2022]
Abstract
We report the first case of a child in the United States infected with an organism producing a Verona Integron-Encoded Metallo-β-Lactamase. This child succumbed to a ventilator-associated pneumonia caused by a Klebsiella pneumoniae producing this resistance mechanism.
Collapse
Affiliation(s)
| | - Nuntra Suwantarat
- Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland,Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | | | - Latania K. Logan
- Section of Pediatric Infectious Diseases, Department of Pediatrics, Rush University Medical Center, Rush Medical College, Chicago, Illinois,Louis Stokes Cleveland Department of Veterans Affairs Medical Center
| | - Patricia J. Simner
- Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura J. Rojas
- Research Service,Department of Medicine,Department of Molecular Biology and Microbiology
| | - Maria F. Mojica
- Research Service,Department of Medicine,Department of Biochemistry
| | - Karen C. Carroll
- Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A. Bonomo
- Geriatrics Research, Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio,Department of Medicine,Department of Molecular Biology and Microbiology,Department of Biochemistry,Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
7
|
Zahedi bialvaei A, Samadi kafil H, Ebrahimzadeh Leylabadlo H, Asgharzadeh M, Aghazadeh M. Dissemination of carbapenemases producing Gram negative bacteria in the Middle East. IRANIAN JOURNAL OF MICROBIOLOGY 2015; 7:226-46. [PMID: 26719779 PMCID: PMC4695504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The emergence and spread of carbapenemase-producing bacteria, that hydolyze most β-lactams, including carbapenems, are a major concern of public health system worldwide, particularly in the Middle East area. Since the plasmids harboring resistance genes could be spread across other bacterial populations, detection of carbapenemase-producing organisms has become more problematic. These organisms produce different types of enzymes including the most prevalent types including KPC, VIM, IMP, NDM, and OXA-48. Carbapenemase producers are mostly identified among Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. This study reviewed almost all papers, which conducted in the Middle East. In order to decrease the spread of resistance, the regional cooperation has been emphasized by the Middle East countries. The highest resistance, which is mediated by KPC has been observed in Afghanistan, Saudi Arabia and Jordan followed by NDM in Pakistan and OXA in Turkey and Pakistan. It is important to mention that the spread of these types have been reported sporadically in the other countries of this area. This review described the widespread carbapenemases in the Middle East area, which have been identified in an alarming rate.
Collapse
Affiliation(s)
- Abed Zahedi bialvaei
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Corresponding author: Hossein Samadi Kafil PhD. Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail:
| | | | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Infectious Disease and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Perez F, Adachi J, Bonomo RA. Antibiotic-resistant gram-negative bacterial infections in patients with cancer. Clin Infect Dis 2015; 59 Suppl 5:S335-9. [PMID: 25352627 DOI: 10.1093/cid/ciu612] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia--all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined.
Collapse
Affiliation(s)
- Federico Perez
- Medical and Research Services, Louis Stokes Cleveland Veterans Affairs Medical Center Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Javier Adachi
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston
| | - Robert A Bonomo
- Medical and Research Services, Louis Stokes Cleveland Veterans Affairs Medical Center Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
9
|
|
10
|
Extensively drug-resistant pseudomonas aeruginosa isolates containing blaVIM-2 and elements of Salmonella genomic island 2: a new genetic resistance determinant in Northeast Ohio. Antimicrob Agents Chemother 2014; 58:5929-35. [PMID: 25070102 DOI: 10.1128/aac.02372-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Carbapenems are a mainstay of treatment for infections caused by Pseudomonas aeruginosa. Carbapenem resistance mediated by metallo-β-lactamases (MBLs) remains uncommon in the United States, despite the worldwide emergence of this group of enzymes. Between March 2012 and May 2013, we detected MBL-producing P. aeruginosa in a university-affiliated health care system in northeast Ohio. We examined the clinical characteristics and outcomes of patients, defined the resistance determinants and structure of the genetic element harboring the blaMBL gene through genome sequencing, and typed MBL-producing P. aeruginosa isolates using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR (rep-PCR), and multilocus sequence typing (MLST). Seven patients were affected that were hospitalized at three community hospitals, a long-term-care facility, and a tertiary care center; one of the patients died as a result of infection. Isolates belonged to sequence type 233 (ST233) and were extensively drug resistant (XDR), including resistance to all fluoroquinolones, aminoglycosides, and β-lactams; two isolates were nonsusceptible to colistin. The blaMBL gene was identified as blaVIM-2 contained within a class 1 integron (In559), similar to the cassette array previously detected in isolates from Norway, Russia, Taiwan, and Chicago, IL. Genomic sequencing and assembly revealed that In559 was part of a novel 35-kb region that also included a Tn501-like transposon and Salmonella genomic island 2 (SGI2)-homologous sequences. This analysis of XDR strains producing VIM-2 from northeast Ohio revealed a novel recombination event between Salmonella and P. aeruginosa, heralding a new antibiotic resistance threat in this region's health care system.
Collapse
|
11
|
Fallah F, Taherpour A, Borhan R, Hashemi A, Habibi M, Sajadi Nia R. Evaluation of Zataria MultiFlora Boiss and Carum copticum antibacterial activity on IMP-type metallo-beta-lactamase-producing Pseudomonas aeruginosa. ANNALS OF BURNS AND FIRE DISASTERS 2013; 26:193-198. [PMID: 24799849 PMCID: PMC3978591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Indexed: 06/03/2023]
Abstract
Carbapenem resistance due to acquired metallo-beta-lactamases (MBLs) is considered to be more serious than other resistance mechanisms. The aim of this study was to evaluate the antibacterial activity of Zataria multiflora Boiss and Carum copticum plants on IMP-producing P.aeruginosa strains. This experimental study was carried out on hospitalized burn patients during 2011 and 2012. Antibiotics and extracts susceptibility tests were performed by disc diffusion and broth microdilution methods. MBL detection was performed by Combination Disk Diffusion Test (CDDT). The bla(VIM) and bla(IMP) genes were detected by PCR and sequencing methods. Using Combination Disk Diffusion test method, it was found that among 83 imipenem resistant P.aeruginosa strains, 48 (57.9%) were MBL producers. PCR and sequencing methods proved that these isolates were positive for blaIMP-1 genes, whereas none were positive for bla(VIM) genes. The mortality rate of hospitalized patients with MBL-producing Pseudomonas infection was 4/48 (8.3%). It was shown that Zataria multiflora and Carum copticum extracts had a high antibacterial effect on regular and IMP-producing P. aeruginosa strains in 6.25 mg/ml concentration. The incidence of MBL-producing P. aeruginosa in burn patients is very high. In our study, all MBL-producing isolates carry the blaIMP-1 gene. Therefore, detection of MBL-producing isolates is of great importance in identifying drug resistance patterns in P. aeruginosa, and in prevention and control of infections. In this study, it was shown that extracts of Z. multiflora and C. copticum have high antibacterial effects on ß-lactamase producing P. aeruginosa strains.
Collapse
Affiliation(s)
- F. Fallah
- Pediatric Infections Research Center, Mofid Children’s Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Taherpour
- Microbiology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - R.S. Borhan
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A. Hashemi
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Habibi
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - R. Sajadi Nia
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Tawfik AF, Shibl AM, Aljohi MA, Altammami MA, Al-Agamy MH. Distribution of Ambler class A, B and D β-lactamases among Pseudomonas aeruginosa isolates. Burns 2012; 38:855-60. [DOI: 10.1016/j.burns.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/13/2011] [Accepted: 01/02/2012] [Indexed: 11/16/2022]
|
13
|
Bonomo RA. New Delhi metallo-β-lactamase and multidrug resistance: a global SOS? Clin Infect Dis 2011; 52:485-7. [PMID: 21258101 DOI: 10.1093/cid/ciq179] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Abstract
PURPOSE OF REVIEW Multiresistant Gram-negative infections are an increasing problem in hospitals and healthcare facilities worldwide. While much attention has been paid to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus lately, the importance of Gram-negative nosocomial infections has also been recognized globally. RECENT FINDINGS Recent reports have described the spread of carbapenemase-producing Klebsiella pneumoniae across North America. In addition, many strains of Pseudomonas and Acinetobacter in Asia are resistant to all known antibiotics. The global epidemiology of multiresistant Gram-negative pathogens seems to vary by continent. There are very few existing agents which can be used for these pathogens and there are limited options on the horizon. This limited therapeutic armamentarium has been an impetus for novel approaches including combination therapies and increased attention to infection control and prevention efforts. SUMMARY Clinicians need to be aware of the rising problem of resistance in nosocomial and community-acquired Gram-negative pathogens. Novel agents are urgently needed to combat these infections and innovative infection control strategies need to be devised to protect our vulnerable patients.
Collapse
|
15
|
Bahar MA, Jamali S, Samadikuchaksaraei A. Imipenem-resistant Pseudomonas aeruginosa strains carry metallo-β-lactamase gene blaVIM in a level I Iranian burn hospital. Burns 2010; 36:826-30. [DOI: 10.1016/j.burns.2009.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/08/2009] [Accepted: 10/11/2009] [Indexed: 10/20/2022]
|
16
|
Oelschlaeger P, Ai N, Duprez KT, Welsh WJ, Toney JH. Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm? J Med Chem 2010; 53:3013-27. [PMID: 20121112 DOI: 10.1021/jm9012938] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter Oelschlaeger
- Chemistry Department and Center for Macromolecular Modeling and Materials Design, California State Polytechnic University, Pomona, California, USA.
| | | | | | | | | |
Collapse
|
17
|
Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2010; 54:1160-4. [PMID: 20086165 DOI: 10.1128/aac.01446-09] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen commonly implicated in nosocomial infections. The occurrence of multidrug-resistant (MDR) P. aeruginosa strains is increasing worldwide and limiting our therapeutic options. The MDR phenotype can be mediated by a variety of resistance mechanisms, and the corresponding relative biofitness is not well established. We examined the prevalence, resistance mechanisms, and susceptibility of MDR P. aeruginosa isolates (resistant to > or =3 classes of antipseudomonal agents [penicillins/cephalosporins, carbapenems, quinolones, and aminoglycosides]) obtained from a large, university-affiliated hospital. Among 235 nonrepeat bloodstream isolates screened between 2005 and 2007, 33 isolates (from 20 unique patients) were found to be MDR (crude prevalence rate, 14%). All isolates were resistant to carbapenems and quinolones, 91% were resistant to penicillins/cephalosporins, and 21% were resistant to the aminoglycosides. By using the first available isolate for each bacteremia episode (n = 18), 13 distinct clones were revealed by repetitive-element-based PCR. Western blotting revealed eight isolates (44%) to have MexB overexpression. Production of a carbapenemase (VIM-2) was found in one isolate, and mutations in gyrA (T83I) and parC (S87L) were commonly found. Growth rates of most MDR isolates were similar to that of the wild type, and two isolates (11%) were found to be hypermutable. All available isolates were susceptible to polymyxin B, and only one isolate was nonsusceptible to colistin (MIC, 3 mg/liter), but all isolates were nonsusceptible to doripenem (MIC, >2 mg/liter). Understanding and continuous monitoring of the prevalence and resistance mechanisms of MDR P. aeruginosa would enable us to formulate rational treatment strategies to combat nosocomial infections.
Collapse
|
18
|
Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program: a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis 2010; 65:414-26. [PMID: 19833471 DOI: 10.1016/j.diagmicrobio.2009.08.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
The Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Program was a global, longitudinal antimicrobial resistance surveillance network of more than 100 medical centers worldwide monitoring the susceptibility of meropenem and selected other broad-spectrum comparator agents. In 1999, and from 2000 through 2008, a total of 10 or 15 United States (USA) medical centers each forwarded 200 nonduplicate clinical isolates from serious infections to a central processing laboratory. Over the 10-year period of this surveillance program, the activity of meropenem and an average of 11 other antimicrobial agents were assessed against a total of 27 289 bacterial isolates using Clinical and Laboratory Standards Institute reference methods. Meropenem consistently demonstrated low resistance rates against Enterobacteriaceae species isolates through 2008 and did not exhibit a widespread change in resistance rates over the monitored interval. In fact, the incidence of emerging carbapenemase-producing (KPC-type) Klebsiella spp. showed a decline in 2008 compared to the steeply increasing rates observed from 2004 to 2007. Moreover, the KPC serine carbapenemases have spread to other Enterobacteriaceae species monitored by the MYSTIC Program. Greatest increases in antimicrobial resistance rates were observed for the fluoroquinolones (ciprofloxacin, levofloxacin) among all species monitored by the MYSTIC Program. Current susceptibility rates for meropenem when tested against prevalent pathogens were Pseudomonas aeruginosa (439 strains, 85.4% susceptible), Enterobacteriaceae (1537 strains, 97.3% susceptible), methicillin-susceptible staphylococci (460 strains, 100.0% susceptible), Streptococcus pneumoniae (125 strains, 80.2% at meningitis susceptibility breakpoints), other streptococci (159 strains, 90.0-100.0% susceptible), and Acinetobacter spp. (127 strains, 45.7% susceptible), the widest spectrum among beta-lactams tested in 2008 and throughout the last decade. Continued local surveillance of broad-spectrum agents following the completion of the MYSTIC Program (USA) appears critical to detect emerging resistances among pathogens causing the most serious infections requiring carbapenem agents.
Collapse
|
19
|
Rolston KVI. New antimicrobial agents for the treatment of bacterial infections in cancer patients. Hematol Oncol 2009; 27:107-14. [DOI: 10.1002/hon.898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Metallo-β-lactamases in Gram-negative bacteria: introducing the era of pan-resistance? Int J Antimicrob Agents 2009; 33:405.e1-7. [DOI: 10.1016/j.ijantimicag.2008.09.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 09/03/2008] [Indexed: 11/22/2022]
|
21
|
Patel JB, Rasheed JK, Kitchel B. Carbapenemases in Enterobacteriaceae: Activity, Epidemiology, and Laboratory Detection. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.clinmicnews.2009.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Morfin-Otero R, Rodriguez-Noriega E, Deshpande LM, Sader HS, Castanheira M. Dissemination of a blaVIM-2-Carrying Integron Among Enterobacteriaceae Species in Mexico: Report from the SENTRY Antimicrobial Surveillance Program. Microb Drug Resist 2009; 15:33-5. [DOI: 10.1089/mdr.2009.0878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Rayo Morfin-Otero
- Instituto de Pathologia Infecciosa y Experimental, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Eduardo Rodriguez-Noriega
- Instituto de Pathologia Infecciosa y Experimental, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | | | | |
Collapse
|
23
|
Szabó D, Szentandrássy J, Juhász Z, Katona K, Nagy K, Rókusz L. Imported PER-1 producing Pseudomonas aeruginosa, PER-1 producing Acinetobacter baumanii and VIM-2-producing Pseudomonas aeruginosa strains in Hungary. Ann Clin Microbiol Antimicrob 2008; 7:12. [PMID: 18513394 PMCID: PMC2430584 DOI: 10.1186/1476-0711-7-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022] Open
Abstract
Introduction Pseudomonas aeruginosa and Acinetobacter baumanii are important nosocomial pathogens with wide intrinsic resistance. However, due to the dissemination of the acquired resistance mechanisms, such as extended-spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL) production, multidrug resistant strains have been isolated more often. Case presentation We report a case of a Hungarian tourist, who was initially hospitalized in Egypt and later transferred to Hungary. On the day of admission PER-1-producing P. aeruginosa, PER-1 producing A. baumannii, SHV-5-producing Klebsiella pneumoniae and VIM-2-producing P. aeruginosa isolates were subcultured from the patient's samples in Hungary. Comparing the pulsed-field gel electrophoresis (PFGE) patterns of the P. aeruginosa strains from the patient to the P. aeruginosa strains occurring in this hospital, we can state that the PER-1-producing P. aeruginosa and VIM-2-producing P. aeruginosa had external origin. Conclusion This is the first report of PER-1-producing P. aeruginosa,and PER-1-producing A. baumanii strains in Hungary. This case highlights the importance of spreading of the beta-lactamase-mediated resistance mechanisms between countries and continents, showing the importance of careful screening and the isolation of patients arriving from a different country.
Collapse
Affiliation(s)
- Dora Szabó
- Institute of Medical Microbiology, Semmelweis University, Budapest, H-1089, Nagyvárad tér 4., Hungary.
| | | | | | | | | | | |
Collapse
|
24
|
Metallo-beta-lactamase gene bla(IMP-15) in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother 2008; 52:2943-6. [PMID: 18490501 DOI: 10.1128/aac.00679-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During 2003, 40 carbapenem-resistant Pseudomonas aeruginosa clinical isolates collected in a Mexican tertiary-care hospital were screened for metallo-beta-lactamase production. Thirteen isolates produced IMP-15, and 12 had a single pulsed-field gel electrophoresis pattern. The bla(IMP-15) gene cassette was inserted in a plasmid-borne integron with a unique array of gene cassettes and was named In95.
Collapse
|
25
|
Cercenado E, Garau J, Almirante B, Ramón Azanza J, Cantón R, Cisterna R, María Eiros J, Fariñas C, Fortún J, Gudiol F, Mensa J, Pachón J, Pascual Á, Luis Pérez J, Rodríguez A, Sánchez M, Vila J. Update on bacterial pathogens: virulence and resistance. Enferm Infecc Microbiol Clin 2008; 26:3-21. [PMID: 38620184 PMCID: PMC7130156 DOI: 10.1016/s0213-005x(08)76378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present article is an update of the literature on bacterial pathogens. Recognizing the interest and scientific and public health importance of infections produced by bacterial pathogens with new virulence mechanisms and/or new mechanisms of resistance to antimicrobial agents, a multidisciplinary group of Spanish physicians and microbiologists organized a joint session and revised the most important papers produced in the field during 2006. Each article was analyzed and discussed by one of the members of the panel. This paper focus on a variety of diseases that pose major clinical and public health challenges today; and include infections produced by community-acquired methicillin-resistant Staphylococcus aureus and S. aureus small colony variants, infections produced by multiply resistant coagulase-negative staphylococci, pneumococcal infections, human listeriosis, meningococcal disease, Haemophilus influenzae, pertussis, Escherichia coli, ESBL-producing organisms, and infections due to non-fermenters. After a review of the state of the art, papers selected in this field are discussed.
Collapse
Affiliation(s)
- Emilia Cercenado
- Servicio de Microbiología. Hospital General Universitario Gregorio Marañón. Madrid. Spain
| | - Javier Garau
- Servicio de Enfermedades Infecciosas. Hospital Mutua de Terrassa. Barcelona. Spain
| | - Benito Almirante
- Servicio de Enfermedades Infecciosas. Hospitall Vall d'Hebron. Barcelona. Spain
| | | | - Rafael Cantón
- Servicio de Microbiología. Hospital Ramón y Cajal. Madrid. Spain
| | - Ramón Cisterna
- Servicio de Microbiología. Hospital de Basurto. Bilbao. Spain
| | - José María Eiros
- Servicio de Microbiología. Hospital Clínico Universitario. Valladolid. Spain
| | - Carmen Fariñas
- Servicio de Enfermedades Infecciosas. Hospital Marqués de Valdecilla. Santander. Spain
| | - Jesús Fortún
- Servicio de Enfermedades Infecciosas. Hospital Ramón y Cajal. Madrid. Spain
| | - Francisco Gudiol
- Servicio de Enfermedades Infecciosas. Hospital de Bellvitge. Barcelona. Spain
| | - José Mensa
- Servicio de Medicina Interna. Hospital Clínic. Barcelona. Spain
| | - Jerónimo Pachón
- Servicio de Enfermedades Infecciosas. Hospital Virgen del Rocío. Sevilla. Spain
| | - Álvaro Pascual
- Servicio de Microbiología. Hospital Virgen Macarena. Sevilla. Spain
| | - José Luis Pérez
- Servicio de Microbiología. Hospital Son Dureta. Palma de Mallorca. Spain
| | | | - Miguel Sánchez
- Servicio de Medicina Intensiva. Hospital Príncipe de Asturias. Alcalá de Henares. Madrid. Spain
| | - Jordi Vila
- Servicio de Microbiología. Hospital Clínic. Barcelona. Spain
| |
Collapse
|
26
|
Nicasio AM, Kuti JL, Nicolau DP. The current state of multidrug-resistant gram-negative bacilli in North America. Pharmacotherapy 2008; 28:235-49. [PMID: 18225969 DOI: 10.1592/phco.28.2.235] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although much of today's media focuses on multidrug-resistant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, resistance within gram-negative bacilli continues to rise, occasionally creating situations in which few or no antibiotics that retain activity are available. Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella sp are emerging threats nationally. Although carbapenems are considered the antibiotic class of choice to treat ESBL-producing Enterobacteriaceae, the ability of these organisms to produce carbapenemases has now become apparent in some regions throughout the United States. Although still rare, Klebsiella sp that produce KPC-2 retain susceptibility only to tigecycline, polymyxins, and occasionally aminoglycosides. Multidrug resistance among Pseudomonas aeruginosa and Acinetobacter sp has always been apparent across many hospitals in the United States. Recent surveillance indicates increasing resistance to all currently available antibiotics, including carbapenems, cephalosporins, penicillins, fluoroquinolones, and aminoglycosides. Against many strains, only polymyxins retain activity; however, resistance has also been reported to these agents. Fortunately, resistance mechanisms such as metallo-beta-lactamases are still rare in the United States. As no new antibiotics with novel mechanisms against many of these gram-negative bacilli are expected to be developed in the foreseeable future, careful and conservative use of agents combined with good infection control practices is required.
Collapse
Affiliation(s)
- Anthony M Nicasio
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT, USA
| | | | | |
Collapse
|
27
|
IMP-15-producing Pseudomonas aeruginosa strain isolated in a U.S. medical center: a recent arrival from Mexico. Antimicrob Agents Chemother 2008; 52:2289-90. [PMID: 18362195 DOI: 10.1128/aac.00299-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Abstract
Carbapenemases are beta-lactamases with versatile hydrolytic capacities. They have the ability to hydrolyze penicillins, cephalosporins, monobactams, and carbapenems. Bacteria producing these beta-lactamases may cause serious infections in which the carbapenemase activity renders many beta-lactams ineffective. Carbapenemases are members of the molecular class A, B, and D beta-lactamases. Class A and D enzymes have a serine-based hydrolytic mechanism, while class B enzymes are metallo-beta-lactamases that contain zinc in the active site. The class A carbapenemase group includes members of the SME, IMI, NMC, GES, and KPC families. Of these, the KPC carbapenemases are the most prevalent, found mostly on plasmids in Klebsiella pneumoniae. The class D carbapenemases consist of OXA-type beta-lactamases frequently detected in Acinetobacter baumannii. The metallo-beta-lactamases belong to the IMP, VIM, SPM, GIM, and SIM families and have been detected primarily in Pseudomonas aeruginosa; however, there are increasing numbers of reports worldwide of this group of beta-lactamases in the Enterobacteriaceae. This review updates the characteristics, epidemiology, and detection of the carbapenemases found in pathogenic bacteria.
Collapse
Affiliation(s)
- Anne Marie Queenan
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., Raritan, NJ 08869, USA.
| | | |
Collapse
|