1
|
Roja B, Saranya S, Chellapandi P. Discovery of novel virulence mechanisms in Clostridium botulinum type A3 using genome-wide analysis. Gene 2023; 869:147402. [PMID: 36972858 DOI: 10.1016/j.gene.2023.147402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVE Clostridium botulinum type A is a neurotoxin-producing, spore-forming anaerobic bacterium that causes botulism in humans. The evolutionary genomic context of this organism is not yet known to understand its molecular virulence mechanisms in the human intestinal tract. Hence, this study aimed to investigate the mechanisms underlying virulence and pathogenesis by comparing the genomic contexts across species, serotypes, and subtypes. METHODS A comparative genomic approach was used to analyze evolutionary genomic relationships, intergenomic distances, syntenic blocks, replication origins, and gene abundance with phylogenomic neighbors. RESULTS Type A strains have shown genomic proximity to group I strains with distinct accessory genes and vary even within subtypes. Phylogenomic data showed that type C and D strains were distantly related to a group I and group II strains. Synthetic plots indicated that orthologous genes might have evolved from Clostridial ancestry to subtype A3 strains, whereas syntonic out-paralogs might have emerged between subtypes A3 and A1 through α-events. Gene abundance analysis revealed the key roles of genes involved in biofilm formation, cell-cell communication, human diseases, and drug resistance compared to the pathogenic Clostridia. Moreover, we identified 43 unique genes in the type A3 genome, of which 29 were involved in the pathophysiological processes and other genes contributed to amino acid metabolism. The C. botulinum type A3 genome contains 14 new virulence proteins that can provide the ability to confer antibiotic resistance, virulence exertion and adherence to host cells, the host immune system, and mobility of extrachromosomal genetic elements. CONCLUSION The results of our study provide insight into the understanding of new virulence mechanisms to discover new therapeutics for the treatment of human diseases caused by type A3 strains.
Collapse
Affiliation(s)
- B Roja
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India.
| |
Collapse
|
2
|
Ma X, Li K, Li F, Su J, Meng W, Sun Y, Sun H, Sun J, Yuan Y, Lin Y, Hu S, Xu X, He Z. Tracing Foodborne Botulism Events Caused by Clostridium botulinum in Xinjiang Province, China, Using a Core Genome Sequence Typing Scheme. Microbiol Spectr 2022; 10:e0116422. [PMID: 36377961 PMCID: PMC9769928 DOI: 10.1128/spectrum.01164-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/22/2022] [Indexed: 11/16/2022] Open
Abstract
Foodborne botulism is a rare but life-threatening illness resulting from the action of a potent toxin mainly produced by Clostridium botulinum. It grows in an oxygen-deficient environment and is extremely viable in meat and soy products, making it one of the most virulent bacteria. How to track foodborne botulism events quickly and accurately has become a key issue. Here, we investigated two foodborne botulism events that occurred in Xinjiang in 2019 based on whole-genome sequencing and also successfully traced the relationship between clinical and food C. botulinum isolates using whole-genome core gene markers. All 59 isolates were classified as group I strains. Of the strains isolated in this study, 44 were found to be botulinum toxin A(B), and 15 isolates contained only the toxin B locus. Both the toxin A and B gene segments were located on the chromosome and organized in an ha cluster. Antibiotic resistance and virulence factors were also investigated. A set of 329 universal core gene markers were established using C. botulinum strains from a public database. These core gene markers were applied to the published C. botulinum genomes, and three outbreaks were identified. This work demonstrates that universal core gene markers can be used to trace foodborne botulism events, and we hope that our work will facilitate this effort in future. IMPORTANCE In this study, we analyzed 59 foodborne botulism (FB)-related strains isolated in Xinjiang Province, China. Our findings not only reveal the group classification, neurotoxin locus organization, antibiotic resistance and virulence factors of these strains but also establish a set of core gene markers for tracing foodborne botulism events, which was verified using published genomes. These findings indicate that these gene markers might be used as a potential tracing tool for FB events caused by C. botulinum group I strains, which have relatively stable genomic components.
Collapse
Affiliation(s)
- Xin Ma
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| | - Fang Li
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Su
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Weiwei Meng
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yanming Sun
- School of Engineering Medicine, Beihang University, Beijing, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiazheng Sun
- Criminal Investigation School, People's Public Security University of China, Beijing, China
| | - Yonghe Yuan
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yujia Lin
- Center for Disease Control and Prevention of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing, China
- National Institute for Communicable Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China
| |
Collapse
|
3
|
Draft Genome Sequence of Clostridium botulinum Subtype
bont
/A5(B2′). Microbiol Resour Announc 2022; 11:e0034822. [PMID: 35758756 PMCID: PMC9302180 DOI: 10.1128/mra.00348-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence of Clostridium botulinum strain CDC76130, which harbors a rare botulinum toxin gene (bont) complex arrangement of bont/A5 and truncated bont/B2 within the same ha toxin gene cluster.
Collapse
|
4
|
Chellapandi P, Prisilla A. Clostridium botulinum type A-virulome-gut interactions: A systems biology insight. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.humic.2018.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
5
|
Mazuet C, Legeay C, Sautereau J, Ma L, Bouchier C, Bouvet P, Popoff MR. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol Evol 2016; 8:1643-60. [PMID: 27189984 PMCID: PMC4943176 DOI: 10.1093/gbe/evw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/31/2023] Open
Abstract
In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947-1961], 43 from France [1986-2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2') A5(B3'), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements.
Collapse
Affiliation(s)
| | - Christine Legeay
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jean Sautereau
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Laurence Ma
- Plateforme Genomique-Pôle Biomics, Institut Pasteur, Paris, France
| | | | - Philippe Bouvet
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
6
|
Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. INFECTION GENETICS AND EVOLUTION 2014; 30:102-113. [PMID: 25489752 DOI: 10.1016/j.meegid.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022]
Abstract
The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains.
Collapse
|
7
|
Carter AT, Peck MW. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res Microbiol 2014; 166:303-17. [PMID: 25445012 PMCID: PMC4430135 DOI: 10.1016/j.resmic.2014.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised.
Collapse
Affiliation(s)
- Andrew T Carter
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
8
|
Wang D, Baudys J, Rees J, Marshall KM, Kalb SR, Parks BA, Nowaczyk L, Pirkle JL, Barr JR. Subtyping botulinum neurotoxins by sequential multiple endoproteases in-gel digestion coupled with mass spectrometry. Anal Chem 2012; 84:4652-8. [PMID: 22577857 DOI: 10.1021/ac3006439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Botulinum neurotoxin (BoNT) is one of the most toxic substances known. BoNT is classified into seven distinct serotypes labeled A-G. Among individual serotypes, researchers have identified subtypes based on amino acid variability within a serotype and toxin variants with minor amino acid sequence differences within a subtype. BoNT subtype identification is valuable for tracing and tracking bacterial pathogens. A proteomics approach is useful for BoNT subtyping since botulism is caused by botulinum neurotoxin and does not require the presence of the bacteria or its DNA. Enzymatic digestion and peptide identification using tandem mass spectrometry determines toxin protein sequences. However, with the conventional one-step digestion method, producing sufficient numbers of detectable peptides to cover the entire protein sequence is difficult, and incomplete sequence coverage results in uncertainty in distinguishing BoNT subtypes and toxin variants because of high sequence similarity. We report here a method of multiple enzymes and sequential in-gel digestion (MESID) to characterize the BoNT protein sequence. Complementary peptide detection from toxin digestions has yielded near-complete sequence coverage for all seven BoNT serotypes. Application of the method to a BoNT-contaminated carrot juice sample resulted in the identification of 98.4% protein sequence which led to a confident determination of the toxin subtype.
Collapse
Affiliation(s)
- Dongxia Wang
- National Center for Environmental Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia 30341, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Complete genome sequence of the proteolytic Clostridium botulinum type A5 (B3') strain H04402 065. J Bacteriol 2011; 193:2351-2. [PMID: 21378191 DOI: 10.1128/jb.00072-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H04402 065 is one of a very small group of strains of proteolytic Clostridium botulinum that form type A5 neurotoxin. Here, we report the complete 3.9-Mb genome sequence and annotation of strain H04402 065, which was isolated from a botulism patient in the United Kingdom in 2004.
Collapse
|
10
|
Identical novel A5(B3') botulinum neurotoxin gene arrangements isolated from widely disparate geographical and patient sources suggest their independent origins. J Clin Microbiol 2010; 48:1989. [PMID: 20444983 DOI: 10.1128/jcm.00468-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Brunt J, Webb MD, Peck MW. Rapid affinity immunochromatography column-based tests for sensitive detection of Clostridium botulinum neurotoxins and Escherichia coli O157. Appl Environ Microbiol 2010; 76:4143-50. [PMID: 20435757 PMCID: PMC2897428 DOI: 10.1128/aem.03059-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 04/23/2010] [Indexed: 11/20/2022] Open
Abstract
Existing methods for detection of food-borne pathogens and their toxins are frequently time-consuming, require specialized equipment, and involve lengthy culture procedures and/or animal testing and are thus unsuitable for a rapid response to an emergency public health situation. A series of simple and rapid affinity immunochromatography column (AICC) assays were developed to detect Clostridium botulinum neurotoxin types A, B, E, and F and Escherichia coli O157 in food matrices. Specifically, for milk, grape juice with peach juice, and bottled water, the detection limit for the botulinum neurotoxin type A complex was 0.5 ng. Use of this method with a 10-ml sample would therefore result in a detection limit of 50 pg ml(-l). Thus, this assay is approximately 2 orders of magnitude more sensitive than a comparable lateral-flow assay. For botulinum neurotoxin complex types B, E, and F, the minimum detection limit was 5 ng to 50 ng. Sensitive detection of E. coli O157 was achieved, and the detection limit was 500 cells. The AICC test was also shown to be specific, rapid, and user friendly. This test takes only 15 to 30 min to complete without any specialized equipment and thus is suitable for use in the field. It has the potential to replace existing methods for presumptive detection of botulinum neurotoxin types A, B, E, and F and E. coli O157 in contaminated matrices without a requirement for preenrichment.
Collapse
Affiliation(s)
- Jason Brunt
- Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, United Kingdom.
| | | | | |
Collapse
|
12
|
Peck MW, Stringer SC, Carter AT. Clostridium botulinum in the post-genomic era. Food Microbiol 2010; 28:183-91. [PMID: 21315972 DOI: 10.1016/j.fm.2010.03.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 01/11/2023]
Abstract
Foodborne botulism is a severe neuroparalytic disease caused by consumption of botulinum neurotoxin formed by strains of proteolytic Clostridium botulinum and non-proteolytic C. botulinum during their growth in food. The botulinum neurotoxin is the most potent substance known, with as little as 30-100 ng potentially fatal, and consumption of just a few milligrams of neurotoxin-containing food is likely to be sufficient to cause illness and potentially death. In order to minimise the foodborne botulism hazard, it is necessary to extend understanding of the biology of these bacteria. This process has been recently advanced by genome sequencing and subsequent analysis. In addition to neurotoxin formation, endospore formation is also critical to the success of proteolytic C. botulinum and non-proteolytic C. botulinum as foodborne pathogens. The endospores are highly resistant, and enable survival of adverse treatments such as heating. To better control the botulinum neurotoxin-forming clostridia, it is important to understand spore resistance mechanisms, and the physiological processes involved in germination and lag phase during recovery from this dormant state.
Collapse
Affiliation(s)
- Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK.
| | | | | |
Collapse
|