1
|
Farhat M, Cox H, Ghanem M, Denkinger CM, Rodrigues C, Abd El Aziz MS, Enkh-Amgalan H, Vambe D, Ugarte-Gil C, Furin J, Pai M. Drug-resistant tuberculosis: a persistent global health concern. Nat Rev Microbiol 2024; 22:617-635. [PMID: 38519618 DOI: 10.1038/s41579-024-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 03/25/2024]
Abstract
Drug-resistant tuberculosis (TB) is estimated to cause 13% of all antimicrobial resistance-attributable deaths worldwide and is driven by both ongoing resistance acquisition and person-to-person transmission. Poor outcomes are exacerbated by late diagnosis and inadequate access to effective treatment. Advances in rapid molecular testing have recently improved the diagnosis of TB and drug resistance. Next-generation sequencing of Mycobacterium tuberculosis has increased our understanding of genetic resistance mechanisms and can now detect mutations associated with resistance phenotypes. All-oral, shorter drug regimens that can achieve high cure rates of drug-resistant TB within 6-9 months are now available and recommended but have yet to be scaled to global clinical use. Promising regimens for the prevention of drug-resistant TB among high-risk contacts are supported by early clinical trial data but final results are pending. A person-centred approach is crucial in managing drug-resistant TB to reduce the risk of poor treatment outcomes, side effects, stigma and mental health burden associated with the diagnosis. In this Review, we describe current surveillance of drug-resistant TB and the causes, risk factors and determinants of drug resistance as well as the stigma and mental health considerations associated with it. We discuss recent advances in diagnostics and drug-susceptibility testing and outline the progress in developing better treatment and preventive therapies.
Collapse
Affiliation(s)
- Maha Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Helen Cox
- Institute of Infectious Disease and Molecular Medicine, Wellcome Centre for Infectious Disease Research and Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Marwan Ghanem
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Claudia M Denkinger
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Heidelberg University Hospital, Heidelberg, Germany
| | | | - Mirna S Abd El Aziz
- Division of Infectious Disease and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Debrah Vambe
- National TB Control Programme, Manzini, Eswatini
| | - Cesar Ugarte-Gil
- School of Public and Population Health, University of Texas Medical Branch, Galveston, TX, USA
| | - Jennifer Furin
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Qadir M, Khan MT, Khan SA, Akram M, Canseco JO, Faryal R, Wei DQ, Tahseen S. Unveiling the complexity of rifampicin drug susceptibility testing in Mycobacterium tuberculosis: comparative analysis with next-generation sequencing. J Med Microbiol 2024; 73. [PMID: 39229883 DOI: 10.1099/jmm.0.001884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024] Open
Abstract
Introduction. The discordance between phenotypic and molecular methods of rifampicin (RIF) drug susceptibility testing (DST) in Mycobacterium tuberculosis poses a significant challenge, potentially resulting in misdiagnosis and inappropriate treatment.Hypothesis/gap statement. A comparison of RIF phenotypic and molecular methods for DST, including whole genome sequencing (WGS), may provide a better understanding of resistance mechanisms.Aim. This study aims to compare RIF DST in M. tuberculosis using two phenotypic and molecular methods including the GeneXpert RIF Assay (GX) and WGS for better understanding.Methodology. The study evaluated two phenotypic liquid medium methods [Lowenstein-Jensen (LJ) and Mycobacterium Growth Indicator Tube (MGIT)], one targeted molecular method (GX), and one WGS method. Moreover, mutational frequency in ponA1 and ponA2 was also screened in the current and previous RIF resistance M. tuberculosis genomic isolates to find their compensatory role.Results. A total of 25 RIF-resistant isolates, including nine from treatment failures and relapse cases with both discordant and concordant DST results on LJ, MGIT and GX, were subjected to WGS. The phenotypic DST results indicated that 11 isolates (44%) were susceptible on LJ and MGIT but resistant on GX. These isolates exhibited multiple mutations in rpoB, including Thr444>Ala, Leu430>Pro, Leu430>Arg, Asp435>Gly, His445>Asn and Asn438>Lys. Conversely, four isolates that were susceptible on GX and MGIT but resistant on LJ were wild type for rpoB in WGS. However, these isolates possessed several novel mutations in the PonA1 gene, including a 10 nt insertion and two nonsynonymous mutations (Ala394>Ser, Pro631>Ser), as well as one nonsynonymous mutation (Pro780>Arg) in PonA2. The discordance rate of RIF DST is higher on MGIT than on LJ and GX when compared to WGS. These discordances in the Delhi/CAS lineages were primarily associated with failure and relapse cases.Conclusion. The WGS of RIF resistance is relatively expensive, but it may be considered for isolates with discordant DST results on MGIT, LJ and GX to ensure accurate diagnosis and appropriate treatment options.
Collapse
Affiliation(s)
- Mehmood Qadir
- National TB Control Program, National TB Reference Laboratory, Islamabad 44000, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Muhammad Tahir Khan
- Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, PR China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan 473006, PR China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 58810, Pakistan
| | - Sajjad Ahmed Khan
- National TB Control Program, National TB Reference Laboratory, Islamabad 44000, Pakistan
| | - Muhammad Akram
- Department of Life Sciences, School of Science, University of Management and Technology, Lahore, Pakistan
| | - Julio Ortiz Canseco
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad 44000, Pakistan
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, 473006, PR China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, PR China
| | - Sabira Tahseen
- National TB Control Program, National TB Reference Laboratory, Islamabad 44000, Pakistan
| |
Collapse
|
3
|
Sanchini A, Lanni A, Giannoni F, Mustazzolu A. Exploring diagnostic methods for drug-resistant tuberculosis: A comprehensive overview. Tuberculosis (Edinb) 2024; 148:102522. [PMID: 38850839 DOI: 10.1016/j.tube.2024.102522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
Despite available global efforts and funding, Tuberculosis (TB) continues to affect a considerable number of patients worldwide. Policy makers and stakeholders set clear goals to reduce TB incidence and mortality, but the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) complicate the reach of these goals. Drug-resistance TB needs to be diagnosed rapidly and accurately to effectively treat patients, prevent the transmission of MDR-TB, minimise mortality, reduce treatment costs and avoid unnecessary hospitalisations. In this narrative review, we provide a comprehensive overview of laboratory methods for detecting drug resistance in MTB, focusing on phenotypic, molecular and other drug susceptibility testing (DST) techniques. We found a large variety of methods used, with the BACTEC MGIT 960 being the most common phenotypic DST and the Xpert MTB/RIF being the most common molecular DST. We emphasise the importance of integrating phenotypic and molecular DST to address issues like resistance to new drugs, heteroresistance, mixed infections and low-level resistance mutations. Notably, most of the analysed studies adhered to the outdated definition of XDR-TB and did not consider the pre-XDR definition, thus posing challenges in aligning diagnostic methods with the current landscape of TB resistance.
Collapse
Affiliation(s)
| | - Alessio Lanni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy.
| | | |
Collapse
|
4
|
Vasiliauskaitė L, Bakuła Z, Vasiliauskienė E, Bakonytė D, Decewicz P, Dziurzyński M, Proboszcz M, Davidavičienė EV, Nakčerienė B, Krenke R, Kačergius T, Stakėnas P, Jagielski T. Detection of multidrug-resistance in Mycobacterium tuberculosis by phenotype- and molecular-based assays. Ann Clin Microbiol Antimicrob 2024; 23:81. [PMID: 39198827 PMCID: PMC11360294 DOI: 10.1186/s12941-024-00741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The whole-genome sequencing (WGS) is becoming an increasingly effective tool for rapid and accurate detection of drug resistance in Mycobacterium tuberculosis complex (MTBC). This approach, however, has still been poorly evaluated on strains from Central and Eastern European countries. The purpose of this study was to assess the performance of WGS against conventional drug susceptibility testing (DST) for the detection of multi-drug resistant (MDR) phenotypes among MTBC clinical strains from Poland and Lithuania. METHODS The study included 208 MTBC strains (130 MDR; 78 drug susceptible), recovered from as many tuberculosis patients in Lithuania and Poland between 2018 and 2021. Resistance to rifampicin (RIF) and isoniazid (INH) was assessed by Critical Concentration (CC) and Minimum Inhibitory Concentration (MIC) DST as well as molecular-based techniques, including line-probe assay (LPA) and WGS. The analysis of WGS results was performed using bioinformatic pipeline- and software-based tools. RESULTS The results obtained with the CC DST were more congruent with those by LPA compared to pipeline-based WGS. Software-based tools showed excellent concordance with pipeline-based analysis in prediction of RIF/INH resistance. The RIF-resistant strains demonstrated a relatively homogenous MIC distribution with the mode at the highest tested MIC value. The most frequent RIF-resistance conferring mutation was rpoB S450L. The mode MIC for INH was two-fold higher among double katG and inhA mutants than among single katG mutants. The overall rate of discordant results between all methods was calculated at 5.3%. Three strains had discordant results by both genotypic methods (LPA and pipeline-based WGS), one strain by LPA only, three strains by MIC DST, two strains by both MIC DST and pipeline-based WGS, and the remaining two strains showed discordant results with all three methods, compared to CC DST. CONCLUSIONS Considering MIC DST results, current CCs of the first-line anti-TB drugs might be inappropriately high and may need to be revised. Both molecular methods demonstrated 100% specificity, while pipeline-based WGS had slightly lower sensitivity for RIF and INH than LPA, compared to CC DST.
Collapse
Affiliation(s)
- Laima Vasiliauskaitė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Zofia Bakuła
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Edita Vasiliauskienė
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Centre of Laboratory Medicine, Laboratory of Infectious Diseases and Tuberculosis, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Daiva Bakonytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Edita Valerija Davidavičienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Birutė Nakčerienė
- Department of Programs and State Tuberculosis Information System, Vilnius University Hospital Santaros klinikos, Vilnius, Lithuania
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonology, and Allergology, Warsaw Medical University, Warsaw, Poland
| | - Tomas Kačergius
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Petras Stakėnas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Tomasz Jagielski
- Department of Medical Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
5
|
He G, Zheng Q, Shi J, Wu L, Huang B, Yang Y. Evaluation of WHO catalog of mutations and five WGS analysis tools for drug resistance prediction of Mycobacterium tuberculosis isolates from China. Microbiol Spectr 2024; 12:e0334123. [PMID: 38904370 PMCID: PMC11302272 DOI: 10.1128/spectrum.03341-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The continuous advancement of molecular diagnostic techniques, particularly whole-genome sequencing (WGS), has greatly facilitated the early diagnosis of drug-resistant tuberculosis patients. Nonetheless, the interpretation of results from various types of mutations in drug-resistant-associated genes has become the primary challenge in the field of molecular drug-resistance diagnostics. In this study, our primary objective is to evaluate the diagnosis accuracy of the World Health Organization (WHO) catalog of mutations and five WGS analysis tools (PhyResSE, Mykrobe, TB Profiler, Gen-TB, and SAM-TB) in drug resistance to 10 anti-Mycobacterium tuberculosis (MTB) drugs. We utilized the data of WGS collected between 2014 and 2017 in Zhejiang Province, consisting of 110 MTB isolates as detailed in our previous study. Based on phenotypic drug susceptibility testing (DST) results using the proportion method on Löwenstein-Jensen medium with antibiotics, we evaluated the predictive accuracy of genotypic DST obtained by these tools. The results revealed that the WHO catalog of mutations and five WGS analysis tools exhibit robust predictive capabilities concerning resistance to isoniazid, rifampicin, ethambutol, streptomycin, amikacin, kanamycin, and capreomycin. Notably, Mykrobe, SAM-TB, and TB Profiler demonstrate the most accurate predictions for resistance to pyrazinamide, prothionamide, and para-aminosalicylic acid, respectively. These findings are poised to significantly guide and influence future clinical treatment strategies and resistance monitoring protocols.IMPORTANCEWhole-genome sequencing (WGS) has the potential for the early diagnosis of drug-resistant tuberculosis. However, the interpretation of mutations of drug-resistant-associated genes represents a significant challenge as the amount and complexity of WGS data. We evaluated the accuracy of the World Health Organization catalog of mutations and five WGS analysis tools in predicting drug resistance to first-line and second-line anti-TB drugs. Our results offer clinicians guidance on selecting appropriate WGS analysis tools for predicting resistance to specific anti-TB drugs.
Collapse
Affiliation(s)
- Guiqing He
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Qingyong Zheng
- Laboratory of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Jichan Shi
- Department of Infectious Diseases, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Lianpeng Wu
- Department of Clinical Laboratory Medicine, Wenzhou Central Hospital, The Dingli Clinical College of Wenzhou Medical University, The Second Affiliated Hospital of Shanghai University, Wenzhou, Zhejiang, China
| | - Bei Huang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yang Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Mwangi ZM, Ireri S, Opwaka H, Otieno L, Simam J, Onyambu FG, Mukiri N. Diagnostic Accuracy of FluoroCycler XT MTBDR Assay for Detection of Rifampicin and Isoniazid-resistant Mycobacteria tuberculosis in Clinical Isolates from Kenya. Int J Mycobacteriol 2024; 13:258-264. [PMID: 39277887 DOI: 10.4103/ijmy.ijmy_202_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Drug-resistant tuberculosis (DR-TB) poses a major global challenge to public health and therapeutics. It is an emerging global concern associated with increased morbidity and mortality mostly seen in the low- and middle-income countries. Molecular techniques are highly sensitive and offer timely and accurate results for TB drug resistance testing, thereby positively influencing patient management plan. METHODS The study was carried out at the National Tuberculosis Reference Laboratory (NTRL) in Kenya in the period between January and October 2022. A total of 243 Mycobacterium tuberculosis (M.tb) clinical isolates were included in the study. These isolates comprised of 50 isolates with mutations in rpoB, 51 isolates with katG mutations, 51 isolates with mutations in inhA, and 91 M.tb isolates lacking mutations in these genes based on Genotype MTBDRplus results. DNA from the isolates was extracted using the FluoroLyse extraction kit. Real-time polymerase chain reaction targeting the rpoB, InhA, and katG genes was performed using the FluoroType MTBDR amplification mix. Isolates with discordant results between Genotype MTBDRplus and FluoroCycler® MTBDR assays underwent targeted sequencing for the respective genes, then, sequences were analyzed for mutations using Geneious version 11.0 software. RESULTS The sensitivity of the Fluorocycler XT MTBDR assay for the detection of mutations that confer drug resistance was 86% (95% confidence interval [CI] 73.0-94.0) for rpoB, 96% (95% CI 87-100) for katG and 92% (95% CI 81-98) for inhA. The assay's specificity was 97% (95% CI 93-99) for rpoB, 98% (95% CI 96-100) for katG, and 97% (95% CI 93-99) for inhA. CONCLUSION The diagnostic accuracy of FluoroType MTBDR for the detection of mutations conferring resistance to rifampicin and isoniazid was high compared with that of Genotype MTBDRplus and demonstrates its suitability as a replacement assay for Genotype MTBDRplus.
Collapse
Affiliation(s)
- Zakayo Maingi Mwangi
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
| | - Samson Ireri
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| | - Haron Opwaka
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| | - Leon Otieno
- Molecular Medicine and Infectious Diseases Laboratory, University of Nairobi, Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - Joan Simam
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
| | - Frank Gekara Onyambu
- Department of Medical Laboratory Sciences, Meru University of Science and Technology, Meru, Kenya
- Centre for Molecular Biosciences and Genomics, Nairobi, Kenya
| | - Nellie Mukiri
- National Tuberculosis Reference Laboratory, National Public Health Laboratories, Nairobi, Kenya
| |
Collapse
|
7
|
Xie L, Zhu XY, Xu L, Xu XX, Ruan ZF, Huang MX, Chen L, Jiang XW. Accurate and affordable detection of rifampicin and isoniazid resistance in Tuberculosis sputum specimens by multiplex PCR-multiple probes melting analysis. Infection 2024:10.1007/s15010-024-02295-w. [PMID: 38884858 DOI: 10.1007/s15010-024-02295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Escalating cases of multidrug-resistant tuberculosis (MDR-TB) pose a major challenge to global TB control efforts, necessitating innovative diagnostics to empower decentralized detection of gene mutations associated with resistance to rifampicin (RIF) and isoniazid (INH) in Mycobacterium tuberculosis (M. tuberculosis) in resource-constrained settings. METHODS Combining multiplex fluorescent PCR and Multiple Probes Melting Analysis, we identified mutations in the rpoB, katG, ahpC and inhA genes from sputum specimens. We first constructed a reference plasmid library comprising 40 prevalent mutations in the target genes' resistance determining regions and promoters, serving as positive controls. Our assay utilizes a four-tube asymmetric PCR method with specifically designed molecular beacon probes, enabling simultaneous detection of all 40 mutations. We evaluated the assay's effectiveness using DNA isolated from 50 clinically confirmed M. tuberculosis sputum specimens, comparing our results with those obtained from Sanger sequencing and retrospective validation involving bacteriological culture and phenotypic drug susceptibility testing (pDST). We also included the commercial Xpert MTB/RIF assay for accuracy comparison. RESULTS Our data demonstrated remarkable sensitivity in detecting resistance to RIF and INH, achieving values of 93.33% and 95.24%, respectively, with a specificity of 100%. The concordance between our assay and pDST was 98.00%. Furthermore, the accuracy of our assay was comparable to both Sanger sequencing and the Xpert assay. Importantly, our assay boasts a 4.2-h turnaround time and costs only $10 per test, making it an optimal choice for peripheral healthcare settings. CONCLUSION These findings highlight our assay's potential as a promising tool for rapidly, accurately, and affordably detecting MDR-TB.
Collapse
Affiliation(s)
- Long Xie
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Xiao-Ya Zhu
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Li Xu
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Xiao-Xie Xu
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Ze-Fan Ruan
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China
| | - Ming-Xiang Huang
- Fuzhou Pulmonary Hospital and Fujian Medical University Clinical Teaching Hospital, Fuzhou, China.
| | - Li Chen
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, China.
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Xi-Wen Jiang
- Research Institute, DAAN Gene Co., Ltd., Guangzhou, China.
- The Medicine and Biological Engineering Technology Research Centre of the Ministry of Health, Guangzhou, China.
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
8
|
Prommi A, Wongjarit K, Petsong S, Somsukpiroh U, Faksri K, Kawkitinarong K, Payungporn S, Rotcheewaphan S. Co-resistance to isoniazid and second-line anti-tuberculosis drugs in isoniazid-resistant tuberculosis at a tertiary care hospital in Thailand. Microbiol Spectr 2024; 12:e0346223. [PMID: 38323824 PMCID: PMC10913473 DOI: 10.1128/spectrum.03462-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Isoniazid-resistant tuberculosis (Hr-TB) is an important drug-resistant tuberculosis (TB). In addition to rifampicin, resistance to other medications for Hr-TB can impact the course of treatment; however, there are currently limited data in the literature. In this study, the drug susceptibility profiles of Hr-TB treatment and resistance-conferring mutations were investigated for Hr-TB clinical isolates from Thailand. Phenotypic drug susceptibility testing (pDST) and genotypic drug susceptibility testing (gDST) were retrospectively and prospectively investigated using the Mycobacterium Growth Indicator Tube (MGIT), the broth microdilution (BMD) method, and whole-genome sequencing (WGS)-based gDST. The prevalence of Hr-TB cases was 11.2% among patients with TB. Most Hr-TB cases (89.5%) were newly diagnosed patients with TB. In the pDST analysis, approximately 55.6% (60/108) of the tested Hr-TB clinical isolates exhibited high-level isoniazid resistance. In addition, the Hr-TB clinical isolates presented co-resistance to ethambutol (3/161, 1.9%), levofloxacin (2/96, 2.1%), and pyrazinamide (24/118, 20.3%). In 56 Hr-TB clinical isolates, WGS-based gDST predicted resistance to isoniazid [katG S315T (48.2%) and fabG1 c-15t (26.8%)], rifampicin [rpoB L430P and rpoB L452P (5.4%)], and fluoroquinolones [gyrA D94G (1.8%)], but no mutation for ethambutol was detected. The categorical agreement for the detection of resistance to isoniazid, rifampicin, ethambutol, and levofloxacin between WGS-based gDST and the MGIT or the BMD method ranged from 80.4% to 98.2% or 82.1% to 100%, respectively. pDST and gDST demonstrated a low co-resistance rate between isoniazid and second-line TB drugs in Hr-TB clinical isolates. IMPORTANCE The prevalence of isoniazid-resistant tuberculosis (Hr-TB) is the highest among other types of drug-resistant tuberculosis. Currently, the World Health Organization (WHO) guidelines recommend the treatment of Hr-TB with rifampicin, ethambutol, pyrazinamide, and levofloxacin for 6 months. The susceptibility profiles of Hr-TB clinical isolates, especially when they are co-resistant to second-line drugs, are critical in the selection of the appropriate treatment regimen to prevent treatment failure. This study highlights the susceptibility profiles of the WHO-recommended treatment regimen in Hr-TB clinical isolates from a tertiary care hospital in Thailand and the concordance and importance of using the phenotypic drug susceptibility testing or genotypic drug susceptibility testing for accurate and comprehensive interpretation of results.
Collapse
Affiliation(s)
- Ajala Prommi
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanphai Wongjarit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthidee Petsong
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ubonwan Somsukpiroh
- Department of Microbiology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, Thailand
| | - Kamon Kawkitinarong
- Center of Excellence in Tuberculosis, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suwatchareeporn Rotcheewaphan
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
9
|
Qadir M, Faryal R, Khan MT, Khan SA, Zhang S, Li W, Wei DQ, Tahseen S, McHugh TD. Phenotype versus genotype discordant rifampicin susceptibility testing in tuberculosis: implications for a diagnostic accuracy. Microbiol Spectr 2024; 12:e0163123. [PMID: 37982632 PMCID: PMC10783056 DOI: 10.1128/spectrum.01631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE An accurate diagnosis of drug resistance in clinical isolates is an important step for better treatment outcomes. The current study observed a higher discordance rate of rifampicin resistance on Mycobacteria Growth Indicator Tube (MGIT) drug susceptibility testing (DST) than Lowenstein-Jenson (LJ) DST when compared with the rpoB sequencing. We detected a few novel mutations and their combination in rifampicin resistance isolates that were missed by MGIT DST and may be useful for the better management of tuberculosis (TB) treatment outcomes. Few novel deletions in clinical isolates necessitate the importance of rpoB sequencing in large data sets in geographic-specific locations, especially high-burden countries. We explored the discordance rate on MGIT and LJ, which is important for the clinical management of rifampicin resistance to avoid the mistreatment of drug-resistant TB. Furthermore, MGIT-sensitive isolates may be subjected to molecular methods of diagnosis for further confirmation and treatment options.
Collapse
Affiliation(s)
- Mehmood Qadir
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rani Faryal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Tahir Khan
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Sajjad Ahmed Khan
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Shulin Zhang
- School of Medicine, Department of Immunology and Microbiology, Shanghai Jiao Tong University, Shanghai, China
| | - Weimin Li
- National Tuberculosis Clinical Lab of China, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dong Qing Wei
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Nanyang, Henan, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Peng Cheng Laboratory, Shenzhen, Guangdong, China
| | - Sabira Tahseen
- National TB Control Program, National TB Reference Laboratory, Islamabad, Pakistan
| | - Timothy D. McHugh
- Centre for Clinical Microbiology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Seid A, Girma Y, Dereb E, Kassa M, Nureddin S, Abebe A, Berhane N. Insights into the in-vitro Susceptibility and Drug-Drug Interaction Profiles Against Drug-Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates in Amhara, Ethiopia. Infect Drug Resist 2024; 17:89-107. [PMID: 38223563 PMCID: PMC10788062 DOI: 10.2147/idr.s440947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Background In Ethiopia, tuberculosis (TB) is a major public health problem. The aim of the study was to determine the in vitro susceptibility level of drugs and drug interaction profiles against drug-resistant and susceptible M. tuberculosis clinical isolates. A laboratory-based cross-sectional study was conducted between January 2023 and August 2023. GenoType MTBDRplus v.2.0 was facilitated in genetic mutation detection. Minimum inhibitory concentration (MIC) was determined using resazurin microtitre assay (REMA), while fractional inhibitory concentration index (FICI) using resazurin drug combination microtitre assay (REDCA) for in vitro quantitative susceptibility and drug interaction prediction. Results Among 32 clinical isolates, a total of 14 (43.8%) RIF, 20 (62.5%) INH, 2 (6.3%) EMB-related resistant and 14 (43.8%) MDR isolates were identified. Five of RIF-resistant isolates (55.6%) carrying rpoB common mutations at codon S450L were associated with high levels of RIF-resistance with MICs of ≥ 2μg/mL, whereas 100% of isolates harboring rpoB substitutions at codons D435V and H445Y were linked with moderate or low-level RIF-resistance in the MIC ranges from 0.5 to 1μg/mL. A proportion of 81.8% of isolates harboring katG S315T mutations were associated with high-level INH resistance (MIC ≥ 1μg/mL), while the 18.2% of isolates with S315T katG mutations and 100% of isolates with inhA C-15T mutations were linked to the low-level of INH resistance with MIC variability from 0.25 to 0.5μg/mL. Our results indicated that most FICIs of the dual drugs INH+RIF and INH+LEV combination for 9 (28.1%) and 4 (12.5%) INH-resistant isolates, respectively, were ≤0.5, whereas triple drugs INH+RIF+EMB, INH+RIF+LEV and INH+EMB+LEV combination for 6 (18.8%), 11 (34.4%) and 8 (25%) INH-resistant isolates were from 0.62 to 0.75, all showed synergistic effect. Conclusion The study highlights that isolates with rpoB S450L and katG S315T substitutions were associated with high level of RIF and INH resistance. It is concluded that REDCA can quantitatively determine anti-mycobacterial synergy and that LEV being of potential use against INH-resistant isolates including MDR-TB when combined with RIF+INH and INH+EMB.
Collapse
Affiliation(s)
- Aynias Seid
- Department of Biology, College of Natural and Computational Science, Debre-Tabor University, Debre-Tabor, Ethiopia
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Yilak Girma
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Eseye Dereb
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Meseret Kassa
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Semira Nureddin
- Department of Biology, College of Natural and Computational Science, Woldia University, Woldia, Ethiopia
| | - Ayenesh Abebe
- TB Culture Laboratory, University of Gondar Comprehensive Specialized Hospital, Gondar, Ethiopia
| | - Nega Berhane
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Lindsey JA, Easton AV, Modestil H, Dworkin F, Burzynski J, Nilsen D. Rifampin Mono-Resistant Tuberculosis in New York City, 2010-2021: A Retrospective Case Series. Open Forum Infect Dis 2023; 10:ofad534. [PMID: 38023554 PMCID: PMC10662657 DOI: 10.1093/ofid/ofad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Although relatively rare, rifampin mono-resistant tuberculosis (RMR TB) poses important challenges to effective TB treatment and control. Information on the burden of RMR TB and treatment outcomes is needed to inform diagnosis and management. Methods Standardized variables were collected from the New York City (NYC) tuberculosis surveillance system for patients treated for RMR TB in NYC during 2010-2021. Results Of 7097 TB cases reported in 2010-2021, 31 (<1%) were treated clinically as RMR TB. Five (16%) of these patients had HIV. Seventeen patients (55%) had TB that was rifampin-resistant by both molecular and phenotypic drug susceptibility testing; 2 (6%) had rifampin resistance by phenotypic tests, and molecular tests were not done; and 12 (39%) were identified based only on molecular tests. Among these 12, 7 were rifampin-sensitive by phenotypic tests, and phenotypic testing could not be done for the other 5. Ten of the 31 (32%) were diagnosed in 2010-2015; the other 21 (including 10/12 diagnosed by molecular tests alone) were diagnosed in 2016-2021. Of the 31 patients, 21 (68%) completed treatment (median treatment duration of 18 months). Although the interval between tuberculosis treatment initiation and change to a non-rifamycin-containing regimen decreased significantly during the study period, the overall duration of treatment did not decrease significantly between 2010 and 2021. Conclusions Molecular drug susceptibility tests identified cases of RMR TB that were not detected by phenotypic testing and helped enable timely adjustment of tuberculosis treatment regimens. Short-course regimens are needed to reduce duration of treatment for RMR TB.
Collapse
Affiliation(s)
- Joseph A Lindsey
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| | - Alice V Easton
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| | - Herns Modestil
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| | - Felicia Dworkin
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| | - Joseph Burzynski
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| | - Diana Nilsen
- Bureau of Tuberculosis Control, NewYork City Department of Health and Mental Hygiene, Long Island City, New York, USA
| |
Collapse
|
12
|
Shi T, Shou F, He Y, Zhou K, Gao W, Nie X, Han M, Liao C, Li T. Whole genome sequencing of drug resistance Mycobacterium tuberculosis from extra-pulmonary sites. Life Sci Alliance 2023; 6:e202302076. [PMID: 37591723 PMCID: PMC10435967 DOI: 10.26508/lsa.202302076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
This study aimed to determinate characteristics of drug resistance Mycobacterium tuberculosis from patients with extra-pulmonary tuberculosis (EPTB). Patients were retrospectively studied from January 2020 to December 2021. All the isolates were cultured, tested drug susceptibility, and detected the gene mutation using whole genome sequencing. The correlations of whole genome sequencing, pattern of DR, patients' distribution, and transmission were analyzed. 111 DR-EPTB isolates included pre-XDR-TB (53.2%), MDR-TB (29.7%), and poly-DR-TB (12.6%). The resistant drugs were INH followed by RFP and SM. The genotypes of 111 strains were lineage 2 and lineage 4. KatG_p.Ser315Thr was main gene mutation for resistance to INH; rpsL_p.Lys43Arg for SM, rpoB_p.Ser450Leu for rifampicin, embB_p.Met306Val for ethambutol, gyrA_p.Asp94Gly for FQs, and pncA_p.Thr76Pro for PZA. The residence was a significant risk factor for cluster transmission by patients and phenotypic DR types of strains for lineage 2 transmission. In the local area of southwest China INH, rifampicin and SM were main drugs in patients with DR-EPTB. KatG_p.Ser315, rpoB_p.Ser450Leu, and rpsL_p.Lys43Arg were main gene mutations. Phenotypic DR types and residence were main risk of transmission.
Collapse
Affiliation(s)
- Tao Shi
- Department of Orthopedics, Tianjin First Central Hospital, Tianjin, China
| | - Fenyong Shou
- Department of Orthopedics, Tianjin First Central Hospital, Tianjin, China
| | - Ying He
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Kan Zhou
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Wenwan Gao
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiaoping Nie
- Medical Department, Chongqing Public Health Medical Center, Chongqing, China
| | - Mei Han
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Chuanyu Liao
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| | - Tongxin Li
- Central Laboratory, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
13
|
Mekonnen D, Munshea A, Nibret E, Adnew B, Getachew H, Kebede A, Gebrewahid A, Herrera-Leon S, Aramendia AA, Benito A, Abascal E, Jacqueline C, Aseffa A, Herrera-Leon L. Mycobacterium tuberculosis Sub-Lineage 4.2.2/SIT149 as Dominant Drug-Resistant Clade in Northwest Ethiopia 2020-2022: In-silico Whole-Genome Sequence Analysis. Infect Drug Resist 2023; 16:6859-6870. [PMID: 37908783 PMCID: PMC10614653 DOI: 10.2147/idr.s429001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Drug resistance (DR) in Mycobacterium tuberculosis complex (MTBC) is mainly associated with certain lineages and varies across regions and countries. The Beijing genotype is the leading resistant lineage in Asia and western countries. M. tuberculosis (Mtb) (sub) lineages responsible for most drug resistance in Ethiopia are not well described. Hence, this study aimed to identify the leading drug resistance sub-lineages and characterize first-line anti-tuberculosis drug resistance-associated single nucleotide polymorphisms (SNPs). Methods A facility-based cross-sectional study was conducted in 2020-2022 among new and presumptive multidrug resistant-TB (MDR-TB) cases in Northwest Ethiopia. Whole-genome sequencing (WGS) was performed on 161 isolates using Illumina NovaSeq 6000 technology. The SNP mutations associated with drug resistance were identified using MtbSeq and TB profiler Bioinformatics softwares. Results Of the 146 Mtb isolates that were successfully genotyped, 20 (13.7%) harbored one or more resistance-associated SNPs. L4.2.2.ETH was the leading drug-resistant sub-lineage, accounting for 10/20 (50%) of the resistant Mtb. MDR-TB isolates showed extensive mutations against first-line anti-TB drugs. Ser450Leu/(tcg/tTg) for Rifampicin (RIF), Ser315Thr/(agc/aCc) for Isoniazid (INH), Met306Ile/(atg/atA(C)) for Ethambutol (EMB), and Gly69Asp for Streptomycin (STR) were the leading resistance associated mutations which accounted for 56.5%, 89.5%, 47%, and 29.4%, respectively. The presence of both clustered and non-clustered drug resistance (DR) isolates indicated that the epidemics is driven by both new DR development and acquired resistance. Conclusion The high prevalence of drug-resistant TB due to geographically restricted sub-lineages (L4.2.2.ETH) indicates the ongoing local micro epidemics. The Mtb drug resistance surveillance system must be improved. Further evolutionary analysis of L4.2.2.ETH strain is highly desirable to understand evolutionary forces that leads L4.2.2.ETH in to high level DR and transmissible sub-lineage.
Collapse
Affiliation(s)
- Daniel Mekonnen
- Department of Medical Laboratory Sciences, School of Health Science, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abaineh Munshea
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Endalkachew Nibret
- Health Biotechnology Division, Institute of Biotechnology, Bahir Dar University, Bahir Dar, Ethiopia
- Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | | | | | - Amiro Kebede
- Amhara Public Health Institute, Bahir Dar, Ethiopia
| | | | - Silvia Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Agustín Benito
- National Center of Tropical Medicine, Institute of Health Carlos III, Centro de Investigación Biomédica En Red de Enfermedades Infecciosas, Madrid, Spain
| | - Estefanía Abascal
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Camille Jacqueline
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- European Public Health Microbiology Training Programme, European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Laura Herrera-Leon
- National Centre for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER Epidemiologia y Salud Publica, Madrid, Spain
| |
Collapse
|
14
|
Rao M, Wollenberg K, Harris M, Kulavalli S, Thomas L, Chawla K, Shenoy VP, Varma M, Saravu K, Hande HM, Shanthigrama Vasudeva CS, Jeffrey B, Gabrielian A, Rosenthal A. Lineage classification and antitubercular drug resistance surveillance of Mycobacterium tuberculosis by whole-genome sequencing in Southern India. Microbiol Spectr 2023; 11:e0453122. [PMID: 37671895 PMCID: PMC10580826 DOI: 10.1128/spectrum.04531-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/03/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Studies mapping genetic heterogeneity of clinical isolates of M. tuberculosis for determining their strain lineage and drug resistance by whole-genome sequencing are limited in high tuberculosis burden settings. We carried out whole-genome sequencing of 242 M. tuberculosis isolates from drug-sensitive and drug-resistant tuberculosis patients, identified and collected as part of the TB Portals Program, to have a comprehensive insight into the genetic diversity of M. tuberculosis in Southern India. We report several genetic variations in M. tuberculosis that may confer resistance to antitubercular drugs. Further wide-scale efforts are required to fully characterize M. tuberculosis genetic diversity at a population level in high tuberculosis burden settings for providing precise tuberculosis treatment.
Collapse
Affiliation(s)
- Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kurt Wollenberg
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Harris
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Shrivathsa Kulavalli
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kiran Chawla
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vishnu Prasad Shenoy
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Muralidhar Varma
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kavitha Saravu
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - H. Manjunatha Hande
- Department of Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | | | - Brendan Jeffrey
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrei Gabrielian
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Rosenthal
- Department of Health and Human Services, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Majumdar T, Banik A, Allada V, Das B. Molecular analysis of rpoB gene mutation in MTB detected isolates in a tertiary care centre (AGMC) of North-East, India. Indian J Med Microbiol 2023; 45:100399. [PMID: 37573058 DOI: 10.1016/j.ijmmb.2023.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Rifampicin (RIF), one of the first line drug in treatment of tuberculosis. It acts on rpoB gene which encodes RNA polymerase β subunit. In 95% of RIF resistant cases, mutations are present in rpoB gene. Most of them are within 81bp RIF-resistance determining region (RRDR).Xpert MTB/RIF assay has been tremendously revolutionalised the diagnosis of tuberculosis (TB).Also sequencially detect bacteria and resistance to rifampicin (rif).Approximately 96% of rif-resistant Mycobacterium tuberculosis (MTB) strains worldwide, showed mutations in a region at the 507-533rd amino acid residuals (81 bp) in the MTB rpoB gene. Here evaluation is made about frequent regions of amplification and mutation in various codons of 81bp of rpoB gene in rif sensitive and rif resistant cases. METHODS A total of 4116 samples were received at Mycobacteriology laboratory, AGMC and processed in CBNAAT.Data of MTB detected samples were collected & statistically analysed to detect frequency of amplification & no amplification in various regions of 81bp of rpoB genes. RESULTS Out of 4116 samples, MTB was detected in 1323 samples. Among them 1291 (97.58%) cases were Rif sensitive (RS) and 32 (2.41%) cases were rif resistance (RR).Most of the MTBC detected samples showed amplification in probe A then in probe C.78.12% rif resistant cases showed mutation in either of the probe, commonest is probe E. Study also showed low bacillary loads in most of the RR cases. CONCLUSION Study highlighted variations in amplification of different regions of 81bp of rpoB gene in MTBC detected cases. North-east India, like other part of world, also showed highest frequency of mutation in probe E in rif resistant cases.
Collapse
Affiliation(s)
| | - Ashmita Banik
- Dept of Microbiology, TRIHMS, Arunachal Pradesh, India.
| | | | - Banti Das
- Dept of Microbiology, AGMC, Tripura, India
| |
Collapse
|
16
|
Liang D, Song Z, Liang X, Qin H, Huang L, Ye J, Lan R, Luo D, Zhao Y, Lin M. Whole Genomic Analysis Revealed High Genetic Diversity and Drug-Resistant Characteristics of Mycobacterium tuberculosis in Guangxi, China. Infect Drug Resist 2023; 16:5021-5031. [PMID: 37554542 PMCID: PMC10405913 DOI: 10.2147/idr.s410828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/21/2023] [Indexed: 08/10/2023] Open
Abstract
Background Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is a major public health issue in China. Nevertheless, the prevalence and drug resistance characteristics of isolates vary in different regions and provinces. In this study, we investigated the population structure, transmission dynamics and drug-resistant profiles of Mtb in Guangxi, located on the border of China. Methods From February 2016 to April 2017, 462 clinical M. tuberculosis isolates were selected from 5 locations in Guangxi. Drug-susceptibility testing was performed using 6 common anti-tuberculosis drugs. The genotypic drug resistance and transmission dynamics were analyzed by the whole genome sequence. Results Our data showed that the Mtb in Guangxi has high genetic diversity including Lineage 1 to Lineage 4, and mostly belong to Lineage 2 and Lineage 4. Novelty, 9.6% of Lineage 2 isolates were proto-Beijing genotype (L2.1), which is rare in China. About 12.6% of isolates were phylogenetically clustered and formed into 28 transmission clusters. We observed that the isolates with the high resistant rate of isoniazid (INH, 21.2%), followed by rifampicin (RIF, 13.2%), and 6.7%, 12.1%, 6.7% and 1.9% isolates were resistant to ethambutol (EMB), streptomycin (SM), ofloxacin (OFL) and kanamycin (KAN), respectively. Among these, 6.5% and 3.3% of isolates belong to MDR-TB and Pre-XDR, respectively, with a high drug-resistant burden. Genetic analysis identified the most frequently encountered mutations of INH, RIF, EMB, SM, OFL and KAN were katG_Ser315Thr (62.2%), rpoB_Ser450Leu (42.6%), embB_Met306Vol (45.2%), rpsL_Lys43Arg (53.6%), gyrA_Asp94Gly (29.0%) and rrs_A1401G (66.7%), respectively. Additionally, we discovered that isolates from border cities are more likely to be drug-resistant than isolates from non-border cities. Conclusion Our findings provide a deep analysis of the genomic population characteristics and drug-resistant of M. tuberculosis in Guangxi, which could contribute to developing effective TB prevention and control strategies.
Collapse
Affiliation(s)
- Dabin Liang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Zexuan Song
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiaoyan Liang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Huifang Qin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Liwen Huang
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Jing Ye
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| | - Rushu Lan
- Department of Clinical Laboratory, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Dan Luo
- School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, Guangxi, People’s Republic of China
| | - Yanlin Zhao
- National Tuberculosis Reference Laboratory, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Mei Lin
- Guangxi Zhuang Autonomous Region Center for Disease Control and Prevention, Nanning, Guangxi, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
17
|
Zhang M, Lu Y, Zhu Y, Wu K, Chen S, Zhou L, Wang F, Peng Y, Li X, Pan J, Chen B, Liu Z, Wang X. Whole-Genome Sequencing to Predict Mycobacterium tuberculosis Drug Resistance: A Retrospective Observational Study in Eastern China. Antibiotics (Basel) 2023; 12:1257. [PMID: 37627677 PMCID: PMC10451829 DOI: 10.3390/antibiotics12081257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). Whole-genome sequencing (WGS) holds great promise as an advanced technology for accurately predicting anti-TB drug resistance. The development of a reliable method for detecting drug resistance is crucial in order to standardize anti-TB treatments, enhance patient prognosis, and effectively reduce the risk of transmission. In this study, our primary objective was to explore and determine the potential of WGS for assessing drug resistance based on genetic variants recommended by the World Health Organization (WHO). A total of 1105 MTB strains were selected from samples collected from 2014-2018 in Zhejiang Province, China. Phenotypic drug sensitivity tests (DST) of the anti-TB drugs were conducted for isoniazid (INH), rifampicin (RFP), streptomycin, ethambutol, fluoroquinolones (levofloxacin and moxifloxacin), amikacin, kanamycin, and capreomycin, and the drug-resistance rates were calculated. The clean WGS data of the 1105 strains were acquired and analyzed. The predictive performance of WGS was evaluated by the comparison between genotypic and phenotypic DST results. For all anti-TB drugs, WGS achieved good specificity values (>90%). The sensitivity values for INH and RFP were 91.78% and 82.26%, respectively; however, they were ≤60% for other drugs. The positive predictive values for anti-TB drugs were >80%, except for ethambutol and moxifloxacin, and the negative predictive values were >90% for all drugs. In light of the findings from our study, we draw the conclusion that WGS is a valuable tool for identifying genome-wide variants. Leveraging the genetic variants recommended by the WHO, WGS proves to be effective in detecting resistance to RFP and INH, enabling the identification of multi-drug resistant TB patients. However, it is evident that the genetic variants recommended for predicting resistance to other anti-TB drugs require further optimization and improvement.
Collapse
Affiliation(s)
- Mingwu Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310020, China; (Y.L.); (X.L.)
| | - Yelei Zhu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Kunyang Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Songhua Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Lin Zhou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Fei Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Ying Peng
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou 310020, China; (Y.L.); (X.L.)
| | - Junhang Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Bin Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Zhengwei Liu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| | - Xiaomeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (M.Z.); (Y.Z.); (K.W.); (S.C.); (L.Z.); (F.W.); (Y.P.); (J.P.); (B.C.)
| |
Collapse
|
18
|
Noorizhab MNF, Zainal Abidin N, Teh LK, Tang TH, Onyejepu N, Kunle-Ope C, Tochukwu NE, Sheshi MA, Nwafor T, Akinwale OP, Ismail AI, Nor NM, Salleh MZ. Exploration of the diversity of multi-drug resistant Mycobacterium tuberculosis complex in Lagos, Nigeria using WGS: Distribution of lineages, drug resistance patterns and genetic mutations. Tuberculosis (Edinb) 2023; 140:102343. [PMID: 37080082 DOI: 10.1016/j.tube.2023.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Multidrug-resistant (MDR) or extensively drug-resistant (XDR) Tuberculosis (TB) is a major challenge to global TB control. Therefore, accurate tracing of in-country MDR-TB transmission are crucial for the development of optimal TB management strategies. This study aimed to investigate the diversity of MTBC in Nigeria. The lineage and drug-resistance patterns of the clinical MTBC isolates of TB patients in Southwestern region of Nigeria were determined using the WGS approach. The phenotypic DST of the isolates was determined for nine anti-TB drugs. The sequencing achieved average genome coverage of 65.99X. The most represented lineages were L4 (n = 52, 83%), L1 (n = 8, 12%), L2 (n = 2, 3%) and L5 (n = 1, 2%), suggesting a diversified MTB population. In term of detection of M/XDR-TB, while mutations in katG and rpoB genes are the strong predictors for the presence of M/XDR-TB, the current study also found the lack of good genetic markers for drug resistance amongst the MTBC in Nigeria which may pose greater problems on local tuberculosis management efforts. This high-resolution molecular epidemiological data provides valuable insights into the mechanistic for M/XDR TB in Lagos, Nigeria.
Collapse
Affiliation(s)
- Mohd Nur Fakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Norzuliana Zainal Abidin
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia; Faculty of Pharmacy, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia
| | - Thean Hock Tang
- Advance Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, Malaysia
| | - Nneka Onyejepu
- Microbiology Department, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Chioma Kunle-Ope
- Microbiology Department, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Nwanneka E Tochukwu
- Microbiology Department, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | | | - Timothy Nwafor
- Public Health and Epidemiology Department, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Olaoluwa P Akinwale
- Public Health and Epidemiology Department, Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria.
| | | | - Norazmi Mohd Nor
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute, Universiti Teknologi MARA Selangor Branch, Puncak Alam Campus, Selangor, Malaysia.
| |
Collapse
|
19
|
Guan Z, Han X, Huang W, Wang X, Wang H, Fan Y. Construction and application of a heterogeneous quality control library for the Xpert MTB/RIF assay in tuberculosis diagnosis. Front Cell Infect Microbiol 2023; 13:1128337. [PMID: 37009507 PMCID: PMC10063913 DOI: 10.3389/fcimb.2023.1128337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Proficiency testing based on quality control materials is an important component of the quality assurance system for detection methods. However, in the detection of infectious diseases, it is a challenge to use quality control materials derived from clinical samples or pathogens owing to their infectious nature. The Xpert MTB/RIF assay, endorsed by the World Health Organization, is one of the most widely implemented assays in the detection of Mycobacterium tuberculosis along with rifampicin resistance and its heterogeneity. Clinical isolates are typically used as quality controls for this assay, leading to concerns about biosafety, constrained target sequence polymorphisms, and time-consuming preparation. In this study, a heterogeneous quality control library for the Xpert MTB/RIF assay was constructed based on DNA synthesis and site-directed mutation, which provides sufficient rifampicin resistance polymorphisms, enabling monitoring all five probes of Xpert MTB/RIF and its combinations. Escherichia coli and Bacillus subtilis were used as heterogeneous hosts rather than the pathogen itself to eliminate biosafety risks; thus, preparation does not require a biosafety level III laboratory and the production time is reduced from a few months to a few days. The panel was stable for more than 15 months stored at 4°C and could be distributed at room temperature. All 11 laboratories in Shanghai participating in a pilot survey identified the specimens with corresponding probe patterns, and discordant results highlighted inappropriate operations in the process. Collectively, we show, for the first time, that this library, based on heterogeneous hosts, is an appropriate alternative for M. tuberculosis detection.
Collapse
Affiliation(s)
- Zehao Guan
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Xuefei Han
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Weigang Huang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Xueliang Wang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
| | - Hualiang Wang
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
- Shanghai Academy of Experimental Medicine, Shanghai, China
| | - Yun Fan
- R&D Laboratory of Quality Control Material, Shanghai Center for Clinical Laboratory, Shanghai, China
- *Correspondence: Yun Fan,
| |
Collapse
|
20
|
Investigation of Multi-Subunit Mycobacterium tuberculosis DNA-Directed RNA Polymerase and Its Rifampicin Resistant Mutants. Int J Mol Sci 2023; 24:ijms24043313. [PMID: 36834726 PMCID: PMC9965755 DOI: 10.3390/ijms24043313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Emerging Mycobacterium tuberculosis (Mtb) resistant strains have continued to limit the efficacies of existing antitubercular therapies. More specifically, mutations in the RNA replicative machinery of Mtb, RNA polymerase (RNAP), have been widely linked to rifampicin (RIF) resistance, which has led to therapeutic failures in many clinical cases. Moreover, elusive details on the underlying mechanisms of RIF-resistance caused by Mtb-RNAP mutations have hampered the development of new and efficient drugs that are able to overcome this challenge. Therefore, in this study we attempt to resolve the molecular and structural events associated with RIF-resistance in nine clinically reported missense Mtb RNAP mutations. Our study, for the first time, investigated the multi-subunit Mtb RNAP complex and findings revealed that the mutations commonly disrupted structural-dynamical attributes that may be essential for the protein's catalytic functions, particularly at the βfork loop 2, β'zinc-binding domain, the β' trigger loop and β'jaw, which in line with previous experimental reports, are essential for RNAP processivity. Complementarily, the mutations considerably perturbed the RIF-BP, which led to alterations in the active orientation of RIF needed to obstruct RNA extension. Consequentially, essential interactions with RIF were lost due to the mutation-induced repositioning with corresponding reductions in the binding affinity of the drug observed in majority of the mutants. We believe these findings will significantly aid future efforts in the discovery of new treatment options with the potential to overcome antitubercular resistance.
Collapse
|
21
|
Performance Evaluation of the BACTEC MGIT 960 System for Rifampin Drug-Susceptibility Testing of Mycobacterium tuberculosis Using the Current WHO Critical Concentration. J Clin Microbiol 2023; 61:e0108622. [PMID: 36602360 PMCID: PMC9879093 DOI: 10.1128/jcm.01086-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The World Health Organization recently lowered the rifampin (RIF) critical concentration (CC) for drug-susceptibility testing (DST) of Mycobacterium tuberculosis complex (MTBC) using the mycobacterial growth indicator tube (MGIT) 960 system. Here, we evaluated the diagnostic performance of the MGIT system with the revised CC for determining MTBC RIF resistance with 303 clinical MTBC isolates, including 122 isolates with rpoB mutations, of which 32 had single borderline-resistance mutations, and 181 wild-type rpoB isolates. The phenotypic RIF resistance was determined via the absolute concentration method (AC) and via MGIT using both previous (1 mg/L) and revised (0.5 mg/L) CCs for the latter method. The diagnostic accuracy of each phenotypic DST (pDST) was assessed based on rpoB genotyping as the reference standard. The overall sensitivity of the AC was 95.1% (95% confidence interval [CI], 89.6 to 98.2%), while the MGIT results with previous and revised CCs were 82.0% (95% CI 74.0 to 88.3%) and 83.6% (95% CI 75.8 to 89.7%), respectively. The 32 MTBC isolates with single borderline-resistance mutations showed a wide range of MICs, and sensitivity was not significantly increased by reducing the MGIT CC. All 181 wild-type rpoB isolates were RIF-susceptible in the AC and with MGIT using the previous CC, whereas 1 isolate was misclassified as RIF-resistant with the revised CC. Our results demonstrate that the overall diagnostic performances of the MGIT DST with the revised RIF CC and previous CC were comparable. A further large-scale study is required to demonstrate the optimal RIF CC for MGIT.
Collapse
|
22
|
Rossini NDO, Dias MVB. Mutations and insights into the molecular mechanisms of resistance of Mycobacterium tuberculosis to first-line. Genet Mol Biol 2023; 46:e20220261. [PMID: 36718771 PMCID: PMC9887390 DOI: 10.1590/1678-4685-gmb-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/18/2022] [Indexed: 01/28/2023] Open
Abstract
Genetically antimicrobial resistance in Mycobacterium tuberculosis is currently one of the most important aspects of tuberculosis, considering that there are emerging resistant strains for almost every known drug used for its treatment. There are multiple antimicrobials used for tuberculosis treatment, and the most effective ones are the first-line drugs, which include isoniazid, pyrazinamide, rifampicin, and ethambutol. In this context, understanding the mechanisms of action and resistance of these molecules is essential for proposing new therapies and strategies of treatment. Additionally, understanding how and where mutations arise conferring a resistance profile to the bacteria and their effect on bacterial metabolism is an important requisite to be taken in producing safer and less susceptible drugs to the emergence of resistance. In this review, we summarize the most recent literature regarding novel mutations reported between 2017 and 2022 and the advances in the molecular mechanisms of action and resistance against first-line drugs used in tuberculosis treatment, highlighting recent findings in pyrazinamide resistance involving PanD and, additionally, resistance-conferring mutations for novel drugs such as bedaquiline, pretomanid, delamanid and linezolid.
Collapse
Affiliation(s)
- Nicolas de Oliveira Rossini
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
| | - Marcio Vinicius Bertacine Dias
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil. Universidade de São PauloInstituto de Ciências BiomédicasDepartamento de MicrobiologiaSão PauloSPBrazil
- University of Warwick, Department of Chemistry, Coventry, United Kingdom. University of WarwickDepartment of ChemistryCoventryUnited Kingdom
| |
Collapse
|
23
|
Mvelase NR, Cele LP, Singh R, Naidoo Y, Giandhari J, Wilkinson E, de Oliveira T, Swe-Han KS, Mlisana KP. Consequences of rpoB mutations missed by the GenoType MTBDR plus assay in a programmatic setting in South Africa. Afr J Lab Med 2023; 12:1975. [PMID: 36873290 PMCID: PMC9982466 DOI: 10.4102/ajlm.v12i1.1975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/24/2022] [Indexed: 02/05/2023] Open
Abstract
Background Rifampicin resistance missed by commercial rapid molecular assays but detected by phenotypic assays may lead to discordant susceptibility results and affect patient management. Objective This study was conducted to evaluate the causes of rifampicin resistance missed by the GenoType MTBDRplus and its impact on the programmatic management of tuberculosis in KwaZulu-Natal, South Africa. Methods We analysed routine tuberculosis programme data from January 2014 to December 2014 on isolates showing rifampicin susceptibility on the GenoType MTBDRplus assay but resistance on the phenotypic agar proportion method. Whole-genome sequencing was performed on a subset of these isolates. Results Out of 505 patients with isoniazid mono-resistant tuberculosis on the MTBDRplus, 145 (28.7%) isolates showed both isoniazid and rifampicin resistance on the phenotypic assay. The mean time from MTBDRplus results to initiation of drug-resistant tuberculosis therapy was 93.7 days. 65.7% of the patients had received previous tuberculosis treatment. The most common mutations detected in the 36 sequenced isolates were I491F (16; 44.4%) and L452P (12; 33.3%). Among the 36 isolates, resistance to other anti-tuberculosis drugs was 69.4% for pyrazinamide, 83.3% for ethambutol, 69.4% for streptomycin, and 50% for ethionamide. Conclusion Missed rifampicin resistance was mostly due to the I491F mutation located outside the MTBDRplus detection area and the L452P mutation, which was not included in the initial version 2 of the MTBDRplus. This led to substantial delays in the initiation of appropriate therapy. The previous tuberculosis treatment history and the high level of resistance to other anti-tuberculosis drugs suggest an accumulation of resistance.
Collapse
Affiliation(s)
- Nomonde R Mvelase
- Department of Medical Microbiology, KwaZulu-Natal Academic Complex, National Health Laboratory Service, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lindiwe P Cele
- Department of Public Health, Epidemiology and Biostatistics Unit, Sefako Makgatho Health Sciences University, Pretoria, South Africa
| | - Ravesh Singh
- Department of Medical Microbiology, KwaZulu-Natal Academic Complex, National Health Laboratory Service, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Yeshnee Naidoo
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Eduan Wilkinson
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.,Centre for Epidemic Response and Innovation, School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| | - Khine Swe Swe-Han
- Department of Medical Microbiology, KwaZulu-Natal Academic Complex, National Health Laboratory Service, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Koleka P Mlisana
- Department of Medical Microbiology, KwaZulu-Natal Academic Complex, National Health Laboratory Service, Durban, South Africa.,School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Li MC, Wang XY, Xiao TY, Lin SQ, Liu HC, Qian C, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations are Associated with Variable Levels of Rifampin and Rifabutin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2022; 15:6853-6861. [DOI: 10.2147/idr.s386863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
|
25
|
Rapid Identification of Drug Resistance and Phylogeny in M. tuberculosis, Directly from Sputum Samples. Microbiol Spectr 2022; 10:e0125222. [PMID: 36102651 PMCID: PMC9602270 DOI: 10.1128/spectrum.01252-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB) remains one of the most important infectious diseases globally. Establishing a resistance profile from the initial TB diagnosis is a priority. Rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, and Whole Genome Sequencing (WGS) needs culture prior to next-generation sequencing (NGS), limiting their clinical value. Targeted sequencing (TS) from clinical samples avoids these drawbacks, providing a signature of genetic markers that can be associated with drug resistance and phylogeny. In this study, a proof-of-concept protocol was developed for detecting genomic variants associated with drug resistance and for the phylogenetic classification of Mycobacterium Tuberculosis (Mtb) in sputum samples. Initially, a set of Mtb reference strains from the WHO were sequenced (WGS and TS). The results from the protocol agreed >95% with WHO reported data and phenotypic drug susceptibility testing (pDST). Lineage genetics results were 100% concordant with those derived from WGS. After that, the TS protocol was applied to sputum samples from TB patients to detect resistance to first- and second-line drugs and derive phylogeny. The accuracy was >90% for all evaluated drugs, except Eto/Pto (77.8%), and 100% were phylogenetically classified. The results indicate that the described protocol, which affords the complete drug resistance profile and phylogeny of Mtb from sputum, could be useful in the clinical area, advancing toward more personalized and more effective treatments in the near future. IMPORTANCE The COVID-19 pandemic negatively affected the progress in accessing essential Tuberculosis (TB) services and reducing the burden of TB disease, resulting in a decreased detection of new cases and increased deaths. Generating molecular diagnostic tests with faster results without losing reliability is considered a priority. Specifically, developing an antimicrobial resistance profile from the initial stages of TB diagnosis is essential to ensure appropriate treatment. Currently available rapid molecular tests evaluate only the most common genetic variants responsible for resistance to certain drugs, limiting their clinical value. In this work, targeted sequencing on sputum samples from TB patients was used to identify Mycobacterium tuberculosis mutations in genes associated with drug resistance and to derive a phylogeny of the infecting strain. This protocol constitutes a proof-of-concept toward the goal of helping clinicians select a timely and appropriate treatment by providing them with actionable information beyond current molecular approaches.
Collapse
|
26
|
Jones RM, Adams KN, Eldesouky HE, Sherman DR. The evolving biology of Mycobacterium tuberculosis drug resistance. Front Cell Infect Microbiol 2022; 12:1027394. [PMID: 36275024 PMCID: PMC9579286 DOI: 10.3389/fcimb.2022.1027394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb) is an ancient disease that has remained a leading cause of infectious death. Mtb has evolved drug resistance to every antibiotic regimen ever introduced, greatly complicating treatment, lowering rates of cure and menacing TB control in parts of the world. As technology has advanced, our understanding of antimicrobial resistance has improved, and our models of the phenomenon have evolved. In this review, we focus on recent research progress that supports an updated model for the evolution of drug resistance in Mtb. We highlight the contribution of drug tolerance on the path to resistance, and the influence of heterogeneity on tolerance. Resistance is likely to remain an issue for as long as drugs are needed to treat TB. However, with technology driving new insights and careful management of newly developed resources, antimicrobial resistance need not continue to threaten global progress against TB, as it has done for decades.
Collapse
Affiliation(s)
| | | | | | - David R. Sherman
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Leung KSS, Tam KKG, Ng TTL, Lao HY, Shek RCM, Ma OCK, Yu SH, Chen JX, Han Q, Siu GKH, Yam WC. Clinical utility of target amplicon sequencing test for rapid diagnosis of drug-resistant Mycobacterium tuberculosis from respiratory specimens. Front Microbiol 2022; 13:974428. [PMID: 36160212 PMCID: PMC9505518 DOI: 10.3389/fmicb.2022.974428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
An in-house-developed target amplicon sequencing by next-generation sequencing technology (TB-NGS) enables simultaneous detection of resistance-related mutations in Mycobacterium tuberculosis (MTB) against 8 anti-tuberculosis drug classes. In this multi-center study, we investigated the clinical utility of incorporating TB-NGS for rapid drug-resistant MTB detection in high endemic regions in southeast China. From January 2018 to November 2019, 4,047 respiratory specimens were available from patients suffering lower respiratory tract infections in Hong Kong and Guangzhou, among which 501 were TB-positive as detected by in-house IS6110-qPCR assay with diagnostic sensitivity and specificity of 97.9 and 99.2%, respectively. Preliminary resistance screening by GenoType MTBDRplus and MTBDRsl identified 25 drug-resistant specimens including 10 multidrug-resistant TB. TB-NGS was performed using MiSeq on all drug-resistant specimens alongside 67 pan-susceptible specimens, and demonstrated 100% concordance to phenotypic drug susceptibility test. All phenotypically resistant specimens with dominating resistance-related mutations exhibited a mutation frequency of over 60%. Three quasispecies were identified with mutation frequency of less than 35% among phenotypically susceptible specimens. They were well distinguished from phenotypically resistant cases and thus would not complicate TB-NGS results interpretations. This is the first large-scale study that explored the use of laboratory-developed NGS platforms for rapid TB diagnosis. By incorporating TB-NGS with our proposed diagnostic algorithm, the workflow would provide a user-friendly, cost-effective routine diagnostic solution for complicated TB cases with an average turnaround time of 6 working days. This is critical for timely management of drug resistant TB patients and expediting public health control on the emergence of drug-resistant TB.
Collapse
Affiliation(s)
- Kenneth Siu-Sing Leung
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kingsley King-Gee Tam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Timothy Ting-Leung Ng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Hiu-Yin Lao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Raymond Chiu-Man Shek
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Shi-Hui Yu
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou, China
| | | | - Qi Han
- Guangzhou KingMed Diagnostics Group, Guangzhou, China
| | - Gilman Kit-Hang Siu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wing-Cheong Yam
- Department of Microbiology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Wing-Cheong Yam,
| |
Collapse
|
28
|
Finci I, Albertini A, Merker M, Andres S, Bablishvili N, Barilar I, Cáceres T, Crudu V, Gotuzzo E, Hapeela N, Hoffmann H, Hoogland C, Kohl TA, Kranzer K, Mantsoki A, Maurer FP, Nicol MP, Noroc E, Plesnik S, Rodwell T, Ruhwald M, Savidge T, Salfinger M, Streicher E, Tukvadze N, Warren R, Zemanay W, Zurek A, Niemann S, Denkinger CM. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study. THE LANCET. MICROBE 2022; 3:e672-e682. [PMID: 35907429 PMCID: PMC9436784 DOI: 10.1016/s2666-5247(22)00116-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) of Mycobacterium tuberculosis complex has become an important tool in diagnosis and management of drug-resistant tuberculosis. However, data correlating resistance genotype with quantitative phenotypic antimicrobial susceptibility testing (AST) are scarce. METHODS In a prospective multicentre observational study, 900 clinical M tuberculosis complex isolates were collected from adults with drug-resistant tuberculosis in five high-endemic tuberculosis settings around the world (Georgia, Moldova, Peru, South Africa, and Viet Nam) between Dec 5, 2014, and Dec 12, 2017. Minimum inhibitory concentrations (MICs) and resulting binary phenotypic AST results for up to nine antituberculosis drugs were determined and correlated with resistance-conferring mutations identified by WGS. FINDINGS Considering WHO-endorsed critical concentrations as reference, WGS had high accuracy for prediction of resistance to isoniazid (sensitivity 98·8% [95% CI 98·5-99·0]; specificity 96·6% [95% CI 95·2-97·9]), levofloxacin (sensitivity 94·8% [93·3-97·6]; specificity 97·1% [96·7-97·6]), kanamycin (sensitivity 96·1% [95·4-96·8]; specificity 95·0% [94·4-95·7]), amikacin (sensitivity 97·2% [96·4-98·1]; specificity 98·6% [98·3-98·9]), and capreomycin (sensitivity 93·1% [90·0-96·3]; specificity 98·3% [98·0-98·7]). For rifampicin, pyrazinamide, and ethambutol, the specificity of resistance prediction was suboptimal (64·0% [61·0-67·1], 83·8% [81·0-86·5], and 40·1% [37·4-42·9], respectively). Specificity for rifampicin increased to 83·9% when borderline mutations with MICs overlapping with the critical concentration were excluded. Consequently, we highlighted mutations in M tuberculosis complex isolates that are often falsely identified as susceptible by phenotypic AST, and we identified potential novel resistance-conferring mutations. INTERPRETATION The combined analysis of mutations and quantitative phenotypes shows the potential of WGS to produce a refined interpretation of resistance, which is needed for individualised therapy, and eventually could allow differential drug dosing. However, variability of MIC data for some M tuberculosis complex isolates carrying identical mutations also reveals limitations of our understanding of the genotype and phenotype relationships (eg, including epistasis and strain genetic background). FUNDING Bill & Melinda Gates Foundation, German Centre for Infection Research, German Research Foundation, Excellence Cluster Precision Medicine of Inflammation (EXC 2167), and Leibniz ScienceCampus EvoLUNG.
Collapse
Affiliation(s)
- Iris Finci
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | | | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; Evolution of the Resistome, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Nino Bablishvili
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Ivan Barilar
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Tatiana Cáceres
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Valeriu Crudu
- Phthisiopneumology Institute Chiril Draganiuc, Chisinau, Moldova
| | - Eduardo Gotuzzo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Nchimunya Hapeela
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Harald Hoffmann
- SYNLAB Gauting, SYNLAB MVZ Dachau, Gauting, Germany; Institute of Microbiology and Laboratory Medicine (IML Red), WHO Supranational TB Reference Laboratory, Gauting, Germany
| | | | - Thomas A Kohl
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Katharina Kranzer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Biomedical Research and Training Institute, Harare, Zimbabwe
| | | | - Florian P Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark P Nicol
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa; Division of Infection and Immunity, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Ecaterina Noroc
- Phthisiopneumology Institute Chiril Draganiuc, Chisinau, Moldova
| | - Sara Plesnik
- Institute of Microbiology and Laboratory Medicine (IML Red), WHO Supranational TB Reference Laboratory, Gauting, Germany
| | - Timothy Rodwell
- FIND, Geneva, Switzerland; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Theresa Savidge
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, CO, USA; Alaska State Public Health Laboratories, Anchorage, AK, USA
| | - Max Salfinger
- College of Public Health, University of South Florida, Tampa, FL, USA; Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Elizabeth Streicher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nestani Tukvadze
- National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Robin Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Microbiology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Anna Zurek
- Advanced Diagnostic Laboratories, National Jewish Health, Denver, CO, USA
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany; National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany; Hamburg-Borstel-Lübeck-Riems, Germany
| | - Claudia M Denkinger
- FIND, Geneva, Switzerland; German Center for Infection Research, Heidelberg, Germany; Division of Clinical Tropical Medicine and German Centre for Infection Research, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
29
|
Hameed HMA, Fang C, Liu Z, Ju Y, Han X, Gao Y, Wang S, Chiwala G, Tan Y, Guan P, Hu J, Xiong X, Peng J, Lin Y, Hussain M, Zhong N, Maslov DA, Cook GM, Liu J, Zhang T. Characterization of Genetic Variants Associated with Rifampicin Resistance Level in Mycobacterium tuberculosis Clinical Isolates Collected in Guangzhou Chest Hospital, China. Infect Drug Resist 2022; 15:5655-5666. [PMID: 36193294 PMCID: PMC9526423 DOI: 10.2147/idr.s375869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Rifampicin (RIF)-resistance, a surrogate marker for multidrug-resistant tuberculosis (TB), is mediated by mutations in the rpoB gene. We aimed to investigate the prevalence of mutations pattern in the entire rpoB gene of Mycobacterium tuberculosis clinical isolates and their association with resistance level to RIF. Methods Among 465 clinical isolates collected from the Guangzhou Chest Hospital, drug-susceptibility of 175 confirmed Mtb strains was performed via the proportion method and Bactec MGIT 960 system. GeneXpert MTB/RIF and sanger sequencing facilitated in genetic characterization, whereas the MICs of RIF were determined by Alamar blue assay. Results We found 150/175 (85.71%) RIF-resistant strains (MIC: 4 to >64 µg/mL) of which 57 were MDR and 81 pre-XDR TB. Genetic analysis identified 17 types of mutations 146/150 (97.33%) within RRDR (codons 426–452) of rpoB, mainly at L430 (P), D435 (V, E, G, N), H445 (N, D, Y, R, L), S450 (L, F) and L452 (P). D435V 12/146 (8.2%), H445N 16/146 (10.9%), and S450L 70/146 (47.94%) were the most frequently encountered mutations. Mutations Q432K, M434V, and N437D are rarely identified in RRDR. Deletions at (1284–1289 CCAGCT), (1295–1303 AATTCATGG), and insertion at (1300–1302 TTC) were detected within RRDR of three RIFR strains for the first time. We detected 47 types of mutations and insertions/deletions (indels) outside the RRDR. Four RIFR strains were detected with only novel mutations/indels outside the RRDR. Two of the four had (K274Q + C897 del + I491M) and (A286V + L494P), respectively. The other two had (G1687del + P454L) and (TT1835-6 ins + I491L) individually. Compared with phenotypic characterization, diagnostic sensitivities of GeneXpert MTB/RIF and sequencing analysis were 95.33% (143/150), and 100% (150/150) respectively. Conclusion Our findings underscore the key role of RRDR mutations and the contribution of non-RRDR mutations in rapid molecular diagnosis of RIFR clinical isolates. Such insights will support early detection of disease and recommend the appropriate anti-TB regimens in high-burden settings.
Collapse
Affiliation(s)
- H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- National Clinical Research Center for Infectious Diseases, Guangdong Provincial Clinical Research Center for Tuberculosis, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Gift Chiwala
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Yaoju Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Ping Guan
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
| | - Jiacong Peng
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yongping Lin
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Muzammal Hussain
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Dmitry A Maslov
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Gregory M Cook
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jianxiong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Chest Hospital, Guangzhou, People’s Republic of China
- Jianxiong Liu, Guangzhou Chest Hospital, 62 Hengzhigang Road, Yuexiu District, Guangzhou, People’s Republic of China, Tel +86-2083595977, Email
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, People’s Republic of China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, People’s Republic of China
- University of Chinese Academy of Sciences (UCAS), Beijing, People’s Republic of China
- Correspondence: Tianyu Zhang, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Room A207, 190 Kaiyuan Ave, Science Park, Huangpu District, Guangzhou, 510530, People’s Republic of China, Tel +86-2032015270, Email
| |
Collapse
|
30
|
Li MC, Lu J, Lu Y, Xiao TY, Liu HC, Lin SQ, Xu D, Li GL, Zhao XQ, Liu ZG, Zhao LL, Wan KL. rpoB Mutations and Effects on Rifampin Resistance in Mycobacterium tuberculosis. Infect Drug Resist 2021; 14:4119-4128. [PMID: 34675557 PMCID: PMC8502021 DOI: 10.2147/idr.s333433] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective To investigate the mutations within the whole rpoB gene of Mycobacterium tuberculosis and analyze their effects on rifampin (RIF) resistance based on crystal structure. Methods We sequenced the entire rpoB gene in 175 tuberculosis isolates and quantified their minimum inhibitory concentrations using microplate-based assays. Additionally, the structural interactions between wild-type/mutant RpoB and RIF were also analyzed. Results Results revealed that a total of 34 mutations distributed across 17 different sites within the whole rpoB gene were identified. Of the 34 mutations, 25 could alter the structural interaction between RpoB and RIF and contribute to RIF resistance. Statistical analysis showed that S450L, H445D, H445Y and H445R mutations were associated with high-level RIF resistance, while D435V was associated with moderate-level RIF resistance. Conclusion Some mutations within the rpoB gene could affect the interaction between RpoB and RIF and thus are associated with RIF resistance. These findings could be helpful to design new antibiotics and develop novel diagnostic tools for drug resistance in TB.
Collapse
Affiliation(s)
- Ma-Chao Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yao Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Tong-Yang Xiao
- Guangdong Key Laboratory for Diagnosis & Treatment of Emerging Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Hai-Can Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shi-Qiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Da Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Gui-Lian Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xiu-Qin Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Zhi-Guang Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Li-Li Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Kang-Lin Wan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
31
|
Rifampicin-Monoresistant Tuberculosis Is Not the Same as Multidrug-Resistant Tuberculosis: a Descriptive Study from Khayelitsha, South Africa. Antimicrob Agents Chemother 2021; 65:e0036421. [PMID: 34460307 PMCID: PMC8522772 DOI: 10.1128/aac.00364-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Rifampin monoresistance (RMR; rifampin resistance and isoniazid susceptibility) accounts for 38% of all rifampin-resistant tuberculosis (RR-TB) in South Africa and is increasing. We aimed to compare RMR-TB with multidrug-resistant TB (MDR-TB) in a setting with high TB, RR-TB, and HIV burdens. Patient-level clinical data and stored RR Mycobacterium tuberculosis isolates from 2008 to 2017 with available whole-genome sequencing (WGS) data were used to describe risk factors associated with RMR-TB and to compare RR-conferring mutations between RMR-TB and MDR-TB. A subset of isolates with particular RR-conferring mutations were subjected to semiquantitative rifampin phenotypic drug susceptibility testing. Among 2,041 routinely diagnosed RR-TB patients, 463 (22.7%) had RMR-TB. HIV-positive individuals (adjusted odds ratio [aOR], 1.4; 95% confidence interval [CI], 1.1 to 1.9) and diagnosis between 2013 and 2017 versus between 2008 and 2012 (aOR, 1.3; 95% CI, 1.1 to 1.7) were associated with RMR-TB. Among 1,119 (54.8%) patients with available WGS data showing RR-TB, significant differences in the distribution of rpoB RR-conferring mutations between RMR and MDR isolates were observed. Mutations associated with high-level RR were more commonly found among MDR isolates (811/889 [90.2%] versus 162/230 [70.4%] among RMR isolates; P < 0.0001). In particular, the rpoB L430P mutation, conferring low-level RR, was identified in 32/230 (13.9%) RMR isolates versus 10/889 (1.1%) in MDR isolates (P < 0.0001). Among 10 isolates with an rpoB L430P mutation, 7 were phenotypically susceptible using the critical concentration of 0.5 μg/ml (range, 0.125 to 1 μg/ml). The majority (215/230 [93.5%]) of RMR isolates showed susceptibility to all other TB drugs, highlighting the potential benefits of WGS for simplified treatment. These data suggest that the evolution of RMR-TB differs from MDR-TB with a potential contribution from HIV infection.
Collapse
|
32
|
Rando-Segura A, Aznar ML, Moreno MM, Espasa Soley M, Sulleiro Igual E, Bocanegra Garcia C, Gil Olivas E, Nindia Eugénio A, Escartin Huesca C, Zacarias A, Vegue Collado J, Katimba D, Vivas Cano MC, Gabriel E, López García MT, Pumarola Suñe T, Molina Romero I, Tórtola Fernández MT. Molecular characterization of rpoB gene mutations in isolates from tuberculosis patients in Cubal, Republic of Angola. BMC Infect Dis 2021; 21:1056. [PMID: 34641802 PMCID: PMC8507306 DOI: 10.1186/s12879-021-06763-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
Background The importance of Mycobacterium tuberculosis strains with disputed rpoB mutations remains to be defined. This study aimed to assess the frequency and types of rpoB mutations in M. tuberculosis isolates from Cubal, Angola, a country with a high incidence of tuberculosis. Methods All isolates included (n = 308) were analyzed using phenotypic drug susceptibility testing and GenoType MTBDRplus assay. DNA sequencing of the rpoB gene and determination of rifampicin MIC by macrodilution method were additionally performed on isolates yielding discordant results (n = 12) and those in which the mutation detected was not characterized (n = 8). Results In total, 85.1% (74/87) of rifampicin-resistant strains had undisputed rpoB mutations -S450L (49), D435V (15), H445D (3), H445Y (2), Q432ins (1), L449M plus S450F (1), S450F (1), S450W (1) and S450Y (1)-; 10.3% (9/87) had disputed rpoB mutations—L430P plus S493L (1), N437del (1), H445L (3), D435Y (2), L452P (2)-, 2.3% (2.3%) showed no rpoB mutations and 2.3% (2/87) showed heteroresistance—D435Y plus L452P and L430P plus S493L-. Conclusion Disputed rpoB mutations were common, occurring in 10.3% of rifampicin resistant isolates. Current phenotyping techniques may be unable to detect this resistance pattern. To increase their sensitivity, a lower concentration of RIF could be used in these tests or alternatively, rpoB mutations could be screened and characterized in all M. tuberculosis strains.
Collapse
Affiliation(s)
- Ariadna Rando-Segura
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain.
| | - María Luisa Aznar
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | | | - Mateu Espasa Soley
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Elena Sulleiro Igual
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Cristina Bocanegra Garcia
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | - Eva Gil Olivas
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Hospital Nossa Senhora da Paz, Cubal, Angola
| | | | - Carlos Escartin Huesca
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | - Josep Vegue Collado
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | - Maria Carmen Vivas Cano
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | | | | | - Tomas Pumarola Suñe
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| | - Israel Molina Romero
- Infectious Disease Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Teresa Tórtola Fernández
- Microbiology Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119 - 129, 08035, Barcelona, Spain
| |
Collapse
|
33
|
Liu D, Huang F, Zhang G, He W, Ou X, He P, Zhao B, Zhu B, Liu F, Li Z, Liu C, Xia H, Wang S, Zhou Y, Walker TM, Liu L, Crook DW, Zhao Y. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect 2021; 28:731.e9-731.e15. [PMID: 34600118 DOI: 10.1016/j.cmi.2021.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Phenotypic drug susceptibility testing for prediction of tuberculosis (TB) drug resistance is slow and unreliable, limiting individualized therapy and monitoring of national TB data. Our study evaluated whole-genome sequencing (WGS) for its predictive accuracy, use in TB drug-resistance surveillance and ability to quantify the effects of resistance-associated mutations on MICs of anti-TB drugs. METHODS We used WGS to measure the susceptibility of 4880 isolates to ten anti-TB drugs; for pyrazinamide, we used BACTEC MGIT 960. We determined the accuracy of WGS by comparing the prevalence of drug resistance, measured by WGS, with the true prevalence, determined by phenotypic susceptibility testing. We used the Student-Newman-Keuls test to confirm MIC differences of mutations. RESULTS Resistance to isoniazid, rifampin and ethambutol was highly accurately predicted with at least 92.92% (95% confidence interval [CI], 88.19-97.65) sensitivity, resistance to pyrazinamide with 50.52% (95% CI, 40.57-60.47) sensitivity, and resistance to six second-line drugs with 85.05% (95% CI, 80.27-89.83) to 96.01% (95% CI, 93.89-98.13) sensitivity. The rpoB S450L, katG S315T and gyrA D94G mutations always confer high-level resistance, while rpoB L430P, rpoB L452P, fabG1 C-15T and embB G406S often confer low-level resistance or sub-epidemiological cutoff (ECOFF) MIC elevation. CONCLUSION WGS can predict phenotypic susceptibility with high accuracy and could be a valuable tool for drug-resistance surveillance and allow the detection of drug-resistance level; It can be an important approach in TB drug-resistance surveillance and for determining therapeutic schemes.
Collapse
Affiliation(s)
- Dongxin Liu
- Chinese Centre for Disease Control and Prevention, Beijing, China; National Clinical Research Centre for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Fei Huang
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Guoliang Zhang
- National Clinical Research Centre for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Wencong He
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Xichao Ou
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Ping He
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Bing Zhao
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fei Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Li
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunfa Liu
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Hui Xia
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Shengfen Wang
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Yang Zhou
- Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Timothy M Walker
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lei Liu
- National Clinical Research Centre for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, China
| | - Derrick W Crook
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yanlin Zhao
- Chinese Centre for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
34
|
Muzondiwa D, Hlanze H, Reva ON. The Epistatic Landscape of Antibiotic Resistance of Different Clades of Mycobacterium tuberculosis. Antibiotics (Basel) 2021; 10:857. [PMID: 34356778 PMCID: PMC8300818 DOI: 10.3390/antibiotics10070857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Drug resistance (DR) remains a global challenge in tuberculosis (TB) control. In order to develop molecular-based diagnostic methods to replace the traditional culture-based diagnostics, there is a need for a thorough understanding of the processes that govern TB drug resistance. The use of whole-genome sequencing coupled with statistical and computational methods has shown great potential in unraveling the complexity of the evolution of DR-TB. In this study, we took an innovative approach that sought to determine nonrandom associations between polymorphic sites in Mycobacterium tuberculosis (Mtb) genomes. Attributable risk statistics were applied to identify the epistatic determinants of DR in different clades of Mtb and the possible evolutionary pathways of DR development. It was found that different lineages of Mtb exploited different evolutionary trajectories towards multidrug resistance and compensatory evolution to reduce the DR-associated fitness cost. Epistasis of DR acquisition is a new area of research that will aid in the better understanding of evolutionary biological processes and allow predicting upcoming multidrug-resistant pathogens before a new outbreak strikes humanity.
Collapse
Affiliation(s)
| | | | - Oleg N. Reva
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa; (D.M.); (H.H.)
| |
Collapse
|
35
|
Characterization of rifampicin-resistant Mycobacterium tuberculosis in Khyber Pakhtunkhwa, Pakistan. Sci Rep 2021; 11:14194. [PMID: 34244539 PMCID: PMC8270973 DOI: 10.1038/s41598-021-93501-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/24/2021] [Indexed: 11/08/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, is endemic in Pakistan. Resistance to both firstline rifampicin and isoniazid drugs (multidrug-resistant TB; MDR-TB) is hampering disease control. Rifampicin resistance is attributed to rpoB gene mutations, but rpoA and rpoC loci may also be involved. To characterise underlying rifampicin resistance mutations in the TB endemic province of Khyber Pakhtunkhwa, we sequenced 51 M. tuberculosis isolates collected between 2016 and 2019; predominantly, MDR-TB (n = 44; 86.3%) and lineage 3 (n = 30, 58.8%) strains. We found that known mutations in rpoB (e.g. S405L), katG (e.g. S315T), or inhA promoter loci explain the MDR-TB. There were 24 unique mutations in rpoA, rpoB, and rpoC genes, including four previously unreported. Five instances of within-host resistance diversity were observed, where two were a mixture of MDR-TB strains containing mutations in rpoB, katG, and the inhA promoter region, as well as compensatory mutations in rpoC. Heteroresistance was observed in two isolates with a single lineage. Such complexity may reflect the high transmission nature of the Khyber Pakhtunkhwa setting. Our study reinforces the need to apply sequencing approaches to capture the full-extent of MDR-TB genetic diversity, to understand transmission, and to inform TB control activities in the highly endemic setting of Pakistan.
Collapse
|
36
|
Characterization of genetic diversity and clonal complexes by whole genome sequencing of Mycobacterium tuberculosis isolates from Jalisco, Mexico. Tuberculosis (Edinb) 2021; 129:102106. [PMID: 34218194 DOI: 10.1016/j.tube.2021.102106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing (WGS) analysis in tuberculosis allows the prediction of drug-resistant phenotypes, identification of lineages, and to better understanding of the epidemiology and transmission chains. Nevertheless the procedure has been scarcely assessed in Mexico, in this work we analyze by WGS isolates of Mycobacterium tuberculosis circulating in Jalisco, Mexico. Lineage and phylogenetic characterization, drug resistant prediction, "in silico" spoligotyping determination, were provided by WGS in 32 M. tuberculosis clinical isolates. Lineage 4 (L4), with 28 isolates (87%) and eleven sublineages was dominant. Forty SNPs and INDELs were found in genes related to first-, and second-line drugs. Eleven isolates were sensitive, seven (22%) were predicted to be resistant to isoniazid, two resistant to rifampicin (6%) and two (6%) were multidrug-resistant tuberuclosis. Spoligotyping shows that SIT 53 (19%) and SIT 119 (16%) were dominant. Four clonal transmission complexes were found. This is the first molecular epidemiological description of TB isolates circulating in western Mexico, achieved through WGS. L4 was dominant and included a high diversity of sublineages. It was possible to track the transmission route of two clonal complexes. The WGS demonstrated to be of great utility and with further implications for clinical and epidemiological study of TB in the region.
Collapse
|
37
|
Zeng MC, Jia QJ, Tang LM. rpoB gene mutations in rifampin-resistant Mycobacterium tuberculosis isolates from rural areas of Zhejiang, China. J Int Med Res 2021; 49:300060521997596. [PMID: 33715498 PMCID: PMC7952843 DOI: 10.1177/0300060521997596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective The aim was to analyze genetic mutations in the rpoB gene of rifampin-resistant Mycobacterium tuberculosis isolates (RIFR-MTB) from Zhejiang, China. Methods We prospectively analyzed RIFR-associated mutations in 13 rural areas of Zhejiang. Isolates were subjected to species identification, phenotype drug susceptibility testing (DST), DNA extraction, and rpoB gene sequencing. Results A total of 103 RIFR isolates were identified by DST (22 RIFR only, 14 poly-drug resistant, 49 multidrug resistant, 13 pre-extensively drug resistant [pre-XDR], and 5 extensively drug resistant [XDR]) from 2152 culture-positive sputum specimens. Gene sequencing of rpoB showed that the most frequent mutation was S450L (37.86%, 39/103); mutations P280L, E521K, and D595Y were outside the rifampicin resistance-determining region (RRDR) but may be associated with RIFR. Mutations associated with poly-drug resistant, pre-XDR, and XDR TB were mainly located at codon 445 or 450 in the RRDR. Conclusions The frequency of rpoB RRDR mutation in Zhejiang is high. Further studies are needed to clarify the relationships between RIFR and the TTC insertion at codon 433 in the RRDR and the P280L and D595Y mutations outside the RRDR.
Collapse
Affiliation(s)
- Mei-Chun Zeng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Mei-Chun Zeng, Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Qingchun Road 79#, Shangcheng District, Hangzhou 310003, China.
| | - Qing-Jun Jia
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Lei-Ming Tang
- Department of Clinical Laboratory, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
38
|
Köser CU, Georghiou SB, Schön T, Salfinger M. On the Consequences of Poorly Defined Breakpoints for Rifampin Susceptibility Testing of Mycobacterium tuberculosis Complex. J Clin Microbiol 2021; 59:e02328-20. [PMID: 33568463 PMCID: PMC8092724 DOI: 10.1128/jcm.02328-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a recent report of a systematic review of critical concentrations (CCs), the World Health Organization (WHO) lowered the rifampin (RIF) CC for antimicrobial susceptibility testing (AST) of the Mycobacterium tuberculosis complex using Middlebrook 7H10 medium and the Bactec Mycobacterial Growth Indicator Tube (MGIT) 960 system from 1 to 0.5 μg/ml. The previous RIF CC for 7H10 had been in use for over half a century. Because it had served as the de facto reference standard, it contributed to the endorsement of inappropriately high CCs for other AST methods, including the U.S. Food and Drug Administration (FDA)-approved MGIT system. Moreover, this resulted in confusion about the interpretation of seven borderline resistance mutations in rpoB (i.e., L430P, D435Y, H445L, H445N, H445S, L452P, and I491F). In this issue of the Journal of Clinical Microbiology, Shea et al. (J Clin Microbiol 59:e01885-20, 2021, https://doi.org/10.1128/JCM.01885-20) provide evidence that the CC endorsed by the Clinical and Laboratory Standards Institute for the Sensititre MYCOTB system, which is not FDA approved but is CE-IVD marked in the European Union, is likely also too high. These findings underscore the importance of calibrating AST methods against a rigorously defined reference standard, as recently proposed by the European Committee on Antimicrobial Susceptibility Testing, as well as the value of routine next-generation sequencing for investigating discordant AST results.
Collapse
Affiliation(s)
- Claudio U Köser
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Thomas Schön
- Department of Infectious Diseases, Kalmar County Hospital, Linköping University, Kalmar, Sweden
- Unit of Infection and Inflammation, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Max Salfinger
- University of South Florida College of Public Health and Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|