1
|
Catalytic ferromagnetic gold nanoparticle immunoassay for the detection and differentiation of Mycobacterium tuberculosis and Mycobacterium bovis. Anal Chim Acta 2021; 1184:339037. [PMID: 34625241 DOI: 10.1016/j.aca.2021.339037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
A ferromagnetic gold nanoparticle based immune detection assay, exploiting the enhanced signal amplification of inorganic nanozymes, was developed and evaluated for its potential application in the detection of Mycobacterium tuberculosis complex (MTBC) organisms, and simultaneous identification of Mycobacterium bovis. Ferromagnetic gold nanoparticles (Au-Fe3O4 NPs) were prepared and their intrinsic peroxidase-like activity exploited to catalyse 3,3',5',5-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). When the Au-Fe3O4 NPs were functionalised by direct coupling with MTBC-selective antibodies, a nanoparticle based immune detection assay (NPIDA) was developed which could detect Mycobacterium tuberculosis (MTB) and differentiate M. bovis. In the assay, the intrinsic magnetic capability of the functionalised Au-Fe3O4 NPs was used in sample preparation to capture target bacterial cells. These were incorporated into a novel immunoassay which used species selective monoclonal antibodies (mAb) to detect bound target. The formation of a blue TMB oxidation product, with a peak absorbance of 370 nm, indicated successful capture and identification of the target. The detection limit of the NPIDA for both MTB and M. bovis was determined to be comparable to conventional ELISA using the same antibodies. Although limited matrix effects were observed in either assay, the NPIDA offers a reduced time to confirmatory identification. This novel NPIDA was capable of simultaneous sample concentration, purification, immunological detection and speciation. To our knowledge, it represents the first immune-based diagnostic test capable of identifying MTBC organisms and simultaneously differentiating M. bovis.
Collapse
|
2
|
Sharma D, Rai R. Neoteric advancements in TB diagnostics and its future frame. Indian J Tuberc 2021; 68:313-320. [PMID: 34099195 DOI: 10.1016/j.ijtb.2020.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) is one of the major infectious disease that causes threat to human health and leads to death in most of the cases. Mycobacterium tuberculosis is the causative agent that can affect both pulmonary and extra pulmonary regions of the body. This infection can be presented either as an active or latent form in the patients. Although this disease has been declared curable and preventable by WHO, it still holds its position as a global emergency. Over the past decade many hurdles such as low immunity, co-infections like HIV, autoimmune disorders, poverty, malnutrition and emerging trends in drug resistance patterns are hindering the eradication of this infection. However, many programmes have been launched by WHO with involvement of governments at various level to put a full stop over the disease. Under the Revised National Tuberculosis Control Programme (RNTCP) which was recently renamed as National Tuberculosis Elimination Programme (NTEP), the major focus is on eliminating tuberculosis by the year 2025. The main aim of the programme is to identify feasible quality testing, evaluate through NIKSHYA poshak yozana, restrict through BCG vaccination and assemble with public awareness to eradicate MTB. Numerous novel diagnostic techniques and molecular tools have been developed to elucidate and differentiate report of various suspected and active tuberculosis patients. However, improvements are still required to cut short the duration of the overall process ranging from screening of patients to their successful treatment.
Collapse
Affiliation(s)
- Diksha Sharma
- Department of Biotechnology, DAV College, Jalandhar, 144008, Punjab, India
| | - Rohit Rai
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| |
Collapse
|
3
|
Cao XJ, Li YP, Wang JY, Zhou J, Guo XG. MPT64 assays for the rapid detection of Mycobacterium tuberculosis. BMC Infect Dis 2021; 21:336. [PMID: 33838648 PMCID: PMC8035777 DOI: 10.1186/s12879-021-06022-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Tuberculosis (TB) is a serious infectious disease caused by Mycobacterium tuberculosis (MTB). An estimated 1.7 billion people worldwide are infected with Mycobacterium tuberculosis (LTBI) during the incubation period without any obvious symptoms. Because of MTB’s high infection and mortality rates, there is an urgent need to develop a fast, portable, and sensitive diagnostic technology for its detection. Methods We included research from PubMed, Cochrane Library, Web of Science, and Embase and extracted the data. MetaDisc and STATA were used to build forest plots, Deek’s funnel plot, Fagan plot, and bivariate boxplot for analysis. Results Forty-six articles were analyzed, the results of which are as follows: sensitivity and specificity were 0.92 (0.91–0.93) and 0.95 (0.94–0.95) respectively. The NLR and PLR were 0.04 (95% CI 0.03–0.07) and 25.32 (95% CI 12.38–51.78) respectively. DOR was 639.60 (243.04–1683.18). The area under the SROC curve (AUC) was 0.99. Conclusions MPT64 exhibits good diagnostic efficiency for MTB. There is no obvious heterogeneity between the three commercial kits. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06022-w.
Collapse
Affiliation(s)
- Xun-Jie Cao
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Ping Li
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China.,Department of Clinical Medicine, The Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Ying Wang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Jie Zhou
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
4
|
Mohd Amiruddin M, Ang GY, Yu CY, Falero-Diaz G, Otero O, Reyes F, Camacho F, Chin K, Sarmiento M, Norazmi M, Acosta A, Yean Yean C. Development of an immunochromatographic lateral flow dipstick for the detection of Mycobacterium tuberculosis 16 kDa antigen (Mtb-strip). J Microbiol Methods 2020; 176:106003. [DOI: 10.1016/j.mimet.2020.106003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
|
5
|
Khan MT, Khan A, Rehman AU, Wang Y, Akhtar K, Malik SI, Wei DQ. Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Sci Rep 2019; 9:7482. [PMID: 31097767 PMCID: PMC6522564 DOI: 10.1038/s41598-019-44013-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/29/2019] [Indexed: 02/04/2023] Open
Abstract
Resistance to key first-line drugs is a major hurdle to achieve the global end tuberculosis (TB) targets. A prodrug, pyrazinamide (PZA) is the only drug, effective in latent TB, recommended in drug resistance and susceptible Mycobacterium tuberculosis (MTB) isolates. The prodrug conversion into active form, pyrazinoic acid (POA), required the activity of pncA gene encoded pyrazinamidase (PZase). Although pncA mutations have been commonly associated with PZA resistance but a small number of resistance cases have been associated with mutationss in RpsA protein. Here in this study a total of 69 PZA resistance isolates have been sequenced for pncA mutations. However, samples that were found PZA resistant but pncA wild type (pncAWT), have been sequenced for rpsA and panD genes mutation. We repeated a drug susceptibility testing according to the WHO guidelines on 18 pncAWT MTB isolates. The rpsA and panD genes were sequenced. Out of total 69 PZA resistant isolates, 51 harbored 36 mutations in pncA gene (GeneBank Accession No. MH46111) while, fifteen different mutations including seven novel, were detected in the fourth S1 domain of RpsA known as C-terminal (MtRpsACTD) end. We did not detect any mutations in panD gene. Among the rpsA mutations, we investigated the molecular mechanism of resistance behind mutations, D342N, D343N, A344P, and I351F, present in the MtRpsACTD through molecular dynamic simulations (MD). WT showed a good drug binding affinity as compared to mutants (MTs), D342N, D343N, A344P, and I351F. Binding pocket volume, stability, and fluctuations have been altered whereas the total energy, protein folding, and geometric shape analysis further explored a significant variation between WT and MTs. In conclusion, mutations in MtRpsACTD might be involved to alter the RpsA activity, resulting in drug resistance. Such molecular mechanism behind resistance may provide a better insight into the resistance mechanism to achieve the global TB control targets.
Collapse
Affiliation(s)
- Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Abbas Khan
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ashfaq Ur Rehman
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yanjie Wang
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid Akhtar
- National University of Science and Technology, Islamabad, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan.
| | - Dong-Qing Wei
- College of Life Sciences and Biotechnology, The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Rehman AU, Khan MT, Liu H, Wadood A, Malik SI, Chen HF. Exploring the Pyrazinamide Drug Resistance Mechanism of Clinical Mutants T370P and W403G in Ribosomal Protein S1 of Mycobacterium tuberculosis. J Chem Inf Model 2019; 59:1584-1597. [DOI: 10.1021/acs.jcim.8b00956] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ashfaq Ur Rehman
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Biotechnology, Abdul Wali Khan University Marden, Mardan 23200, Pakistan
| | - Muhammad Tahir Khan
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdul Wadood
- Department of Biotechnology, Abdul Wali Khan University Marden, Mardan 23200, Pakistan
| | - Shaukat Iqbal Malik
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad 44000, Pakistan
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, Shanghai, 200235, China
| |
Collapse
|
7
|
Multilaboratory Evaluation of a Novel Lateral Flow Immunochromatographic Assay for Confirming Isolation of Mycobacterium bovis from Veterinary Diagnostic Specimens. J Clin Microbiol 2017; 55:3411-3425. [PMID: 28954900 DOI: 10.1128/jcm.00728-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/21/2017] [Indexed: 11/20/2022] Open
Abstract
A novel lateral flow immunochromatographic device (LFD) was evaluated in several veterinary diagnostic laboratories. It was confirmed to be specific for Mycobacterium bovis and M.caprae cells. The performance of the novel LFD was assessed relative to the confirmatory tests routinely applied after culture (spoligotyping or quantitative PCR [qPCR]) in each laboratory; liquid (MGIT or BacT/Alert) and/or solid (Stonebrink, Coletsos, or Lowenstein-Jensen) cultures were tested. In comparison to spoligotyping of acid-fast-positive MGIT cultures, percent agreement between positive LFD and spoligotyping results was excellent in two United Kingdom laboratories (97.7 to 100%) but lower in the Spanish context (76%), where spoligotyping was applied to MGIT cultures previously confirmed to be positive for M. tuberculosis complex (MTBC) by qPCR. Certain spoligotypes of M. bovis and M. caprae were not detected by the LFD in Spanish MGIT cultures. Compared to qPCR confirmation, the agreement between positive LFD and qPCR results was 42.3% and 50% for BacT/Alert and MGIT liquid cultures, respectively, and for solid cultures, it ranged from 11.1 to 89.2%, depending on the solid medium employed (Coletsos, 11.1%; Lowenstein-Jensen, 55.6%; Stonebrinks, 89.2%). Correlation between the novel LFD and BD MGIT TBc Identification test results was excellent when 190 MGIT cultures were tested (r = 0.9791; P < 0.0001), with the added benefit that M. bovis was differentiated from another MTBC species in one MGIT culture by the novel LFD. This multilaboratory evaluation demonstrated the novel LFD's potential utility as a rapid test to confirm isolation of M. bovis and M. caprae from veterinary specimens following culture.
Collapse
|
8
|
Oommen S, Banaji N. Laboratory Diagnosis of Tuberculosis: Advances in Technology and Drug Susceptibility Testing. Indian J Med Microbiol 2017; 35:323-331. [DOI: 10.4103/ijmm.ijmm_16_204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Llerena CR, Gómez IT, Zabaleta AP. Evaluación de la técnica BD MGITTM TBc® para identificación del complejo Mycobacterium tuberculosis. Rev Salud Publica (Bogota) 2015. [DOI: 10.15446/rsap.v16n5.40932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p><strong>Objetivo</strong> Evaluar la técnica BD MGIT<sup>TM</sup> TBc<sup>®</sup> para identificación del complejo<em> Mycobacterium tuberculosis </em>a partir de aislamientos en medio de cultivo sólido y líquido.</p><p><strong>Materiales y Métodos</strong> Se desarrolló un estudio descriptivo, donde se analizaron 117 aislamientos por la técnica de inmucromatografía a partir de cultivos en medio sólido y líquido para identificación del complejo <em>Mycobacterium tuberculosis</em>. Se calculó coeficiente kappa para determinar el grado de acuerdo entre los dos métodos. Cuando hubo diferencia de resultados estos se confirmaron mediante pruebas convencionales. La herramienta empleada para el análisis de datos fue Epidat 3.1.</p><p><strong>Resultados</strong> La metodología BD MGIT<sup>TM</sup> TBc<sup>®</sup> realizada a partir de cultivos en medio sólido y líquido, presentó un grado de acuerdo excelente con un coeficiente kappa de 0,84.</p><p><strong>Conclusión</strong> La técnica BD MGIT<sup>TM</sup> TBc<sup>®</sup> realizada a partir de cultivos en medio sólido, para la identificación del complejo<em> Mycobacterium tuberculosis,</em> presenta excelente concordancia, comparada con los resultados obtenidos en medio de cultivo líquido. El Laboratorio Nacional de Referencia recomienda el uso de esta técnica para la identificación de especie en medio de cultivos sólidos.</p>
Collapse
|
10
|
Direct detection and identification of acid-fast bacteria from smear-positive broth cultures using a pyrosequencing method. Diagn Microbiol Infect Dis 2014; 79:228-32. [PMID: 24745819 DOI: 10.1016/j.diagmicrobio.2014.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Broth culture is a standard method for detection of acid-fast bacteria (AFB) (e.g., Mycobacterium and Nocardia) from patient specimens. Direct nucleic acid-based identification from smear-positive broths expedites the infectious disease diagnosis. We developed and evaluated the performance of a pyrogram-based technique (direct-broth-pyrosequencing [DBP]) to identify AFB directly from smear-positive broths. One hundred thirteen AFB-positive broths from patient specimens were tested. Bacterial DNA was amplified by polymerase chain reaction and sequenced using the PyroMark ID system. The DBP method correctly identified the AFB species/group in 109 (97%) of the 113 broths, including 15 Mycobacterium species and 4 Nocardia species. Three broths that yielded indeterminate results were found to be AFB-AFB mixed broths and required purified colonies on solid media for definite identification. The 4th broth was repeatedly identified by sequencing to be Mycobacterium intracellulare, even though the organism was not isolated and the AccuProbe was negative. This method did not identify the AFB organisms from broths containing 2 AFB organisms, but did not produce false identification. No cross-reaction was observed when AFB-positive broths were spiked with non-AFB microorganisms, indicating that the DBP method was specific to AFB. The DBP method gives rapid (within 8 h), accurate AFB identification directly from broth cultures and provides another useful AFB identification tool in a clinical laboratory.
Collapse
|
11
|
Yin X, Zheng L, Lin L, Hu Y, Zheng F, Hu Y, Wang Q. Commercial MPT64-based tests for rapid identification of Mycobacterium tuberculosis complex: A meta-analysis. J Infect 2013; 67:369-77. [DOI: 10.1016/j.jinf.2013.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Accepted: 06/15/2013] [Indexed: 11/26/2022]
|
12
|
Yin X, Zheng L, Wu L, Cao N, Zheng F, Hu Y, Lin M, Zhang P, Wang Q. Comparative evaluation of two rapid methods for differentiating mycobacteria. Tuberculosis (Edinb) 2013; 93:227-31. [PMID: 23414675 DOI: 10.1016/j.tube.2013.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 10/27/2022]
Abstract
The real-time PCR with duplex primer sets and the MPB64-based immunochromatographic assay are newly developed methods for rapid differentiation of mycobacteria. The aim of this study is to evaluate the two methods for differentiation between Mycobacterium tuberculosis complex and nontuberculous mycobacteria. A total of 95 clinical mycobacterial isolates belonging to 22 different species and 16 reference strains of 16 different species were differentiated by duplex real-time PCR method and MPB64-based immunochromatographic assay method. The two methods were evaluated by comparison with conventional biochemical technique as the gold standard method. The duplex real-time PCR method correctly differentiated all reference strains as well as the MPB64-based immunochromatographic assay method. For clinical isolates, the accuracy of the duplex real-time PCR method (100%) was slightly higher than the MPB64-based immunochromatographic assay method (97.9%), but there was no statistical significance between the two methods (P > 0.05), and there was an excellent agreement between them (Kappa = 0.957). The duplex real-time PCR method possesses greater potential for differentiation of mycobacteria in the clinical laboratory than the MPB64-based immunochromatographic assay method. However, the MPB64-based immunochromatographic assay method is more convenient than the duplex real-time PCR method when the number of sample is small.
Collapse
Affiliation(s)
- Xiaomao Yin
- Laboratory Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province 510515, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Evaluation of the speed-oligo direct Mycobacterium tuberculosis assay for molecular detection of mycobacteria in clinical respiratory specimens. J Clin Microbiol 2012; 51:77-82. [PMID: 23100355 DOI: 10.1128/jcm.00533-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the first evaluation of a novel molecular assay, the Speed-oligo Direct Mycobacterium tuberculosis (SO-DMT) assay, which is based on PCR combined with a dipstick for the detection of mycobacteria and the specific identification of M. tuberculosis complex (MTC) in respiratory specimens. A blind evaluation was carried out in two stages: first, under experimental conditions on convenience samples comprising 20 negative specimens, 44 smear- and culture-positive respiratory specimens, and 11 sputa inoculated with various mycobacterium-related organisms; and second, in the routine workflow of 566 fresh respiratory specimens (4.9% acid-fast bacillus [AFB] smear positives, 7.6% MTC positives, and 1.8% nontuberculous mycobacteria [NTM] culture positives) from two Mycobacterium laboratories. SO-DMT assay showed no reactivity in any of the mycobacterium-free specimens or in those with mycobacterium-related organisms. Compared to culture, the sensitivity in the selected smear-positive specimens was 0.91 (0.92 for MTC and 0.90 for NTM), and there was no molecular detection of NTM in a tuberculosis case or vice versa. With respect to culture and clinical data, the sensitivity, specificity, and positive and negative predictive values for the SO-DMT system in routine specimens were 0.76 (0.93 in smear positives [1.0 for MTC and 0.5 for NTM] and 0.56 in smear negatives [0.68 for MTC and 0.16 for NTM]), 0.99, 0.85 (1.00 in smear positives and 0.68 in smear negatives), and 0.97, respectively. Molecular misidentification of NTM cases occurred when testing 2 gastric aspirates from two children with clinically but not microbiologically confirmed lung tuberculosis. The SO-DMT assay appears to be a fast and easy alternative for detecting mycobacteria and differentiating MTC from NTM in smear-positive respiratory specimens.
Collapse
|
14
|
Roberts SA, Lowe O, Pandey S, Williamson DA, Newton S, Vaughan R. Comparison of the MGIT TBc immunochromatographic assay with the Accuprobe Gen-Probe TB assay for identification of Mycobacterium tuberculosis complex: results from a low-burden tuberculosis setting. Diagn Microbiol Infect Dis 2012; 74:415-6. [PMID: 23036825 DOI: 10.1016/j.diagmicrobio.2012.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/31/2012] [Accepted: 08/06/2012] [Indexed: 11/25/2022]
Abstract
We compared the BD MPT64 TBc Antigen assay with the Gen-Probe TB assay for identifying Mycobacterium tuberculosis (MTB) from liquid culture vials. The BD TBc Antigen assay was more sensitive than and as specific as the Gen-Probe TB assay, making it a useful alternative for the rapid detection of MTB.
Collapse
Affiliation(s)
- Sally A Roberts
- Mycobacteria Section, Department of Microbiology, Auckland District Health Board, Auckland New Zealand.
| | | | | | | | | | | |
Collapse
|
15
|
van Kampen SC, Oskam L, Tuijn CJ, Klatser PR. Survey of the diagnostic retooling process in national TB reference laboratories, with special focus on rapid speciation tests endorsed by WHO in 2007. PLoS One 2012; 7:e43439. [PMID: 22937050 PMCID: PMC3427371 DOI: 10.1371/journal.pone.0043439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 07/23/2012] [Indexed: 12/02/2022] Open
Abstract
Background Successful integration of new diagnostics in national tuberculosis (TB) control programs, also called ‘retooling’, is highly dependent on operational aspects related to test availability, accessibility and affordability. This survey aimed to find out whether recommendations to use new diagnostics lead to successful retooling in high TB endemic countries, using immunochromatographic tests (ICTs) for TB culture speciation as a case study. ICTs are recommended to accurately confirm the presence of bacteria of the Mycobacterium tuberculosis complex in liquid culture isolates. Methods and Findings Questionnaires were sent to national TB reference laboratories (NRLs) in 42 high TB endemic countries to address their access to information on ICT implementation, logistics related to availability, accessibility and affordability of ICTs, and testing algorithms. Results from 16 responding countries indicated that half of the NRLs were aware of the contents of WHO guidance documents on liquid culture and ICT implementation, as well as their eligibility for a negotiated pricing agreement for ICT procurement. No major issues with availability and accessibility of ICTs were raised. When asked about testing algorithms, ICTs were not used as stand-alone or first test for TB culture identification as recommended by WHO. Conclusions The low response rate was a limitation of this survey and together with NRLs managers' unawareness of global guidance, suggests a lack of effective communication between partners of the global laboratory network and NRLs. TB tests could become more affordable to high TB endemic countries, if the possibility to negotiate lower prices for commercial products is communicated to them more successfully. NRLs need additional guidance to identify where available technologies can be most usefully implemented and in what order, taking into account long-term laboratory strategies.
Collapse
Affiliation(s)
- Sanne C van Kampen
- Royal Tropical Institute, Royal Tropical Institute Biomedical Research, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
16
|
SeekTB, a two-stage multiplex real-time-PCR-based method for differentiation of the Mycobacterium tuberculosis complex. J Clin Microbiol 2012; 50:2203-6. [PMID: 22553241 DOI: 10.1128/jcm.00718-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis (TB) in humans is caused by members of the Mycobacterium tuberculosis complex (MTC). The accurate identification of the MTC member causing human infection is important because the treatment of TB caused by some MTC members requires an alteration of the standard drug regimen, it can inform whether transmission is human to human or zoonotic, and it enables accurate epidemiology studies that help improve TB control. In this study, an internally controlled two-stage multiplex real-time PCR-based method, SeekTB, was developed for the accurate identification of all members of the MTC. The method was tested against a panel of well-characterized bacterial strains (n = 180) and determined to be 100% specific for members of the MTC. Additionally, 125 Mycobacteria Growth Indicator Tube (MGIT)-positive cultures were blindly tested by using SeekTB, and the results were compared to those of the GenoType MTBC and TBc ID tests. The SeekTB and GenoType MTBC results were 100% concordant, identifying 84 of these isolates as M. tuberculosis isolates and 41 as non-MTC isolates. Nine discordant results between the molecular methods and the TBc ID culture confirmation test were observed; however, nucleotide sequencing confirmed the results obtained with GenoType MTBC and SeekTB. SeekTB is the first-described internally controlled multiplex real-time PCR diagnostic method for the accurate identification of all eight members of the MTC. This method, designed for use on cultured patient samples, is specific, sensitive, and rapid, with a turnaround time to results of approximately 1.5 to 3.5 h, depending on which, if any, member of the MTC is present.
Collapse
|
17
|
Perng CL, Chen HY, Chiueh TS, Wang WY, Huang CT, Sun JR. Identification of non-tuberculous mycobacteria by real-time PCR coupled with a high-resolution melting system. J Med Microbiol 2012; 61:944-951. [PMID: 22493281 DOI: 10.1099/jmm.0.042424-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are increasingly important opportunistic pathogens responsible for a variety of clinical diseases. The aim of this study was to evaluate a novel technique, real-time PCR coupled with high-resolution melting analysis (real-time PCR-HRMA), for NTM identification. Two pairs of unique primers targeted to the 16S rRNA gene and the 16S-23S internal transcribed spacer region were selected for further evaluation. A total of 149 mycobacterial clinical isolates were subjected to analysis using the real-time PCR-HRMA system. Overall, 134 NTM identified by the 16S rRNA full-gene sequencing method were categorized into four major groups: Mycobacterium avium complex, Mycobacterium chelonae group, Mycobacterium gordonae and Mycobacterium fortuitum group. Of the 134 prevalent mycobacterial isolates, 101 mycobacteria (75.4 %) could be identified correctly by the real-time PCR-HRMA system. The individual sensitivities for the M. avium complex, M. chelonae group, M. gordonae and M. fortuitum groups were 90.9, 89.1, 100 and 36.8 %, respectively. The specificity of identifying these groups varied from 96.4 to 100 %. When identification failed, mostly it was attributable to various species in the M. fortuitum group. The real-time PCR-HRMA system is therefore a rapid and sensitive method for identifying prevalent NTM in a clinical laboratory.
Collapse
Affiliation(s)
- Cherng-Lih Perng
- Graduate Institute of Pathology, National Defense Medical Center, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsing-Yu Chen
- Department of Clinical Pathology, Taipei City Hospital Renai Branch, Taipei, Taiwan, ROC
| | - Tzong-Shi Chiueh
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wei-Yao Wang
- Division of Infectious Disease, Fong-Yuan Hospital, Taichung, Taiwan, ROC.,Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chun-Ting Huang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| | - Jun-Ren Sun
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.,Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
18
|
Performance of the MGIT TBc identification test and meta-analysis of MPT64 assays for identification of the Mycobacterium tuberculosis complex in liquid culture. J Clin Microbiol 2011; 49:4343-6. [PMID: 21998426 DOI: 10.1128/jcm.05995-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid MPT64-based immunochromatographic tests (MPT64 ICTs) have been developed to detect Mycobacterium tuberculosis complex (MTBC) in culture. We demonstrated the noninferiority of one commercial MTP64 ICT, the MGIT TBc identification (TBcID) test, to GenoType line probe assays for MTBC identification in positive MGIT cultures. Meta-analysis of MPT64 ICT performance for identification of MTBC in liquid culture confirmed similar very high sensitivities and specificities for all three commercial MPT64 assays for which sufficient data were available.
Collapse
|