1
|
Abdelraheem WM, Ismail DE, Hammad SS. Prevalence of bla OXA-48 and other carbapenemase encoding genes among carbapenem-resistant Pseudomonas aeruginosa clinical isolates in Egypt. BMC Infect Dis 2024; 24:1278. [PMID: 39528967 PMCID: PMC11556172 DOI: 10.1186/s12879-024-10123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Resistance to carbapenem, the last line of treatment for gram-negative bacterial infections has been increasing globally and becoming a public health threat. Since integrons may aid in the transmission of resistance genes, the purpose of this study was to detect the frequency of class 1, 2, and 3 integrons as well as carbapenem-resistant genes in clinical isolates of P. aeruginosa that are resistant to carbapenem. METHODS This study was carried out on 97 clinical isolates of P. aeruginosa isolated from wound and urine samples. The antimicrobial susceptibility for all isolates was tested by the disc diffusion method. The presence of integrons and carbapenem-resistant genes among carbapenem-resistant P. aeruginosa isolates was evaluated by conventional PCR. RESULTS The antimicrobial resistance rate among P. aeruginosa clinical isolates was high, with imipenem resistance in 58.8% of the studied isolates. In this study, 86% of the carbapenem-resistant P. aeruginosa isolates carry carbapenemase genes, with blaVIM being the most common gene followed by the blaOXA-48 gene. Class 1 and class 2 integrons were reported in 37 (64.9%) and 10 (17.5%) of the tested carbapenem-resistant P. aeruginosa isolates, respectively. CONCLUSION Our data reported a high prevalence of class 1 integrons in carbapenem-resistant P. aeruginosa clinical isolates, suggesting the important role of integrons in carbapenem-resistant gene transfer among such isolates.
Collapse
Affiliation(s)
- Wedad M Abdelraheem
- Medical Microbiology and Immunology department, Faculty of Medicine, Minia University, Minia, Egypt.
| | - Doaa Elzaeem Ismail
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Safaa S Hammad
- Medical Microbiology and Immunology department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Yu G, Huang TY, Li Y. Kanamycin promotes biofilm viability of MRSA strains showing extremely high resistance to kanamycin. Microb Pathog 2024; 196:106986. [PMID: 39353484 DOI: 10.1016/j.micpath.2024.106986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/20/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is widely distributed in environment and can cause various human infection and food poisoning cases. Also, this pathogen is a typical biofilm former, which further complicates its pathogenicity. Antibiotics have been widely used to eliminate pathogenic bacteria, but their indiscriminate use has also led to the widespread emergence of drug-resistant bacteria, such as Methicillin-Resistant Staphylococcus aureus (MRSA). In this study, the effect of antibiotics on biofilm formation of MRSA strains 875 and 184 was explored. Firstly, MRSA 875 belongs to SCCmec type IV, ST239, carrying the atl, icaA, icaD, icaBC, and aap genes, and MRSA 184 belongs to SCCmec type II, ST5, carrying the atl, icaD, icaBC, aap, and agr genes. Then, a total of 8 antibiotics have been selected, including kanamycin, gentamycin, cipprofloxacin, erythromycin, meropenem, penicillin G, tetracycline, vancomycin. Minimum inhibitory concentrations (MICs) of each antibiotic were determined, and MIC of MRSA 875 and 184 to kanamycin/gentamicin are 2048/64 μg/mL and 2048/4 μg/mL, respectively. A total of 10 concentrations, ranging from 1/128 to 4 MIC with 2-fold, were used to study biofilm formation. Biofilm biomass and viability were determined during different phases, including initial adhesion (8 h), proliferation (16 h), accumulation (24 h) and maturation (48 h). Importantly, kanamycin at specific concentrations showed significant promotion of biofilm biomass and biofilm viability, with none of such observation acquired from other antibiotics. This study provides scientific basis and new research ideas for the quality control technology of microorganisms and safety prevention of MRSA.
Collapse
Affiliation(s)
- Guangchao Yu
- Center of Clinical Laboratory Medicine, First Affiliated Hospital of Jinan University, Guangzhou, China; Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China.
| | - Yu Li
- Department of Pathology, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
3
|
Sultan AM, Mahmoud NM. Detection of resistance integrons among biofilm and non-biofilm producing clinical isolates of Pseudomonas aeruginosa. Germs 2024; 14:11-19. [PMID: 39169973 PMCID: PMC11333839 DOI: 10.18683/germs.2024.1413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 08/23/2024]
Abstract
Introduction Integrons are genetic systems that may confer antibiotic resistance to Pseudomonas aeruginosa. Biofilm formation can facilitate gene exchange and can accelerate the development of antibiotic resistance. The aim of this work was to assess the distribution of resistance integrons including class 1, 2 and 3 among biofilm- and non-biofilm producing clinical strains of P. aeruginosa. We also aimed to investigate the relationship between the existence of these integrons and the isolates' resistance patterns. Methods Specimens were obtained from patients showing evidence of infection. P. aeruginosa isolates were identified using conventional techniques, while disk diffusion test was used to detect their antimicrobial susceptibilities. Biofilm formation was detected by the tissue culture plate technique, while classes of integrons were detected by polymerase chain reaction. Results Out of 106 P. aeruginosa isolates, 55.7% were class 1 integron-positive while 19.8% were class 2 integron-positive. However, class 3 integrons were not detected. Significant associations were found between class 1 integrons and resistance toward amikacin, gentamicin, cefepime, ceftazidime and ciprofloxacin. Class 2 integrons were associated with amikacin, ceftazidime and cefepime resistance. Of pseudomonal isolates, 61.3% were biofilm producing. Biofilm production was associated significantly with the existence of class 1 integrons (p<0.001) and class 2 integrons (p=0.039). Conclusions About two thirds of isolated strains harbored resistance integrons, which emphasized their significance in our locality. The frequencies of class 1 and 2 integrons were significantly higher among biofilm forming isolates. Ongoing surveillance and infection control strategies are necessary to limit spread of integrons.
Collapse
Affiliation(s)
- Amira M. Sultan
- MD, Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, 35516 Elgomhouria S, Mansoura, Egypt
| | - Noha Mostafa Mahmoud
- MD, Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, 35516 Elgomhouria S, Mansoura, Egypt, and Medical Microbiology and Immunology Department, Faculty of Medicine, Horus University, New Damietta, Egypt
| |
Collapse
|
4
|
Salem M, Younis G, Sadat A, Nouh NAT, Binjawhar DN, Abdel-Daim MM, Elbadawy M, Awad A. Dissemination of mcr-1 and β-lactamase genes among Pseudomonas aeruginosa: molecular characterization of MDR strains in broiler chicks and dead-in-shell chicks infections. Ann Clin Microbiol Antimicrob 2024; 23:9. [PMID: 38281970 PMCID: PMC10823725 DOI: 10.1186/s12941-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) is one of the most serious pathogens implicated in antimicrobial resistance, and it has been identified as an ESKAPE along with other extremely significant multidrug resistance pathogens. The present study was carried out to explore prevalence, antibiotic susceptibility phenotypes, virulence-associated genes, integron (int1), colistin (mcr-1), and β-lactamase resistance' genes (ESBls), as well as biofilm profiling of P. aeruginosa isolated from broiler chicks and dead in-shell chicks. DESIGN A total of 300 samples from broiler chicks (n = 200) and dead in-shell chicks (n = 100) collected from different farms and hatcheries located at Mansoura, Dakahlia Governorate, Egypt were included in this study. Bacteriological examination was performed by cultivation of the samples on the surface of both Cetrimide and MacConkey's agar. Presumptive colonies were then subjected to biochemical tests and Polymerase Chain Reaction (PCR) targeting 16S rRNA. The recovered isolates were tested for the presence of three selected virulence-associated genes (lasB, toxA, and exoS). Furthermore, the retrieved isolates were subjected to phenotypic antimicrobial susceptibility testing by Kirby-Bauer disc diffusion method as well as phenotypic detection of ESBLs by both Double Disc Synergy Test (DDST) and the Phenotypic Confirmatory Disc Diffusion Test (PCDDT). P. aeruginosa isolates were then tested for the presence of antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, OXA-2, VEB-1, SHV, TEM, and CTX-M). Additionally, biofilm production was examined by the Tube Adherent method (TA) and Microtiter Plate assay (MTP). RESULTS Fifty -five isolates were confirmed to be P. aeruginosa, including 35 isolates from broiler chicks and 20 isolates from dead in-shell chicks. The three tested virulence genes (lasB, toxA, and exoS) were detected in all isolates. Antibiogram results showed complete resistance against penicillin, amoxicillin, ceftriaxone, ceftazidime, streptomycin, erythromycin, spectinomycin, and doxycycline, while a higher sensitivity was observed against meropenem, imipenem, colistin sulfate, ciprofloxacin, and gentamicin. ESBL production was confirmed in 12 (21.8%) and 15 (27.3%) isolates by DDST and PCDDT, respectively. Antibiotic resistance genes (ARGs): int1, mcr-1, and ESBL genes (OXA-10, SHV, TEM, and CTX-M), were detected in 87.3%, 18.2%, 16.4%, 69.1%, 72.7%, and 54.5% of the examined isolates respectively, whereas no isolate harbored the OXA-2 or VEB-1 genes. Based on the results of both methods used for detection of biofilm formation, Kappa statistics [kappa 0.324] revealed a poor agreement between both methods. CONCLUSIONS the emergence of mcr-1 and its coexistence with other resistance genes such as β-lactamase genes, particularly blaOXA-10, for the first time in P. aeruginosa from young broiler chicks and dead in-shell chicks in Egypt pose a risk not only to the poultry industry but also to public health.
Collapse
Affiliation(s)
- Mona Salem
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gamal Younis
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa Sadat
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nehal Ahmed Talaat Nouh
- Program Medicine, Department of Microbiology, Batterjee Medical College, 21442, Jeddah, Saudi Arabia
- Inpatient Pharmacy, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, 21442, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Elbadawy
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Elqaliobiya, Egypt
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Amal Awad
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 2023; 14:1231938. [PMID: 37720149 PMCID: PMC10500605 DOI: 10.3389/fmicb.2023.1231938] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Hafsa Qadri
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rohan Dhiman
- Department of Life Sciences, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
6
|
Ramatla T, Mileng K, Ndou R, Tawana M, Mofokeng L, Syakalima M, Lekota KE, Thekisoe O. Campylobacter jejuni from Slaughter Age Broiler Chickens: Genetic Characterization, Virulence, and Antimicrobial Resistance Genes. Int J Microbiol 2022; 2022:1713213. [PMID: 35634271 PMCID: PMC9135541 DOI: 10.1155/2022/1713213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni is a major cause of food-borne human gastroenteritis worldwide and is designated as a high priority antimicrobial-resistant pathogen by the World Health Organization (WHO). In this study, a total of 26 C. jejuni isolates from broiler chickens were screened for the presence of virulence and antimicrobial resistance genes by PCR. As a result, the study detected 11/26 (42.3%), 9/26 (34.6%), 8/26 (30.8%), 7/26 (26.9%), 6/26 (23.1%), and 6/26 (23.1%) of cdtC, pldA, cdtB, cdtA, cadF, and ciaB virulence genes, respectively, with seven of the isolates carrying more than two virulence genes. The majority of the isolates n = 25 (96.1%) were resistant to nalidixic acid, followed by n = 21 (80.7%), n = 22 (84.6%), and n = 5 (19.2%) for tetracycline, erythromycin, and ciprofloxacin, respectively. Most isolates were harboring catI (n = 16; 84.2%), catII (n = 15; 78.9%), catIII (n = 10; 52.6%), catIV (n = 2; 10.5%), floR (n = 10; 52.6%), ermB (n = 14; 73.7%), tetO (n = 13; 68.4%), tetA (n = 9; 47.4%), mcr-4 (n = 8; 42.1%), and ampC (n = 2; 10.5%). Meanwhile, mcr-1, mcr-2, mcr-3, mcr-5, tet(X), tet(P), and tet(W) genes were not detected in all isolates. Class I and Class II integrons were detected in 92.3% (n = 24) and 65.4% (n = 17) isolates, respectively. About 31% (8 of the 26 isolates) isolates were carrying more than two resistance genes. According to our knowledge, this is the first study to detect class II integrons in Campylobacter spp. (C. jejuni). The high prevalence of cdtA, cdtB, cdtC, cadF, pldA, and ciaB genes and antibiotic resistance genes in C. jejuni in this study indicates the pathogenic potential of these isolates. Majority of the isolates demonstrated resistance to nalidixic acid, tetracycline (tet), and erythromycin (ermB), which are the drugs of choice for treating Campylobacter infections. Therefore, these findings highlight the importance of implementing an efficient strategy to control Campylobacter in chickens and to reduce antimicrobial use in the poultry industry, which will help to prevent the spread of infections to humans.
Collapse
Affiliation(s)
- Tsepo Ramatla
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Kealeboga Mileng
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Rendani Ndou
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Mpho Tawana
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Lehlohonolo Mofokeng
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Michelo Syakalima
- Department of Animal Health, School of Agriculture, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- University of Zambia, School of Veterinary Medicine, Department of Disease Control, P.O. Box 32379, Lusaka, Zambia
| | - Kgaugelo E. Lekota
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2531, South Africa
| |
Collapse
|
7
|
Abd-Elmonsef MME, Maxwell SY. Class 1, 2 and 3 integrons in clinical Pseudomonas aeruginosa isolated from Tanta University Hospitals, Egypt. J Chemother 2022; 34:241-246. [PMID: 35100950 DOI: 10.1080/1120009x.2022.2031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa has become a significant health threat, as it has developed resistance to multiple antimicrobial drugs. In this study, we aimed to identify class 1, 2 and 3 integrons in clinical P. aeruginosa isolates for the first time in Egypt, and detect their relationship with antibiotic resistance. A total of 192 clinical P. aeruginosa isolates were gathered from Tanta University Hospitals. One hundred and thirteen isolates (58.9%) were multidrug- resistant, and 38 isolates (19.8%) were resistant to all drugs tested. Class 1 integrons were detected in 87 isolates (45.3%), while class 2 and 3 integrons were not detected. This is the first report of a profile of integrons in P. aeruginosa from Egypt. The detection of only class 1 integrons in our isolates suggests that other genetic elements may be responsible for the distribution of antibiotic resistance in our setting. Aztreonam and colistin were the drugs of choice for the treatment of infections with P. aeruginosa.
Collapse
Affiliation(s)
| | - Sara Youssef Maxwell
- Medical Microbiology & Immunology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Antimicrobial Susceptibility Profiles among Pseudomonas aeruginosa Isolated from Professional SCUBA Divers with Otitis Externa, Swimming Pools and the Ocean at a Diving Operation in South Africa. Pathogens 2022; 11:pathogens11010091. [PMID: 35056039 PMCID: PMC8777857 DOI: 10.3390/pathogens11010091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby–Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim–sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included blaAmpC (86.9%) followed by blaTEM (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced.
Collapse
|
9
|
Li X, Gu N, Huang TY, Zhong F, Peng G. Pseudomonas aeruginosa: A typical biofilm forming pathogen and an emerging but underestimated pathogen in food processing. Front Microbiol 2022; 13:1114199. [PMID: 36762094 PMCID: PMC9905436 DOI: 10.3389/fmicb.2022.1114199] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/30/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.
Collapse
Affiliation(s)
- Xuejie Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Nixuan Gu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Teng Yi Huang
- Department of Diagnostics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Feifeng Zhong
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Gongyong Peng, ✉
| |
Collapse
|
10
|
Yalda M, Sadat TZ, Elham RMN, Mohammad TS, Neda M, Mohammad M. Distribution of Class 1-3 Integrons in Carbapenem-Resistant Pseudomonas aeruginosa Isolated from Inpatients in Shiraz, South of Iran. Ethiop J Health Sci 2021; 31:719-724. [PMID: 34703170 PMCID: PMC8512929 DOI: 10.4314/ejhs.v31i4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 11/29/2022] Open
Abstract
Background Health-care-associated infection (HAI) is effect on patients for the time of staying in the hospital. Opportunistic pathogens including Pseudomonas aeruginosa are the most dangerous biological agents in nosocomial infections. This study aimed to assess the prevalence of 3 classes of integrons carrying to carbapenem resistance in P. aeruginosa strains collected from Nemazee hospital. Methods This cross-sectional study was conducted on clinical P. aeruginosa isolates were collected from Nemazee hospital. The identification of the isolates was performed by routine biochemical tests. Antimicrobial sensitivity testing was determined using the disk diffusion method against imipenem and meropenem. The int1, int2 and int3 genes were detected using the polymerase chain reaction (PCR). Results Seventy-five clinical isolates of P. aeruginosa were recovered from various clinical infections. A carbapenem-resistant phenotype was detected in 42.7% (imipenem) and 29.3% (meropenem) of isolates. As the PCR results, 48 (64%) and 15 (20%) isolates were identified as being positive for class 1 and class 2 integrons, respectively. Class 3 integrons were not found among the studied isolates. Conclusions Our data demonstrate the importance of class 1 and 2 integrons in carbapenem resistant P. aeruginosa strains. Therefore, integrons play an important role in acquisition and dissemination of carbapenem resistance genes among these pathogens, so, management of infection control policies and the appropriate use of antibiotics is essential for control the spreading of antibiotics resistance genes.
Collapse
Affiliation(s)
- Malekzadegan Yalda
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tabatabaei Zahra Sadat
- Student research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Mohagheghzadeh Neda
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motamedifar Mohammad
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Xu Z, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Liu J. Significant downtrend of antimicrobial resistance rate and rare β-lactamase genes and plasmid replicons carriage in clinical Pseudomonas aeruginosa in Southern China. Microb Pathog 2021; 159:105124. [PMID: 34364978 DOI: 10.1016/j.micpath.2021.105124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Pseudomonas aeruginosa is a medically important pathogen showing intrinsic low permeability to various antimicrobial agents and its potential to acquire multiple resistance mechanism. A longitudinal surveillance aimed to investigate the antimicrobial resistance and its determinants of Pseudomonas aeruginosa in Southern China. A total of 2163 P. aeruginosa isolates were obtained from patients in Southern China during 2004-2016. METHODS The antimicrobial susceptibility of the isolates was performed by disk diffusion and Vitek 2 automated system and interpreted according to the Clinical and Laboratory Standard Institute (CLSI) 2015. RESULTS A significant downtrend of resistant rate (>10.0%) was observed for tested antibiotic agents including ciprofloxacin (>30.0%), gentamicin (29.0%), tobramycin (24.2%) and ceftazidime (24.0%) except for aztreonam and amikacin. A total of 269 randomly selected isolates were further studied on the carriage of β-lactam resistance genes by using 7 groups of multiplex PCRs targeting on 20 genes. β-lactam resistance genes were rarely detected with a rate lower than 8%. Among all β-lactam resistance genes, blaSHV acquired the highest identification rate (18/269, 6.7%), followed by blaOXA-1-like (6/269, 2.2%) and blaPER (6/269, 2.2%). In addition, 8 different plasmid replicons were amplified using 8 groups of multiplex PCRs including 18 sets of primers. Only five plasmid replicons were identified in 5 different P. aeruginosa isolates. Insignificant clonal relatedness among the positive strains identified by regular PCR were further verified by randomly amplified polymorphic DNA (RAPD)-PCR. CONCLUSION This study has provided comprehensive knowledge on current antimicrobial resistance, β-lactam resistance genes and plasmid replicons carriage in a large scale of clinical P. aeruginosa isolates.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China; Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38103, USA; Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand; Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Lan H, Wang H, Gao M, Luo G, Zhang J, Yi E, Liang C, Xiong X, Chen X, Wu Q, Chen R, Lin B, Qian D, Hong W. Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9984112. [PMID: 34337069 PMCID: PMC8315844 DOI: 10.1155/2021/9984112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Baicalin is an extract from the traditional Chinese herb Scutellaria baicalensis and has the potential to treat osteosarcoma (OS). However, the transcriptome-level mechanism of baicalin-mediated antitumor effects in OS has not yet been investigated. The aim of this study was to analyze the competitive endogenous RNA (ceRNA) regulatory network involved in baicalin-induced apoptosis of OS cells. METHODS In this study, CCK-8 and flow cytometry assays were used to detect the antitumor effects of baicalin on human OS MG63 cells. Furthermore, transcriptome sequencing was employed to establish the long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA profiles. RESULTS Baicalin inhibited MG63 cell proliferation and induced apoptosis. Totals of 58 lncRNAs, 31 miRNAs, and 2136 mRNAs in the baicalin-treated MG63 cells were identified as differentially expressed RNAs compared to those in control cells. Of these, 2 lncRNAs, 3 miRNAs, and 18 mRNAs were included in the ceRNA regulatory network. The differentially expressed RNAs were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSIONS By identifying the ceRNA network, our results provide new information about the possible molecular basis of baicalin, which has potential applications in OS treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyan Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guan Luo
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruikun Chen
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
13
|
Zhou W, Gao M, Liang C, Lin B, Wu Q, Chen R, Xiong X, Chen X, Wang S, Wu L, Wu Y, Li H, Fu X, Hong W. Systematic Understanding of the Mechanism of Baicalin against Gastric Cancer Using Transcriptome Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5521058. [PMID: 34337018 PMCID: PMC8315853 DOI: 10.1155/2021/5521058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Gastric cancer (GC) is the most common type of cancer. It is highly malignant and is characterized by rapid and uncontrolled growth. The antitumour activity of Baicalin was studied in multiple cancers. However, its mechanism of action has not been fully elucidated. We provided a systematic understanding of the mechanism of action of baicalin against GC using a transcriptome analysis of RNA-seq. METHODS Human GC cells (SGC-7901) were exposed to 200 μg/ml baicalin for 24 h. RNA-seq with a transcriptome, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to identify the antitumour effects of baicalin on SGC-7901 cells in vitro. A protein-protein interaction (PPI) network of differentially expressed genes (DEGs) was constructed. A competitive endogenous RNA (ceRNA) network was constructed and further analysed after validation using qRT-PCR. RESULTS A total of 68 lncRNAs, 20 miRNAs, and 1648 mRNAs were differentially expressed in baicalin-treated SGC-7901 GC cells. Three lncRNAs, 6 miRNAs, and 7 mRNAs were included in the ceRNA regulatory network. GO analysis revealed that the main DEGs were involved in the biological processes of the cell cycle and cell death. KEGG pathway analysis further suggested that the p53 signalling pathway was involved in the baicalin-induced antitumour effect on SGC-7901 cells. Further confirmation using qPCR indicated that baicalin induced an antitumour effect on SGC-7901 cells, which is consistent with the results of the sequencing data. CONCLUSIONS In summary, the mechanism of baicalin against GC involves multiple targets and signalling pathways. These results provide new insight into the antitumour mechanism of baicalin and help the development of new strategies to cure GC.
Collapse
Affiliation(s)
- Wenqu Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Guangdong, China
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Ruikun Chen
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shijie Wang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liting Wu
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Yiling Wu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiqing Li
- The Third Clinical School of Guangzhou Medical University, Guangzhou Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Rodríguez C, Cassini MH, Delgado GDV, Ramírez MS, Centrón D. Analysis of class 2 integrons as a marker for multidrug resistance among Gram negative bacilli. AIMS GENETICS 2021. [DOI: 10.3934/genet.2016.4.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractClass 1 and 2 integrons are considered the paradigm of multidrug resistant (MDR) integrons. Although class 1 integrons have been found statistically associated to Enterobacteriaceae MDR isolates, this type of study has not been conducted for class 2 integrons. Escherichia coli and 3 species that were found that harbored more than 20% of class 2 integrons in clinical isolates, were selected to determine the role of intI2 as MDR marker. A total of 234 MDR/191 susceptible non-epidemiologically related isolates were analyzed. Seventy-four intI2 genes were found by PCR and sequencing. An intI2 relationship with MDR phenotypes in Acinetobacter baumannii and Enterobacter cloacae was found. No statistical association was identified with MDR E. coli and Helicobacter pylori isolates. In other words, the likelihood of finding intI2 is the same in susceptible and in MDR E. coli and H. pylori strains, suggesting a particular affinity between the mobile element Tn7 and some species. The use of intI2 as MDR marker was species-dependent, with fluctuating epidemiology at geographical and temporal gradients. The use of intI2 as MDR marker is advisable in A. baumannii, a species that can reach high frequencies of this genetic element.
Collapse
Affiliation(s)
- Cecilia Rodríguez
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Marcelo H. Cassini
- Grupo GEMA, DCB, Universidad Nacional de Luján, Buenos Aires, Argentina y Laboratorio de Biología del Comportamiento, IBYME, Buenos Aires, Argentina
| | | | - María S. Ramírez
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
- Center for Applied Biotechnology Studies, Department of Biological Science, California State University Fullerton, Fullerton, California
| | - D Centrón
- Instituto de Microbiología y Parasitología Médica, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Buenos Aires, Argentina
| | | |
Collapse
|
15
|
Zhong H, Deng H, Li M, Zhong H. Bioprocessing and integration of a high flux screening systematic platform based on isothermal amplification for the detection on 8 common pathogens. Bioprocess Biosyst Eng 2021; 44:977-984. [PMID: 32862325 PMCID: PMC8096746 DOI: 10.1007/s00449-020-02423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
Abstract
During a large variety of common pathogens, E. coli, P. aeruginosa, MRSA, MRCNS, V. parahaemolyticus, L. monocytogenes and Salmonella are the leading pathogens responsible for large number of human infections and diseases. In this study, a high flux screening based on nucleic acid isothermal amplification technique has been developed. For the 8 common pathogens, species-specific targets had been selected and analyzed for their unique specificity. After optimization, separate LAMP reaction assays had been bioprocessed and integrated into one systematic detection platform, including 8 strips (PCR tubes) and 96-well plates. Eight standard strains verified for the accuracy. Application of the established high flux screening platform was used for detection for 48 samples in 4 different 96-well plates, with 2 groups of 2 operators using double-blind procedure. The accuracy of 100% was obtained, with the total time consumption as 66-75 min (for 12 samples detection on 8 different pathogens). As concluded, through the bioprocess of the systematic platform based on LAMP technique, it's been demonstrated to be capable of simultaneous detection of 8 pathogens, with high sensitivity, specificity, rapidity and convenience.
Collapse
Affiliation(s)
- Huamin Zhong
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Hongwei Deng
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Ming Li
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China
| | - Huahong Zhong
- Shenzhen Key Laboratory of Ophthalmology, Ocular Trauma Treatment and Stem Cell Differentiation Public Service Platform of Shenzhen, Shenzhen Eye Hospital, Shenzhen, 518040, China.
| |
Collapse
|
16
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Huang TY, Zhang L, Liu J. "One-step" characterization platform for pathogenic genetics of Staphylococcus aureus. Bioprocess Biosyst Eng 2021; 44:985-994. [PMID: 33112989 DOI: 10.1007/s00449-020-02449-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/14/2020] [Indexed: 02/05/2023]
Abstract
Staphylococcus aureus (S. aureus) is an important human pathogen causing a variety of life-threatening diseases. In recent years, the health problem caused by S. aureus contaminated food has become a global health problem. S. aureus can express various pathogenic factors, mainly used for adhesion, colonization, invasion and infection of the host. Therefore, rapid and accurate detection of virulence genes in S. aureus is necessary to prevent outbreaks caused by this pathogen. PCR is a useful tool for rapid detection of foodborne pathogens. The objective of this study was to detect the presence of major toxin genes in S. aureus, including sea, seb, sec, see, pvl and tsst, by using a PCR plate. Of the 13 strains tested, 12 (92.3%) were found to be positive for one or more toxin genes. This study realized the one-step detection of main toxin factors in S. aureus.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, 525427, Guangdong, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Subedi D, Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom 2021; 101:162-171. [DOI: 10.1111/cxo.12621] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dinesh Subedi
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Ajay Kumar Vijay
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| | - Mark Willcox
- School of Optometry and Vision Science, Faculty of Science, The University of New South Wales, Sydney, New South Wales, Australia,
| |
Collapse
|
18
|
Jiang H, Wang K, Yan M, Ye Q, Lin X, Chen L, Ye Y, Zhang L, Liu J, Huang T. Pathogenic and Virulence Factor Detection on Viable but Non-culturable Methicillin-Resistant Staphylococcus aureus. Front Microbiol 2021; 12:630053. [PMID: 33841357 PMCID: PMC8027501 DOI: 10.3389/fmicb.2021.630053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/04/2021] [Indexed: 02/05/2023] Open
Abstract
Food safety and foodborne infections and diseases have been a leading hotspot in public health, and methicillin-resistant Staphylococcus aureus (MRSA) has been recently documented to be an important foodborne pathogen, in addition to its recognition to be a leading clinical pathogen for some decades. Standard identification for MRSA has been commonly performed in both clinical settings and food routine detection; however, most of such so-called "standards," "guidelines," or "gold standards" are incapable of detecting viable but non-culturable (VBNC) cells. In this study, two major types of staphylococcal food poisoning (SFP), staphylococcal enterotoxins A (sea) and staphylococcal enterotoxins B (seb), as well as the panton-valentine leucocidin (pvl) genes, were selected to develop a cross-priming amplification (CPA) method. Limit of detection (LOD) of CPA for sea, seb, and pvl was 75, 107.5, and 85 ng/μl, indicating that the analytical sensitivity of CPA is significantly higher than that of conventional PCR. In addition, a rapid VBNC cells detection method, designated as PMA-CPA, was developed and further applied. PMA-CPA showed significant advantages when compared with PCR assays, in terms of rapidity, sensitivity, specificity, and accuracy. Compared with conventional VBNC confirmation methods, the PMA-CPA showed 100% accordance, which had demonstrated that the PMA-CPA assays were capable of detecting different toxins in MRSA in VBNC state. In conclusion, three CPA assays were developed on three important toxins for MRSA, and in combination with PMA, the PMA-CPA assay was capable of detecting virulent gene expression in MRSA in the VBNC state. Also, the above assays were further applied to real samples. As concluded, the PMA-CPA assay developed in this study was capable of detecting MRSA toxins in the VBNC state, representing first time the detection of toxins in the VBNC state.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muxia Yan
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qian Ye
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Lin
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Li Zhang
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
19
|
Guan Y, Wang K, Zeng Y, Ye Y, Chen L, Huang T. Development of a Direct and Rapid Detection Method for Viable but Non-culturable State of Pediococcus acidilactici. Front Microbiol 2021; 12:687691. [PMID: 34276618 PMCID: PMC8283312 DOI: 10.3389/fmicb.2021.687691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Pediococcus acidilactici may significantly reduce the pH-value, and thus has different influence, including serving as a probiotic in human microbiota but a spoilage in human food as it could change the flavor. Pediococcus acidilactici is also capable of entering into the viable but non-culturable (VBNC) state causing false negative results of standard culture-based detection method. Thus, development of detection method for VBNC state P. acidilactici is of great significance. In this study, propidium monoazide (PMA) combined with cross priming amplification (CPA) was developed to detect the VBNC cells of P. acidilactici and applied on the detection in different systems. With detection limit of 104 cells/ml, high sensitivity, and 100% specificity, PMA-CPA can successfully detect VBNC cells of P. acidilactici and be applied in with high robustness.
Collapse
Affiliation(s)
- Yu Guan
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yu Guan
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yang Zeng
- Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang
| |
Collapse
|
20
|
Ou A, Wang K, Ye Y, Chen L, Gong X, Qian L, Liu J. Direct Detection of Viable but Non-culturable (VBNC) Salmonella in Real Food System by a Rapid and Accurate PMA-CPA Technique. Front Microbiol 2021; 12:634555. [PMID: 33679667 PMCID: PMC7930388 DOI: 10.3389/fmicb.2021.634555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/19/2021] [Indexed: 02/05/2023] Open
Abstract
Salmonella enterica is a typical foodborne pathogen with multiple toxic effects, including invasiveness, endotoxins, and enterotoxins. Viable but nonculturable (VBNC) is a type of dormant form preserving the vitality of microorganisms, but it cannot be cultured by traditional laboratory techniques. The aim of this study is to develop a propidium monoazide-crossing priming amplification (PMA-CPA) method that can successfully detect S. enterica rapidly with high sensitivity and can identify VBNC cells in food samples. Five primers (4s, 5a, 2a/1s, 2a, and 3a) were specially designed for recognizing the specific invA gene. The specificity of the CPA assay was tested by 20 different bacterial strains, including 2 standard S. enterica and 18 non-S. enterica bacteria strains covering Gram-negative and Gram-positive isolates. Except for the two standard S. enterica ATCC14028 and ATCC29629, all strains showed negative results. Moreover, PMA-CPA can detect the VBNC cells both in pure culture and three types of food samples with significant color change. In conclusion, the PMA-CPA assay was successfully applied on detecting S. enterica in VBNC state from food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lu Qian
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- Lu Qian,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, College Park, MD, United States
- *Correspondence: Junyan Liu,
| |
Collapse
|
21
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Yuan L, Bai C, Chen L, Wang K, Liu J. Study on the Viable but Non-culturable (VBNC) State Formation of Staphylococcus aureus and Its Control in Food System. Front Microbiol 2020; 11:599739. [PMID: 33324380 PMCID: PMC7726111 DOI: 10.3389/fmicb.2020.599739] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 02/05/2023] Open
Abstract
A Viable but non-culturable (VBNC) state is a bacterial survival strategy under reverse conditions. It poses a significant challenge for public health and food safety. In this study, the effect of external environmental conditions including acid, nutrition, and salt concentrations on the formation of S. aureus VBNC states at low temperatures were investigated. Different acidity and nutritional conditions were then applied to food products to control the VBNC state formation. Four different concentration levels of each factor (acid, nutrition, and salt) were selected in a total of 16 experimental groups. Nutrition showed the highest influence on the VBNC state formation S. aureus, followed by acid and salt. The addition of 1% acetic acid could directly kill S. aureus cells and inhibit the formation of the VBNC state with a nutrition concentration of 25, 50, and 100%. A propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied and considered as a rapid and sensitive method to detect S. aureus in VBNC state with the detection limit of 104 CFU/mL.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Fan Shi
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
| |
Collapse
|
22
|
Chen DQ, Huang T, Wang Q, Bai C, Yang L. Analysis on the virulomes and resistomes of multi-drug resistance clinical Escherichia coli isolates, as well as the interactome with gut microbiome. Microb Pathog 2020; 148:104423. [PMID: 32768515 DOI: 10.1016/j.micpath.2020.104423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023]
Abstract
Escherichia coli is one of the most diverse microbial species. Pathogenic E. coli is capable of causing various diseases in humans, including several types of diarrhea, urinary tract infections, sepsis, and meningitis. This study focused on the antibiotic susceptibility profile and genomic analysis of a clinical E. coli Guangzhou-Eco330 isolated from a hospitalized 8-year-old female patient suffered from pulmonary infection in 2017. Susceptibility to 15 antibiotics were determined using Vitek2™ Automated Susceptibility System and Etest strips and interpreted based on CLSI guidelines. The genome was sequenced using Illumina Hiseq 2500 platform and assembled de novo using Velvet, followed by bioinformatics analysis. The genome has a length of 5,132,642 bp and contains 4989 predicted genes with an average GC content of 50.51%. The carriage of rfbE gene suggested the strain belonging to O157. In the genome, 70 non-coding RNAs, 50 repeat sequences, 18 transposons, 78 GIs, 9 CRISPRs, and 3 large prophages were identified. 37 PHI related genes and 108 virulence genes were determined to contribute to its pathogenicity. Specifically, the acquisition of multiple antibiotic resistance genes including blaCTX-M-55, blaOXA-10, blaCMY-48, tetB, and qnrS1 contributed to its resistance to penicillins, telracyclines, cephalosporin, and quinolones. The understanding of the genome may aid in further study on the clinical control of multi-drug resistance E. coli.
Collapse
Affiliation(s)
- Ding-Qiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| | - Qun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, 510010, China.
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Fu J, Wang K, Ye C, Chen L, Liang Y, Mao Y, Chen J, Peng R, Chen Y, Shi F, Huang TY, Liu J. Study on the virulome and resistome of a vancomycin intermediate-resistance Staphylococcus aureus. Microb Pathog 2020; 145:104187. [PMID: 32275941 DOI: 10.1016/j.micpath.2020.104187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023]
Abstract
Methicillin-resistant S. aureus (MRSA) has been considered a potential "Super Bugs", responsible for various infectious diseases. Vancomycin has been the most effective antibitic to treat MRSA originated infections. In this study, we aimed at investigating the genomic features of a vancomycin intermediate-resistance S. aureus strain Guangzhou-SauVS2 isolated from a female patient suffering from chronic renal function failure, emphasizing on its antimicrobial resistance and virulence determinants. The genome has a total length of 2,605,384 bp and the G+C content of 33.21%, with 2,239 predicted genes annotated with GO terms, COG categories, and KEGG pathways. Besides the carriage of vancomycin b-type resistance protein responsible for the vancomycin intermediate-resistance, S. aureus strain Guangzhou-SauVS2 showed resistance to β-lactams, quinolones, macrolide, and tetracycline, due to the acquisition of corresponding antimicrobial resistance genes. In addition, virulence factors including adherence, antiphagocytosis, iron uptake, and toxin were determined, indicating the pathogenesis of the strain.
Collapse
Affiliation(s)
- Jie Fu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou 515041, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, Guangdong, 525427, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yanni Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Fan Shi
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Shantou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
24
|
Chen W, Chen H, Fu S, Lin X, Zheng Z, Zhang J. Microbiome characterization and re-design by biologic agents for inflammatory bowel disease insights. Bioprocess Biosyst Eng 2020; 44:929-939. [PMID: 32458051 DOI: 10.1007/s00449-020-02380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
Abstract
The therapeutic effect of inflammatory bowel disease has improved in the past decades, but most of patients cannot tolerate, do not respond to drugs, or relapse after treating with conventional therapy. Therefore, new and more effective treatment methods are still needed in treatment of IBD. In this review, we will discuss the relevant mechanisms and the latest research progress of biologics (anti-TNF treatments, interleukin inhibitors, integrin inhibitors, antisense oligonucleotide, and JAK inhibitors) for IBD, focus on the efficacy and safety of drugs for moderate-to-severe IBD, and summarize the clinical status and future development direction of biologics in IBD.
Collapse
Affiliation(s)
- Wenshuo Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Haijin Chen
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China.
| | - Shudan Fu
- Ophthalmology Department, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Xiaohua Lin
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Zheng Zheng
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| | - Jinlong Zhang
- Department of Gastrointestinal Surgery, Zhujiang Hospital, Southern Medical University, GuangZhou, 510280, China
| |
Collapse
|
25
|
Liu M, Ma J, Jia W, Li W. Antimicrobial Resistance and Molecular Characterization of Gene Cassettes from Class 1 Integrons in Pseudomonas aeruginosa Strains. Microb Drug Resist 2020; 26:670-676. [PMID: 32407190 PMCID: PMC7307683 DOI: 10.1089/mdr.2019.0406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We investigated the antibiotic-resistance phenotypes and molecularly characterized class 1 integron gene cassettes from 113 Pseudomonas aeruginosa isolates from patients. Primers specific for the class 1 integron integrase (intI1) gene were used to screen for these integrons using polymerase chain reactions (PCRs). The variable regions of the integrons were PCR-amplified and sequenced. Sputum was the most common specimen (69.9%; 79/113) followed by aseptic sites (21.2%; 24/113). Of the 113 isolates with phenotypic resistance to the tested antimicrobials, the highest resistances were to ciprofloxacin (CIP) (26.55%), imipenem (IPM) (23.89%), and meropenem (MEM) (23%). Carbapenem-sensitive P. aeruginosa (CS-PA) isolates displayed 23 patterns, and the predominant multidrug resistance phenotype was CIP-levofloxacin (7.23%, 6/83). Carbapenem-resistant P. aeruginosa (CR-PA) isolates displayed 12 patterns, and the predominant multidrug resistance phenotype was IPM-MEM (23.33%, 7/30). Class 1 integrons were detected in 14 (12.4%, 14/113) isolates, 7.22% (6/83) in CS-PA isolates, and 26.67% (8/30) in CR-PA isolates. Six gene cassette arrays were detected, the most prevalent being aacA4-blaOXA101-aadA5 in five isolates (4.4%, 5/113). Seventeen gene cassettes were detected. The most prevalent antibiotic-resistance gene cassettes were aacA4 (6.2%, 7/113), blaOXA-1, and blaOXA-101. Extended-spectrum β-lactamase resistance genes were detected. Some of the genes carried were similar to those in other species, but some had shared characteristics among the P. aeruginosa isolates. Long-standing drug resistance genes appeared to be under elimination in P. aeruginosa, whereas integrons conferring resistance to commonly used clinical drugs such as β-lactamases, fluoroquinolones, and even carbapenems, as well as some other gene elements, were found to be newly integrated.
Collapse
Affiliation(s)
- Mi Liu
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Jie Ma
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wei Jia
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| | - Wanxiang Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, Shandong, China
| |
Collapse
|
26
|
Li Y, Qiu Y, Ye C, Chen L, Liang Y, Liu G, Liu J. High-flux simultaneous screening of common foodborne pathogens and their virulent factors. Bioprocess Biosyst Eng 2020; 43:693-700. [PMID: 31863186 DOI: 10.1007/s00449-019-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/30/2019] [Indexed: 02/05/2023]
Abstract
Rapid and sensitive detection techniques for foodborne pathogens are important to the food industry. However, traditional detection methods rely on bacterial culture in combination with biochemical tests, a process that typically takes 4-7 days to complete. In this study, we described a high-flux polymerase chain reaction (PCR) method for simultaneous detection of nine targeted genes (rfbE, stx1, stx2, invA, oprI, tlh, trh, tdh, and hlyA) with multiplex strains. The designed primers were highly specific for their respective target gene fragments. As the selected primers follow the principles of similar melting and annealing temperature, all the targeted genes could be detected for one strain with the same PCR program. Combining with 96-well PCR plate, by adding a single different gene to each well in each row, both the ATCC strains (E. coli, Salmonella spp., V. parahaemolyticus, L. monocytogenes, P. aeruginosa, S. aureus) and the clinical strains (E. coli, P. aeruginosa, S. aureus) were simultaneously detected to carry their specific and virulence genes. Therefore, using 96-well PCR plate for PCR amplification might be applied to high-flux sequencing of specific and virulence genes.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Yisen Qiu
- Department of Spine Surgery, The Second Affiliated Hospital of Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510640, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd, Maoming, 525427, Guangdong, China
| | - Guoxing Liu
- Guangzhou KEO Biotechnology Co. LTD, Guangzhou, Guangdong, China.
| | - Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
27
|
Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y. Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng 2020; 44:953-964. [PMID: 32157446 DOI: 10.1007/s00449-020-02320-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with gut microbiota disturbance. Emerging evidence has shown that gut microbiota plays a major role in the development of PCOS. To better understand how the gut microbiota contributes to the development of PCOS, we investigated the influences of high-fat diet and hyperandrogenism, independently or synergistically, have on the gut microbiota in rats. Furthermore, we explored the associations between gut microbiota and hyperandrogenism or other hallmarks of PCOS. Twenty female SD rats were randomized at aged 3 weeks into 4 groups (n = 5, each); HA: PCOS rats fed with ordinary diet; HF: rats with high-fat diet (HFD); HA-HF: PCOS rats fed with HFD; and C: control rats with ordinary diet. PCOS rat model was induced by 5α-dihydrotestosterone (DHT) injection for 6 weeks. The fasting blood glucose (FBG), plasma insulin, testosterone, free testosterone, TNF-α, MDA, SOD, LPS, TLR4, TG, TC, HDL-C, and LDL-C levels were measured. The molecular ecology of the fecal gut microbiota was analyzed by 16S rDNA high-throughput sequencing. The results showed that rats in the HA and HA-HF group displayed abnormal estrous cycles with increasing androgen level and exhibited multiple large cysts with diminished granulosa layers in ovarian tissues. Compare with the C group, relative abundance of the Bacteroidetes phylum decreased significantly in the other groups (P < 0.05). The Chao1 was the highest in the group C and significantly higher than the HA-HF group (P < 0.05). T, FT, insulin, MDA, LPS, and TNF-α levels had the negative correlation with the richness of community (Chao1 index) in the gut. The rats in the HF and HA-HF groups tended to have lower Shannon and Simpson indices than the C group (P < 0.01, respectively). However, there were no significant differences between C group and the HA group in the Shannon and Simpson values. Beta diversity analysis was then performed based on a weighted UniFrac analysis. The PCoA plots showed a clear separation of the C group from the other groups. ANOSIM analysis of variance confirmed that there were statistically significant separations between the C group and the HA, HA-HF, and HF groups (P < 0.01, respectively). These results showed that DHT with HFD could lower diversity of the gut microbial community. Both HFD and DHT could shift the overall gut microbial composition and change the composition of the microbial community in gut. Furthermore, our analyses demonstrated that the levels of TG, MDA, TNF-α, LPS, TLR4, T, FT, FINS, and HDL-C were correlated with the changes of in the gut microbiome. HFD and DHT were associated with the development and pathology of PCOS by shaping gut microbial communities.
Collapse
Affiliation(s)
- Yanhua Zheng
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingwei Yu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Chengjie Liang
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shuna Li
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Wen
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanmei Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
28
|
Determination Antimicrobial Resistance Profile and Prevalence of Class 1 and 2 Integron Resistance Gene Cassettes in Pseudomonas aeruginosa Strains Isolated from Hospitalized Patients in Markazi Province, Iran. Jundishapur J Microbiol 2020. [DOI: 10.5812/jjm.90209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
29
|
Li Y, Huang TY, Ye C, Chen L, Liang Y, Wang K, Liu J. Formation and Control of the Viable but Non-culturable State of Foodborne Pathogen Escherichia coli O157:H7. Front Microbiol 2020; 11:1202. [PMID: 32612584 PMCID: PMC7308729 DOI: 10.3389/fmicb.2020.01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 02/05/2023] Open
Abstract
As a common foodborne pathogen, Escherichia coli O157:H7 produces toxins causing serious diseases. However, traditional methods failed in detecting E. coli O157:H7 cells in the viable but non-culturable (VBNC) state, which poses a threat to food safety. This study aimed at investigating the formation, control, and detection of the VBNC state of E. coli O157:H7. Three factors including medium, salt, and acid concentrations were selected as a single variation. Orthogonal experiments were designed with three factors and four levels, and 16 experimental schemes were used. The formation of the VBNC state was examined by agar plate counting and LIVE/DEAD® BacLightTM bacterial viability kit with fluorescence microscopy. According to the effects of environmental conditions on the formation of the VBNC state of E. coli O157:H7, the inhibition on VBNC state formation was investigated. In addition, E. coli in the VBNC state in food samples (crystal cake) was detected by propidium monoazide-polymerase chain reaction (PMA-PCR) assays. Acetic acid concentration showed the most impact on VBNC formation of E. coli O157:H7, followed by medium and salt concentration. The addition of 1.0% acetic acid could directly kill E. coli O157:H7 and eliminate its VBNC formation. In crystal cake, 25, 50, or 100% medium with 1.0% acetic acid could inhibit VBNC state formation and kill E. coli O157:H7 within 3 days. The VBNC cell number was reduced by adding 1.0% acetic acid. PMA-PCR assay could be used to detect E. coli VBNC cells in crystal cake with detection limit at 104 CFU/ml. The understanding on the inducing and inhibitory conditions for the VBNC state of E. coli O157:H7 in a typical food system, as well as the development of an efficient VBNC cell detection method might aid in the control of VBNC E. coli O157:H7 cells in the food industry.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Congxiu Ye
- Department of Dermato-Venereology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co. Ltd., Maoming, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- *Correspondence: Junyan Liu,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States
- Kan Wang,
| |
Collapse
|
30
|
Li Y, Huang TY, Mao Y, Chen Y, Shi F, Peng R, Chen J, Bai C, Chen L, Wang K, Liu J. Effect of Environmental Conditions on the Formation of the Viable but Nonculturable State of Pediococcus acidilactici BM-PA17927 and Its Control and Detection in Food System. Front Microbiol 2020; 11:586777. [PMID: 33117324 PMCID: PMC7550757 DOI: 10.3389/fmicb.2020.586777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This study aimed to investigate the effect of environmental conditions including nutrient content, acetic acid concentration, salt concentration, and temperature on the formation of viable but nonculturable (VBNC) state of Pediococcus acidilactici, as well as its control and detection in food system. Methods: Representing various environmental conditions in different food systems, 16 induction groups were designed for the formation of VBNC state of P. acidilactici. Traditional plate counting was applied to measure the culturable cell numbers, and Live/Dead Bacterial Viability Kit combined with fluorescent microscopy was used to identify viable cells numbers. The inhibition of bacterial growth and VBNC state formation by adjusting the environmental conditions were investigated, and the clearance effect of VBNC cells in crystal cake system was studied. In addition, a propidium monoazide-polymerase chain reaction (PMA-PCR) assay was applied to detect the VBNC P. acidilactici cells in crystal cake food system. Results: Among the environmental conditions included in this study, acetic acid concentration had the greatest effect on the formation of VBNC state of P. acidilactici, followed by nutritional conditions and salt concentration. Reducing nutrients in the environment and treating with 1.0% acetic acid can inhibit P. acidilactici from entering the VBNC state. In the crystal cake system, the growth of P. acidilactici and the formation of VBNC state can be inhibited by adding 1.0% acetic acid and storing at -20°C. In crystal cake system, the PMA-PCR assay can be used to detect VBNC P. acidilactici cells at a concentration higher than 104 cells/ml. Conclusion: The VBNC state of P. acidilactici can be influenced by the changing of environmental conditions, and PMA-PCR assay can be applied in food system for the detection of VBNC P. acidilactici cells.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Teng-Yi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yuzhu Mao
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yanni Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Fan Shi
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Ruixin Peng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Jinxuan Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Kan Wang
- Research Center for Translational Medicine, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
- Kan Wang,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- *Correspondence: Junyan Liu,
| |
Collapse
|
31
|
Li Y, Huang T, Bai C, Fu J, Chen L, Liang Y, Wang K, Liu J, Gong X, Liu J. Reduction, Prevention, and Control of Salmonella enterica Viable but Non-culturable Cells in Flour Food. Front Microbiol 2020; 11:1859. [PMID: 32973696 PMCID: PMC7472744 DOI: 10.3389/fmicb.2020.01859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 02/05/2023] Open
Abstract
The processing and storage conditions of flour food inevitably pose environmental stress, which promote bacteria to enter a viable but non-culturable (VBNC) state. The existence of VBNC cells causes false-negative detection in traditional culture-based detection methods, resulting in food quality and safety issues. This study aimed at investigating the influence factors including nutrition, acid, salt, and temperature for the entry into a VBNC state of Salmonella enterica and an efficient detection method. During induction with multi-stress conditions, nutrition starvation antagonizes with low-level acidity. Besides, high-level acidity was considered as an inhibitor for VBNC induction. Four inducers including nutrition starvation, salt stress, low-level acidity, and low temperature were concluded for a VBNC state. In addition, the keynote conditions for S. enterica entering a VBNC state included (i) nutrient-rich acidic environment, (ii) oligotrophic low-acidity environment, and (iii) oligotrophic refrigerated environment. Based on the keynote conditions, the environmental conditions of high acidity (1.0% v/v acetate) with low temperature (-20°C) could successfully eliminate the formation of S. enterica VBNC cells in flour food. In addition, combining with propidium monoazide pretreatment, PCR technology was applied to detect S. enterica VBNC cells. The sensitivity of the PMA-PCR technology was 105 CFU/ml in an artificially simulated food system. The results derived from this study might aid in the detection and control of VBNC state S. enterica in flour food products.
Collapse
Affiliation(s)
- Yanmei Li
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Caiying Bai
- Guangdong Women and Children Hospital, Guangzhou, China
| | - Jie Fu
- Department of Haematology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Chen
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, China
| | - Yi Liang
- Guangdong Zhongqing Font Biochemical Science and Technology Co., Ltd., Maoming, China
| | - Kan Wang
- Research Center of Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jun Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Xiangjun Gong,
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, United States
- Junyan Liu,
| |
Collapse
|
32
|
Ou A, Wang K, Mao Y, Yuan L, Ye Y, Chen L, Zou Y, Huang T. First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Front Microbiol 2020; 11:615875. [PMID: 33488559 PMCID: PMC7817642 DOI: 10.3389/fmicb.2020.615875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 02/05/2023] Open
Abstract
Formation of viable but non-culturable (VBNC) status in methicillin-resistant Staphylococcus aureus (MRSA) has never been reported, and it poses a significant concern for food safety. Thus, this study aimed to firstly develop a rapid, cost-effective, and efficient testing method to detect and differentiate MRSA strains in the VBNC state and further apply this in real food samples. Two targets were selected for detection of MRSA and toxin, and rapid isothermal amplification detection assays were developed based on cross-priming amplification methodology. VBNC formation was performed for MRSA strain in both pure culture and in artificially contaminated samples, then propidium monoazide (PMA) treatment was further conducted. Development, optimization, and evaluation of PMA-crossing priming amplification (CPA) were further performed on detection of MRSA in the VBNC state. Finally, application of PMA-CPA was further applied for detection on MRSA in the VBNC state in contaminated food samples. As concluded in this study, formation of the VBNC state in MRSA strains has been verified, then two PMA-CPA assays have been developed and applied to detect MRSA in the VBNC state from pure culture and food samples.
Collapse
Affiliation(s)
- Aifen Ou
- Department of Food, Guangzhou City Polytechnic, Guangzhou, China
| | - Kan Wang
- Center for Translational Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yanrui Ye
- School of Biological Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ling Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Yimin Zou,
| | - Tengyi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Tengyi Huang,
| |
Collapse
|
33
|
Aruhomukama D, Najjuka CF, Kajumbula H, Okee M, Mboowa G, Sserwadda I, Mayanja R, Joloba ML, Kateete DP. bla VIM- and bla OXA-mediated carbapenem resistance among Acinetobacter baumannii and Pseudomonas aeruginosa isolates from the Mulago hospital intensive care unit in Kampala, Uganda. BMC Infect Dis 2019; 19:853. [PMID: 31619192 PMCID: PMC6794873 DOI: 10.1186/s12879-019-4510-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Between January 2015 and July 2017, we investigated the frequency of carbapenem resistant Acinetobacter baumannii (CRAB) and carbapenem resistant Pseudomonas aeruginosa (CRPA) at the Mulago Hospital intensive care unit (ICU) in Kampala, Uganda. Carbapenemase production and carbapenemase gene carriage among CRAB and CRPA were determined; mobility potential of carbapenemase genes via horizontal gene transfer processes was also studied. Methods Clinical specimens from 9269 patients were processed for isolation of CRAB and CRPA. Drug susceptibility testing was performed with the disk diffusion method. Carriage of carbapenemase genes and class 1 integrons was determined by PCR. Conjugation experiments that involved blaVIM positive CRAB/CRPA (donors) and sodium azide resistant Escherichia coli J53 (recipient) were performed. Results The 9269 specimens processed yielded 1077 and 488 isolates of Acinetobacter baumannii and Pseudomonas aeruginosa, respectively. Of these, 2.7% (29/1077) and 7.4% (36/488) were confirmed to be CRAB and CRPA respectively, but 46 were available for analysis (21 CRAB and 25 CRPA). Majority of specimens yielding CRAB and CRPA were from the ICU (78%) while 20 and 2% were from the ENT (Ear Nose & Throat) Department and the Burns Unit, respectively. Carbapenemase assays performed with the MHT assay showed that 40 and 33% of CRPA and CRAB isolates respectively, were carbapenemase producers. Also, 72 and 48% of CRPA and CRAB isolates respectively, were metallo-beta-lactamase producers. All the carbapenemase producing isolates were multidrug resistant but susceptible to colistin. blaVIM was the most prevalent carbapenemase gene, and it was detected in all CRAB and CRPA isolates while blaOXA-23 and blaOXA-24 were detected in 29 and 24% of CRAB isolates, respectively. Co-carriage of blaOXA-23 and blaOXA-24 occurred in 14% of CRAB isolates. Moreover, 63% of the study isolates carried class 1 integrons; of these 31% successfully transferred blaVIM to E. coli J53. Conclusions CRAB and CRPA prevalence at the Mulago Hospital ICU is relatively low but carbapenemase genes especially blaVIM and blaOXA-23 are prevalent among them. This requires strengthening of infection control practices to curb selection and transmission of these strains in the hospital.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Christine F Najjuka
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henry Kajumbula
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Okee
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Immunology & Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Ivan Sserwadda
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Richard Mayanja
- Department of Immunology & Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L Joloba
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Immunology & Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David P Kateete
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda. .,Department of Immunology & Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda.
| |
Collapse
|
34
|
Domínguez M, Miranda CD, Fuentes O, de la Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front Microbiol 2019; 10:748. [PMID: 31031727 PMCID: PMC6474311 DOI: 10.3389/fmicb.2019.00748] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL−1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10−5 to 8.4 × 10−3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.
Collapse
Affiliation(s)
- Mariana Domínguez
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Oliver Fuentes
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Mery de la Fuente
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Félix A Godoy
- Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
35
|
Molapour A, Peymani A, Saffarain P, Habibollah-Pourzereshki N, Rashvand P. Plasmid-Mediated Quinolone Resistance in Pseudomonas aeruginosa Isolated from Burn Patients in Tehran, Iran. Infect Disord Drug Targets 2019; 20:49-55. [PMID: 30727922 DOI: 10.2174/1871526519666190206205521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Plasmid-induced quinolone resistance has raised a great concern in the treatment of serious infections worldwide. The aims of this study were to determine the antibiotic susceptibility, the frequency of qepA, aac(6')-Ib and qnr genes by PCR and sequencing, and typing of the resistant isolates using repetitive extragenic palindromic sequence-based PCR (REPPCR) in Pseudomonas aeruginosa isolated from burn wound infections. METHODS In the current cross-sectional study, 149 P. aeruginosa were isolated from the burn wound samples of patients admitted to Motahari hospital in Tehran, Iran, from February to December 2016. The bacterial isolates were identified using standard laboratory methods and their antibiotic susceptibility to quinolones was evaluated using the standard Kirby-Bauer method, according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The presence of aac(6')-Ib, qepA, qnrA, qnrB4, qnrB and qnrS genes was assessed using PCR and sequencing methods and clonal relationship of the resistant isolates was evaluated using REP-PCR method. RESULTS All (100%) isolates showed complete resistance to used quinolone compounds in this study. The qnr and qepA genes were not found, but all (100%) isolates were positive for the presence of aac(6')-Ib gene and the sequencing revealed that all (100%) belong to the aac(6')-Ib-cr variant. REP-PCR showed that the studied isolates belonged to three distinct clones of A (77.9%), B (18.1%), and C (4%). CONCLUSION The findings of the present study indicated the presence of aac(6')-Ib-cr variant and lack of the contribution of qnr and qepA in the emergence of resistance to quinolones in P. aeruginosa isolated from burn patients. Considering the importance of clonal spread of these resistant isolates and their significant role in the development of clinical infections, especially in patients with burns, more attention should be paid to the prevention of the dissemination of these resistant isolates.
Collapse
Affiliation(s)
- Azam Molapour
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Parvaneh Saffarain
- Department of Microbiology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Pooya Rashvand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
36
|
Biofilm Formation of Staphylococcus aureus under Food Heat Processing Conditions: First Report on CML Production within Biofilm. Sci Rep 2019; 9:1312. [PMID: 30718527 PMCID: PMC6361893 DOI: 10.1038/s41598-018-35558-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023] Open
Abstract
This study aimed to evaluate the Staphylococcus aureus biofilm formation and Nε-carboxymethyl-lysine generation ability under food heat processing conditions including pH (5.0-9.0), temperature (25 °C, 31 °C, 37 °C, 42 °C and 65 °C), NaCl concentration (10%, 15% and 20%, w/v) and glucose concentration (0.5%, 1%, 2%, 3%, 5%, 10%, w/v). S. aureus biofilm genetic character was obtained by PCR detecting atl, ica operon, sasG and agr. Biofilm biomass and metabolic activity were quantified with crystal violet and methyl thiazolyl tetrazolium staining methods. S. aureus biofilm was sensitive to food heat processing conditions with 37 °C, pH 7.0, 2% glucose concentration (w/v) and 10% NaCl concentration (w/v) were favorable conditions. Besides, free and bound Nε-carboxymethyl-lysine level in weak, moderate and strong biofilm were detected by optimized high performance liquid chromatography tandem mass spectrometry. Nε-carboxymethyl-lysine level in S. aureus biofilm possessed a significant gap between strong, moderate and weak biofilm strains. This investigation revealed the biological and chemical hazard of Staphylococcus aureus biofilm to food processing environment.
Collapse
|
37
|
Novovic KD, Malesevic MJ, Filipic BV, Mirkovic NL, Miljkovic MS, Kojic MO, Jovčić BU. PsrA Regulator Connects Cell Physiology and Class 1 Integron Integrase Gene Expression Through the Regulation of lexA Gene Expression in Pseudomonas spp. Curr Microbiol 2019; 76:320-328. [DOI: 10.1007/s00284-019-01626-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022]
|
38
|
Faghri J, Nouri S, Jalalifar S, Zalipoor M, Halaji M. Investigation of antimicrobial susceptibility, class I and II integrons among Pseudomonas aeruginosa isolates from hospitalized patients in Isfahan, Iran. BMC Res Notes 2018; 11:806. [PMID: 30419962 PMCID: PMC6233361 DOI: 10.1186/s13104-018-3901-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives The role of integrons in the transfer of antibiotic resistance is one of the important issues, therefore, this study is aimed to investigate antibiotic resistance pattern and prevalence of class 1 and 2 integrons in P. aeruginosa isolated. Results Out of 72 confirmed P. aeruginosa isolates, 50% were from ICU patients. Antibacterial susceptibility pattern showed that isolates were most resistant to ceftazidime (76.4%) and colistin was the most effective antibiotic (100%) and molecular analysis of class I and II integrons showed 55.5% and 29.1% of isolates were positive, respectively and the proportions of MDR isolates were significantly higher among integron-positive isolates with 73.6% compared to negative isolates with 22.9%. Our results showed that there was a correlation among class 1 and 2 integrons with MDR P. aeruginosa isolates. According to the importance of integrons in acquisition and dissemination of antibiotics resistance genes, the performance of antibiotic surveillance programs and investigating the role of integrons is recommended to control the spreading of antibiotics resistance genes.
Collapse
Affiliation(s)
- Jamshid Faghri
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Samereh Nouri
- Department of Microbiology, Clinical Laboratory of ALZAHRA Medical Center, Isfahan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Zalipoor
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Halaji
- Students Research Committee, Isfahan University of Medical Sciences, Hezar Jarib St, Isfahan, Iran.
| |
Collapse
|
39
|
Zarei-Yazdeli M, Eslami G, Zandi H, Kiani M, Barzegar K, Alipanah H, Mousavi SM, Shukohifar M. Prevalence of class 1, 2 and 3 integrons among multidrug-resistant Pseudomonas aeruginosa in Yazd, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:300-306. [PMID: 30675326 PMCID: PMC6340001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND AND OBJECTIVES Antibiotic resistance in Pseudomonas aeruginosa is an increasing health problem. Integrons are associated with a variety of gene cassettes, which confer resistance to multiple classes of antibiotics. This study aimed at screening the presence of class 1, 2 and 3 integrons in P. aeruginosa in Yazd, Iran. MATERIALS AND METHODS This study was carried out on P. aeruginosa strains from March 2016 to March 2017. Clinical specimens were initially identified by the standard biochemical methods and their resistance patterns to antibiotics were studied using the disc diffusion method. PCR was carried out for the detection of class 1, 2 and 3 integrons using intI1, intI2 and intI3 gene primers, respectively. RESULTS Antimicrobial susceptibility test showed that 75% of isolates were detected as multi-drug resistant (MDR), and lowest resistance was observed in ciprofloxacin (48.6%) and most resistance was in gentamicin (63.2%). Moreover, PCR results showed that 22 (15.3%) and 119 (82.6%) of P. aeruginosa isolates carried intI2 and intI1 genes, but intI3 gene was not found. CONCLUSION Since it is customary to observe Class I integrons in P. aeruginosa isolated from clinical samples, they are often responsible for antibiotic resistance gene transfer, which calls for evaluation of integrons as contributing factors in antibiotic resistance.
Collapse
Affiliation(s)
- Mohadeseh Zarei-Yazdeli
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Department of Parasitology and Mycology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hengameh Zandi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran,Corresponding author: Hengameh Zandi, Ph.D, Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. Tel: +989123088324, Fax: +983518203414,
| | - Masoumeh Kiani
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kazem Barzegar
- Department of English Language, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hanieh Alipanah
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Seyed Morteza Mousavi
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Shukohifar
- Department of Biostatistics and Epidemiology, Faculty of Paramedicine Abarkouh, Genetic and Environmental Adventures Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
40
|
Sultan I, Rahman S, Jan AT, Siddiqui MT, Mondal AH, Haq QMR. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front Microbiol 2018; 9:2066. [PMID: 30298054 PMCID: PMC6160567 DOI: 10.3389/fmicb.2018.02066] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
History of mankind is regarded as struggle against infectious diseases. Rather than observing the withering away of bacterial diseases, antibiotic resistance has emerged as a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly and comprises of target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on observing bacteria gradually becoming resistant to different classes of antibiotics through acquisition of resistance genes from same and different genera of bacteria. Attributing bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to minimize effects of antibiotics by various means including horizontal gene transfer (conjugation, transformation, and transduction), Mobile genetic elements (plasmids, transposons, insertion sequences, integrons, and integrative-conjugative elements) and bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.
Collapse
Affiliation(s)
- Insha Sultan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | | | | |
Collapse
|
41
|
Miao J, Wang W, Xu W, Su J, Li L, Li B, Zhang X, Xu Z. The fingerprint mapping and genotyping systems application on methicillin-resistant Staphylococcus aureus. Microb Pathog 2018; 125:246-251. [PMID: 30243550 DOI: 10.1016/j.micpath.2018.09.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/29/2022]
Abstract
As a typical Gram-positive microorganism, S. aureus was recognized as common foodborne pathogenic bacteria in food industry. To study their individuality and pathogenicity mechanism, thirty-three Staphylococci strains were applied to the investigation with the identification of MRSA by PCR targeting on S. aureus specific 16S rRNA and femA genes as well as methicillin-resistant mecA and orfX elements by multiplex-PCR assay. Fingerprinting mapping was then employed using three typing systems (KZ/M13, IS256 and ERIC2) to genotype 33 MRSA strains. As the result indicated, all 33 Staphylococci strains were identified as MRSA. However, diversity occurred among different fingerprinting system results. KZ/M13 system and IS256 system both typed 10 genotypes while ERIC2 system had 8 genotypes. Based on the genotyping results, a discussion was performed in typing ability, discriminatory ability and accordance ratio. Given the above studies, a novel rapid detection method for MRSA was conducted with multiplex-PCR, which possessed rapidity and accuracy. Meanwhile, three fingerprinting systems showed high sensitivity, resolution and classification ratio in MRSA typing. These methods have a broad application prospect in food safety and epidemiology in the future.
Collapse
Affiliation(s)
- Jian Miao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenxin Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Wenyi Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China; Department of Microbial Pathogenesis, University of Maryland, Baltimore, 21201, USA.
| |
Collapse
|
42
|
Liu J, Xu R, Zhong H, Zhong Y, Xie Y, Li L, Li B, Chen D, Xu Z. RETRACTED: Prevalence of GBS serotype III and identification of a ST 17-like genotype from neonates with invasive diseases in Guangzhou, China. Microb Pathog 2018; 120:213-218. [DOI: 10.1016/j.micpath.2018.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/27/2018] [Accepted: 05/02/2018] [Indexed: 10/25/2022]
|
43
|
Saticioglu IB, Duman M, Altun S. Antimicrobial resistance and molecular characterization of Pantoea agglomerans isolated from rainbow trout ( Oncorhynchus mykiss ) fry. Microb Pathog 2018; 119:131-136. [DOI: 10.1016/j.micpath.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 10/17/2022]
|
44
|
Liu J, Li L, Zhou L, Li B, Xu Z. Effect of ultrasonic field on the enzyme activities and ion balance of potential pathogen Saccharomyces cerevisiae. Microb Pathog 2018; 119:216-220. [DOI: 10.1016/j.micpath.2018.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 10/17/2022]
|
45
|
High flux isothermal assays on the pathogenic features of Mycoplasma pneumoniae. Microb Pathog 2018; 120:219-222. [PMID: 29730516 DOI: 10.1016/j.micpath.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/10/2018] [Accepted: 05/02/2018] [Indexed: 11/20/2022]
Abstract
As one of the most important pathogens, M. pneumoniae is a causative agent responsible for atypical and other respiratory tract infections, even its extra-pulmonary complications. This study aims to use the high and rapid flux sequencing assays on the M. pneumoniae and further bioinformatic analysis, for the investigation of their clinical features and pathogenic characteristics. The results in this study on the clinical features and pathogenic characteristics of M. pneumoniae may further aid in the control and surveillance and better understanding of this pathogen.
Collapse
|
46
|
Salimizadeh Z, Hashemi Karouei SM, Hosseini F. Dissemination of Class 1 Integron among Different Multidrug Resistant Pseudomonas aeruginosa Strains. MEDICAL LABORATORY JOURNAL 2018. [DOI: 10.29252/mlj.12.4.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
47
|
Vincenti S, Raponi M, Sezzatini R, Giubbini G, Laurenti P. Enterobacteriaceae Antibiotic Resistance in Ready-to-Eat Foods Collected from Hospital and Community Canteens: Analysis of Prevalence. J Food Prot 2018; 81:424-429. [PMID: 29457919 DOI: 10.4315/0362-028x.jfp-17-317] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne diseases and antibiotic resistance are serious widespread health problems in the contemporary world. In this study, we compared the microbiological quality of ready-to-eat (RTE) foods found in community canteens versus hospital canteens in Rome, Italy, focusing on detection and quantification of Enterobacteriaceae and the antibiotic resistance of these bacteria. Our findings show a remarkable difference in Enterobacteriaceae contamination between RTE foods distributed in community canteens (33.5% of samples) and those distributed in hospital canteens (5.3% of samples). This result highlights greater attention to good manufacturing practices and good hygiene practices by the food operators in hospitals compared with food operators in community canteens. As expected, a higher percentage of cold food samples (70.9%) than of hot food samples (10.8%) were positive for these bacteria. Excluding the intrinsic resistance of each bacterial strain, 92.3% of the isolated strains were resistant to at least one antibiotic, and about half of the isolated strains were classified as multidrug resistant. The prevalence of multidrug-resistant strains was 50% in the community samples and 33.3% in hospital canteens. Our results indicate that approximately 38% of RTE foods provided in community canteens is not compliant with microbiological food safety criteria and could be a special risk for consumers through spread of antibiotic-resistant strains. Hygienic processing and handling of foods is necessary for both hospital and community canteens.
Collapse
Affiliation(s)
- Sara Vincenti
- 1 Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168 Rome, Italy; and
| | - Matteo Raponi
- 2 Istituto di Sanità Pubblica, Sezione Igiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Romina Sezzatini
- 1 Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168 Rome, Italy; and
| | - Gabriele Giubbini
- 2 Istituto di Sanità Pubblica, Sezione Igiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Patrizia Laurenti
- 1 Fondazione Policlinico Universitario Agostino Gemelli, Largo Francesco Vito 1, 00168 Rome, Italy; and.,2 Istituto di Sanità Pubblica, Sezione Igiene, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
48
|
Mobaraki S, Aghazadeh M, Soroush Barhaghi MH, Yousef Memar M, Goli HR, Gholizadeh P, Samadi Kafil H. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. Biomedicine (Taipei) 2018; 8:2. [PMID: 29480797 PMCID: PMC5825915 DOI: 10.1051/bmdcn/2018080102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Background: The presence of Class 1, 2 and 3 integrons in clinical isolates of Pseudomonas aeruginosa with multi-drug resistance phenotype has rendered the organism as a new concern. Objective: This study aimed to investigate the prevalence of Class 1, 2 and 3 integrons in multi-drug resistant clinical isolates of Pseudomonas aeruginosa collected from hospitals in the city of Tabriz Materials and Methods: A total of 200 P. aeruginosa non-duplicated clinical isolates were collected from inpatients and outpatients in different wards of hospitals from May to November 2016. The bacteria were identified by conventional microbiological methods. Antibiotic susceptibility test was performed by disk diffusion method and the presence of integrons was analyzed by polymerase chain reaction (PCR). Results: Colistin was the most effective antibiotic, while 98% of the isolates were resistant to cefotaxime. Fifty-three percent of the isolates were recorded as multi-drug resistant (MDR) phenotype; however, 27.5% of the isolates were resistant to more than 8 antibiotics. In this study, 55 (27.5%), 51 (25.5%), and 30 (15%) clinical isolates of P. aeruginosa were positive for Class 1, 2 and 3 integrons, respectively. aac(6)II in Class I integrons and dfrA1 in ClassII and aacA7 in Class II integrons were the most prevalent genes. Resistance to aminoglycosides were the most common genes harbored by integrons. Conclusion: The results of this study showed that the prevalence of Class 1, 2 and 3 in integron genes in most P. aeruginosa strains islated from different parts and equipment used in the hospital. The role of these transferable genetic agents has been proven in the creation of resistance. Therefore, it is essential to use management practices to optimize the use of antibiotics, preferably based on the results of antibiogram and trace coding genes for antibiotic resistance.
Collapse
Affiliation(s)
- Shahram Mobaraki
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Aghazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Yousef Memar
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hamid Reza Goli
- Department of Medical Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, I.R. Iran
| | - Pourya Gholizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, I.R. Iran - Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran - Iranian Center of Excellence in Health Management, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413. Microb Pathog 2018; 117:265-269. [PMID: 29486277 DOI: 10.1016/j.micpath.2018.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVES We previously described the novel qnrVC6 and blaIMP-45 carrying megaplasmid pBM413. This study aimed to investigate the complete genome of multidrug-resistance P. aeruginosa Guangzhou-Pae617, a clinical isolate from the sputum of a patient who was suffering from respiratory disease in Guangzhou, China. METHODS The genome was sequenced using Illumina Hiseq 2500 and PacBio RS II sequencers and assembled de novo using HGAP. The genome was automatically and manually annotated. RESULTS The genome of P. aeruginosa Guangzhou-Pae617 is 6,430,493 bp containing 5881 predicted genes with an average G + C content of 66.43%. The genome showed high similarity to two new sequenced P. aeruginosa strains isolated from New York, USA. From the whole genome sequence, we identified a type IV pilin, two large prophages, 15 antibiotic resistant genes, 5 genes involved in the "Infectious diseases" pathways, and 335 virulence factors. CONCLUSIONS The antibiotic resistance and virulence factors in the genome of P. aeruginosa strain Guangzhou-Pae617 were identified by complete genomic analysis. It contributes to further study on antibiotic resistance mechanism and clinical control of P. aeruginosa.
Collapse
|
50
|
Liu L, Lu Z, Li L, Li B, Zhang X, Zhang X, Xu Z. Physical relation and mechanism of ultrasonic bactericidal activity on pathogenic E. coli with WPI. Microb Pathog 2018; 117:73-79. [PMID: 29428425 DOI: 10.1016/j.micpath.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study aimed to investigate the physical relation and mechanism of bactericidal activity on pathogenic E. coli by ultrasonic field with whey protein isolate (WPI). METHODS Ultrasound treatment was performed under the conditions of intensity at 65 W/cm2, pulse duty ratio at 0.5 for 0-15 min with WPI concentration ranged from 0 to 10%. Viscosity, granularity, surface hydrophobicity, free radical scavenging activity, and thermal denaturation were assessed by rotational viscometer, Malvern Mastersizer 2000 particle size analyzer, fluorescent probe ANS method, DPPH method, and differential scanning calorimetry, respectively. RESULTS The thermal denaturation of WPI was not altered by ultrasound field, but the viscosity of WPI was increased upon 10 min treatment. Additionally, its ability to scavenge free radicals and hydrophobicity were increased. The result also showed that the bacteria viability was improved by WPI during ultrasound treatment. However, the WPI protection was decreased by the prolonged treatment. CONCLUSION Ultrasound treatment resulted in the increasing of the viscosity, free radicals scavenging activity and hydrophobicity of WPI which led to reduced bactericidal activity on E. coil, while WPI protection was disintegrated by prolonged treatment.
Collapse
Affiliation(s)
- Liyan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Zerong Lu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China
| | - Ximei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China.
| | - Zhenbo Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou, 510640, PR China; Department of Microbial Pathogenesis, University of Maryland, Baltimore, 21201, USA.
| |
Collapse
|