1
|
Bergsten H, Nizet V. The intricate pathogenicity of group a Streptococcus: A comprehensive update. Virulence 2024:2412745. [PMID: 39370779 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Oppegaard O. Unravelling pathogenetic mechanisms of epidemic lineages. Virulence 2017; 8:1102-1104. [DOI: 10.1080/21505594.2017.1328344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Oppegaard O, Mylvaganam H, Skrede S, Jordal S, Glambek M, Kittang BR. Clinical and molecular characteristics of infective β-hemolytic streptococcal endocarditis. Diagn Microbiol Infect Dis 2017; 89:135-142. [PMID: 28780243 DOI: 10.1016/j.diagmicrobio.2017.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 06/23/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus pyogenes (S. pyogenes) and Streptococcus dysgalactiae subspecies equisimilis (SDSE) cause considerable morbidity and mortality, and show similarities in disease manifestations and pathogenic mechanisms. Their involvement in infective endocarditis, however, has not been well described. Invasive S. pyogenes and SDSE infections in Health Region Bergen, Norway, in the period 1999-2013 were reviewed, and sixteen cases of endocarditis were identified. The median duration of symptoms was 2.5days, the frequency of embolic events 50%, 38% received valve replacement and the 30-day mortality was 25%. In S. pyogenes, a significant correlation was observed between the repertoire of fibronectin-binding genes, phenotypic binding ability to fibronectin and disease manifestations. Conversely, no associations between phenotypic and genotypic characteristics were detected in SDSE. S. pyogenes and SDSE endocarditis is characterized by rapid and severe clinical manifestations. The pathogenesis is multifactorial, but our results infer a potential role of fibronectin binding in the development of S. pyogenes endocarditis.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Stina Jordal
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Marte Glambek
- Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway.
| | | |
Collapse
|
4
|
Gandhi GD, Krishnamoorthy N, Motal UMA, Yacoub M. Towards developing a vaccine for rheumatic heart disease. Glob Cardiol Sci Pract 2017; 2017:e201704. [PMID: 28971103 PMCID: PMC5621712 DOI: 10.21542/gcsp.2017.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most serious manifestations of rheumatic fever, which is caused by group A Streptococcus (GAS or Streptococcus pyogenes) infection. RHD is an auto immune sequelae of GAS pharyngitis, rather than the direct bacterial infection of the heart, which leads to chronic heart valve damage. Although antibiotics like penicillin are effective against GAS infection, improper medical care such as poor patient compliance, overcrowding, poverty, and repeated exposure to GAS, leads to acute rheumatic fever and RHD. Thus, efforts have been put forth towards developing a vaccine. However, a potential global vaccine is yet to be identified due to the widespread diversity of S. pyogenes strains and cross reactivity of streptococcal proteins with host tissues. In this review, we discuss the available vaccine targets of S. pyogenes and the significance of in silico approaches in designing a vaccine for RHD.
Collapse
Affiliation(s)
- Geethanjali Devadoss Gandhi
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar
| | - Navaneethakrishnan Krishnamoorthy
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Division of Experimental Genetics, Sidra Medical and Research Center, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ussama M Abdel Motal
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar
| | - Magdi Yacoub
- Division of Cardiovascular Research, Sidra Medical and Research Center, Qatar Foundation, Doha, Qatar.,Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Kuo CF, Tsao N, Hsieh IC, Lin YS, Wu JJ, Hung YT. Immunization with a streptococcal multiple-epitope recombinant protein protects mice against invasive group A streptococcal infection. PLoS One 2017; 12:e0174464. [PMID: 28355251 PMCID: PMC5371370 DOI: 10.1371/journal.pone.0174464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) causes clinical diseases, including pharyngitis, scarlet fever, impetigo, necrotizing fasciitis and streptococcal toxic shock syndrome. A number of group A streptococcus vaccine candidates have been developed, but only one 26-valent recombinant M protein vaccine has entered clinical trials. Differing from the design of a 26-valent recombinant M protein vaccine, we provide here a vaccination using the polyvalence epitope recombinant FSBM protein (rFSBM), which contains four different epitopes, including the fibronectin-binding repeats domain of streptococcal fibronectin binding protein Sfb1, the C-terminal immunogenic segment of streptolysin S, the C3-binding motif of streptococcal pyrogenic exotoxin B, and the C-terminal conserved segment of M protein. Vaccination with the rFSBM protein successfully prevented mortality and skin lesions caused by several emm strains of GAS infection. Anti-FSBM antibodies collected from the rFSBM-immunized mice were able to opsonize at least six emm strains and can neutralize the hemolytic activity of streptolysin S. Furthermore, the internalization of GAS into nonphagocytic cells is also reduced by anti-FSBM serum. These findings suggest that rFSBM can be applied as a vaccine candidate to prevent different emm strains of GAS infection.
Collapse
Affiliation(s)
- Chih-Feng Kuo
- Department of Nursing, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Nina Tsao
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - I-Chen Hsieh
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Hung
- Department of Biological Science and Technology, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
The FasX Small Regulatory RNA Negatively Regulates the Expression of Two Fibronectin-Binding Proteins in Group A Streptococcus. J Bacteriol 2015; 197:3720-30. [PMID: 26391206 DOI: 10.1128/jb.00530-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The group A Streptococcus (GAS; Streptococcus pyogenes) causes more than 700 million human infections each year. The success of this pathogen can be traced in part to the extensive arsenal of virulence factors that are available for expression in temporally and spatially specific manners. To modify the expression of these virulence factors, GAS use both protein- and RNA-based regulators, with the best-characterized RNA-based regulator being the small regulatory RNA (sRNA) FasX. FasX is a 205-nucleotide sRNA that contributes to GAS virulence by enhancing the expression of the thrombolytic secreted virulence factor streptokinase and by repressing the expression of the collagen-binding cell surface pili. Here, we have expanded the FasX regulon, showing that this sRNA also negatively regulates the expression of the adhesion- and internalization-promoting, fibronectin-binding proteins PrtF1 and PrtF2. FasX posttranscriptionally regulates the expression of PrtF1/2 through a mechanism that involves base pairing to the prtF1 and prtF2 mRNAs within their 5' untranslated regions, overlapping the mRNA ribosome-binding sites. Thus, duplex formation between FasX and the prtF1 and prtF2 mRNAs blocks ribosome access, leading to an inhibition of mRNA translation. Given that FasX positively regulates the expression of the spreading factor streptokinase and negatively regulates the expression of the collagen-binding pili and of the fibronectin-binding PrtF1/2, our data are consistent with FasX functioning as a molecular switch that governs the transition of GAS between the colonization and dissemination stages of infection. IMPORTANCE More than half a million deaths each year are a consequence of infections caused by GAS. Insights into how this pathogen regulates the production of proteins during infection may facilitate the development of novel therapeutic or preventative regimens aimed at inhibiting this activity. Here, we have expanded insight into the regulatory activity of the GAS small RNA FasX. In addition to identifying that FasX reduces the abundance of the cell surface-located fibronectin-binding proteins PrtF1/2, fibronectin is present in high abundance in human tissues, and we have determined the mechanism behind this regulation. Importantly, as FasX is the only mechanistically characterized regulatory RNA in GAS, it serves as a model RNA in this and related pathogens.
Collapse
|
7
|
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.
Collapse
|
8
|
Balaji K, Thenmozhi R, Prajna L, Dhananjeyan G, Pandian SK. Comparative analysis of emm types, superantigen gene profiles and antibiotic resistance genes among Streptococcus pyogenes isolates from ocular infections, pharyngitis and asymptomatic children in south India. INFECTION GENETICS AND EVOLUTION 2013; 19:105-12. [PMID: 23851012 DOI: 10.1016/j.meegid.2013.06.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes) is responsible for a wide array of infections and incidence is high in developing countries like India. Although distribution of emm types of S. pyogenes in India has been described, its association with the virulence genes and ocular isolates is less concentrated. In the present study emm type surveillance as well as its association with toxin gene profile was analyzed. Ocular infected cases such as lacrimal abscess, corneal ulcers, mucocoele showed the presence of 20 S. pyogenes isolates. For noninvasive isolates, we screened 370 pharyngitis cases and 400 asymptomatic school children and recovered 33 pharyngitis and 14 carrier isolates respectively. 14 Emm type distributions were observed in ocular isolates, 11 emm types each in pharyngitis and asymptomatic carrier isolates. The two dominant emm types, emm49 and emm63 were accounted for 33% of the total S. pyogenes isolates. Among ocular isolates, slo, smeZ, speB and speG were found in >50% of isolates, in pharyngitis smeZ (48%), speB (45%) and speG (42%) genes were found to be prevalent. Alarmingly, carrier isolates showed more prevalence to virulence genes than the ocular and pharyngitis isolates with speF (79%), speB, speG (64%), slo and sil (64%). Among the three groups, pharyngitis isolates harbored more prtF1 (33%) and prtF2 (94%) than the asymptomatic carriers (28% and 71%) and the ocular isolates (45% and 40%). 450bp Size band in prtF1 and 350bp size band in prtF2 showed dominance. Among the three groups tested, the distribution of ermB and mefA was high in pharyngitis isolates (30%) where 10 isolates showed the presence of both genes. None of the isolates showed the presence of ermA and tetO genes. Dendrogram generated based on the virulence and antibiotic resistance gene profiles revealed that except one cluster, all other clusters showed some correlation with ocular, pharyngitis and asymptomatic carrier isolates, irrespective of their emm types.
Collapse
Affiliation(s)
- Kannan Balaji
- Department of Biotechnology, Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | | |
Collapse
|
9
|
Yamaguchi M, Terao Y, Kawabata S. Pleiotropic virulence factor - Streptococcus pyogenes fibronectin-binding proteins. Cell Microbiol 2012. [PMID: 23190012 DOI: 10.1111/cmi.12083] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Streptococcus pyogenes causes a broad spectrum of infectious diseases, including pharyngitis, skin infections and invasive necrotizing fasciitis. The initial phase of infection involves colonization, followed by intimate contact with the host cells, thus promoting bacterial uptake by them. S. pyogenes recognizes fibronectin (Fn) through its own Fn-binding proteins to obtain access to epithelial and endothelial cells in host tissue. Fn-binding proteins bind to Fn to form a bridge to α5 β1 -integrins, which leads to rearrangement of cytoskeletal actin in host cells and uptake of invading S. pyogenes. Recently, several structural analyses of the invasion mechanism showed molecular interactions by which Fn converts from a compact plasma protein to a fibrillar component of the extracellular matrix. After colonization, S. pyogenes must evade the host innate immune system to spread into blood vessels and deeper organs. Some Fn-binding proteins contribute to evasion of host innate immunity, such as the complement system and phagocytosis. In addition, Fn-binding proteins have received focus as non-M protein vaccine candidates, because of their localization and conservation among different M serotypes.Here, we review the roles of Fn-binding proteins in the pathogenesis and speculate regarding possible vaccine antigen candidates.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Cell Membrane Biology, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, 567-0047, Japan
| | | | | |
Collapse
|
10
|
Pires R, Rolo D, Morais A, Brito-Avô A, Johansson C, Henriques-Normark B, Gonçalo-Marques J, Santos-Sanches I. Description of macrolide-resistant and potential virulent clones of Streptococcus pyogenes causing asymptomatic colonization during 2000-2006 in the Lisbon area. Eur J Clin Microbiol Infect Dis 2011; 31:849-57. [PMID: 22012657 DOI: 10.1007/s10096-011-1384-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/08/2011] [Indexed: 11/26/2022]
Abstract
The asymptomatic oropharyngeal colonization rate by Streptococcus pyogenes was 10.7% in children (901 among 8,405 children 0-16 years old) and 3.3% in adults (37 among 1,126 households of children) in the Lisbon area during 2000-2006. Macrolide-resistant S. pyogenes from children (n = 149) was variable with time: 9.8-10.7% in 2000-2002, 28.1% in 2003, 19.6-2.7% in 2004-2005 and 14.6% in 2006. Eight lineages (97.3% of isolates) were identified based on at least 80% similarity of PFGE patterns, T types, emm types and multilocus sequence types (ST). The elevated frequency of macrolide resistance was associated with M phenotype lineages I (emm12/ST36) and V (emm4, emm75/ST39 and a novel emmstMrp6 type) and with one cMLS(B) lineage IV (emm28/ST52) known to be associated with upper respiratory tract and invasive infections. Significant associations (p < 0.05) between emm type/virulence genotype were found, such as emm1/speA (+) ssa (-), emm4/ssa (+) prtF1 (+), emm12/speA (-) ssa (-). The high prevalence (>20%) of speC, prtF1 or ssa was probably caused either by clonal dissemination (speC), or to horizontal gene transfer events (prtF1 and ssa). This report contributes to a better understanding of the molecular epidemiology and evolution of macrolide-resistant S. pyogenes causing symptom-free oropharyngeal colonization. These colonizing strains carry macrolide resistance and virulence genes capable of being transferred to other bacterial species sharing the same niche.
Collapse
Affiliation(s)
- R Pires
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Livezey J, Perez L, Suciu D, Yu X, Robinson B, Bush D, Merrill G. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray. J Med Microbiol 2011; 60:1725-1733. [PMID: 21799202 DOI: 10.1099/jmm.0.022939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharyngitis caused by group A streptococci (GAS) is one of the most common infections around the world. However, relatively little is known about which genes are expressed and which genes regulate expression during acute infection. Due to their ability to provide genome-wide views of gene expression at one time, microarrays are increasingly being incorporated in GAS research. In this study, a novel electrochemical detection-based microarray was used to identify gene expression patterns among humans with culture-confirmed GAS pharyngitis. Using 14 samples (11 GAS-positive and three GAS-negative) obtained from subjects seen at the Brooke Army Medical Center paediatric clinic, this study demonstrated two different clusters of gene expression patterns. One cluster expressed a larger number of genes related to phages, immune-system evasion and survival among competing oral flora, signifying a potentially more virulent pattern of gene expression. The other cluster showed a greater number of genes related to nutrient acquisition and protein expression. This in vivo genome-wide analysis of GAS gene expression in humans with pharyngitis evaluated global gene expression in terms of virulence factors.
Collapse
Affiliation(s)
- Jeffrey Livezey
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Luis Perez
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Dominic Suciu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Xin Yu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Brian Robinson
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - David Bush
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Gerald Merrill
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| |
Collapse
|
12
|
Willems RJL, Hanage WP, Bessen DE, Feil EJ. Population biology of Gram-positive pathogens: high-risk clones for dissemination of antibiotic resistance. FEMS Microbiol Rev 2011; 35:872-900. [PMID: 21658083 DOI: 10.1111/j.1574-6976.2011.00284.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infections caused by multiresistant Gram-positive bacteria represent a major health burden in the community as well as in hospitalized patients. Staphylococcus aureus, Enterococcus faecalis and Enterococcus faecium are well-known pathogens of hospitalized patients, frequently linked with resistance against multiple antibiotics, compromising effective therapy. Streptococcus pneumoniae and Streptococcus pyogenes are important pathogens in the community and S. aureus has recently emerged as an important community-acquired pathogen. Population genetic studies reveal that recombination prevails as a driving force of genetic diversity in E. faecium, E. faecalis, S. pneumoniae and S. pyogenes, and thus, these species are weakly clonal. Although recombination has a relatively modest role driving the genetic variation of the core genome of S. aureus, the horizontal acquisition of resistance and virulence genes plays a key role in the emergence of new clinically relevant clones in this species. In this review, we discuss the population genetics of E. faecium, E. faecalis, S. pneumoniae, S. pyogenes and S. aureus. Knowledge of the population structure of these pathogens is not only highly relevant for (molecular) epidemiological research but also for identifying the genetic variation that underlies changes in clinical behaviour, to improve our understanding of the pathogenic behaviour of particular clones and to identify novel targets for vaccines or immunotherapy.
Collapse
Affiliation(s)
- Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Köller T, Manetti AGO, Kreikemeyer B, Lembke C, Margarit I, Grandi G, Podbielski A. Typing of the pilus-protein-encoding FCT region and biofilm formationas novel parameters in epidemiological investigations of Streptococcuspyogenes isolates from various infection sites. J Med Microbiol 2010; 59:442-452. [DOI: 10.1099/jmm.0.013581-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pyogenes is an important human pathogen for whichan association between infection site and selected epidemiological or functionalmarkers has previously been suggested. However, the studies involved oftenused strains with an insufficiently defined clinical background and laboratoryhistory. Thus, the major goal of the present study was to investigate theserelationships in 183 prospectively collected, well-defined, low-passage isolatesfrom a North-East German centre for tertiary care. For each isolate the clinicalbackground (91 respiratory, 71 skin and 21 invasive isolates) andantibiotic-resistance pattern was recorded. All isolates were classified accordingto their emm type, antibiotic-resistance and PFGE pattern (SmaI restriction analysis of genomic DNA). As novel discriminatorymethods we performed a PCR-based typing of the pilus-protein-encoding FCTregion (FCT) and biofilm-formation phenotyping in various culturemedia. Forty-one isolates were found to be resistant to at least one of thetested antibiotics. emm typing revealed emm28, emm12, emm1, emm4, emm89 and emm2 as themost frequent types in our collection. The novel FCT typing showed isolatesencoding FCT types 4 and 2 to be the most common. Overall 113 strains withunique combinations of emm and FCT types, antibiotic-resistance andPFGE patterns were identified. The majority of all isolates revealed an associationof biofilm-formation capacity with growth media. Comparing all results forpotential associations, no correlation could be established between the anatomicalsite of isolation and the emm or the FCT type. There was no relationshipbetween biofilm formation and emm type, antibiotic-resistance orPFGE patterns. However, a novel association between biofilm formation andFCT type became obvious among strains from our collection.
Collapse
Affiliation(s)
- Thomas Köller
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | - Cordula Lembke
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| | | | - Guido Grandi
- Novartis Vaccines and Diagnostics, Via Fiorentina1, 53100 Siena, Italy
| | - Andreas Podbielski
- Institute of Medical Microbiology, Virology and Hygiene,University Hospital, Schillingallee 70, D-18057 Rostock, Germany
| |
Collapse
|
14
|
Zautner AE, Krause M, Stropahl G, Holtfreter S, Frickmann H, Maletzki C, Kreikemeyer B, Pau HW, Podbielski A. Intracellular persisting Staphylococcus aureus is the major pathogen in recurrent tonsillitis. PLoS One 2010; 5:e9452. [PMID: 20209109 PMCID: PMC2830486 DOI: 10.1371/journal.pone.0009452] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 02/05/2010] [Indexed: 02/01/2023] Open
Abstract
Background The two major indications for tonsillectomy are recurrent tonsillitis (RT) and peritonsillar abscess (PTA). Unlike PTAs, which are primarily treated surgically, RT is often cured by tonsillectomy only after a series of failed drug therapy attempts. Although the bacteriological background of RT has been studied, the reason for the lack of success of conservative therapeutic approaches is not well understood. Methods In a prospective study, tonsil specimens from 130 RT patients and 124 PTA patients were examined for the presence of extra- and intracellular bacteria using antibiotic protection assays. Staphylococcus aureus isolates from RT patients were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing and MSCRAMM-gene-PCR. Their ability for biofilm formation was tested and their cell invasiveness was confirmed by a flow cytometric invasion assay (FACS), fluorescent in situ hybridization (FISH) and immunohistochemistry. Findings S. aureus was the predominant species (57.7%) in RT patients, whereas Streptococcus pyogenes was most prevalent (20.2%) in PTA patients. Three different assays (FACS, FISH, antibiotic protection assay) showed that nearly all RT-associated S. aureus strains were located inside tonsillar cells. Correspondingly, the results of the MSCRAMM-gene-PCRs confirmed that 87% of these S. aureus isolates were invasive strains and not mere colonizers. Based upon PFGE analyses of genomic DNA and on spa-gene typing the vast majority of the S. aureus isolates belonged to different clonal lineages. Conclusions Our results demonstrate that intracellular residing S. aureus is the most common cause of RT and indicate that S. aureus uses this location to survive the effects of antibiotics and the host immune response. A German translation of the Abstract is provided as supplementary material (Abstract S1).
Collapse
Affiliation(s)
- Andreas E Zautner
- Institute of Medical Microbiology, Virology and Hygiene, Rostock, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hotomi M, Billal DS, Togawa A, Ikeda Y, Takei S, Kono M, Ogami M, Ubukata K, Sugita R, Fujihara K, Yamanaka N. Distribution of fibronectin-binding protein genes (prtF1 and prtF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. J Infect Chemother 2009; 15:367-73. [PMID: 20012726 DOI: 10.1007/s10156-009-0724-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
Abstract
Two hundred and seventy-two strains of Streptococcus pyogenes isolated from patients with invasive and noninvasive infections in Japan were evaluated for the prevalence of fibronectin-binding protein genes (prtF1 and prtF2). The possible associations of the genes with streptococcal pyrogenic exotoxin genes, macrolide resistance genes, and emm types were also evaluated. Overall, about 50% of S. pyogenes isolates carried fibronectin-binding protein genes. The prevalence of the prtF1 gene was significantly higher among isolates from noninvasive infections (71.4%) than among isolates from invasive infections (30.8%; P = 0.0037). Strains possessing both the prtF1 and prtF2 genes were more likely to be isolates from noninvasive infections than isolates from invasive infections (50.6% vs 15.4%; P = 0.019). S. pyogenes isolates with streptococcus pyrogenic exotoxin genes (speA and speZ) were more common among isolates without fibronectin-binding protein genes. The speC gene was more frequently identified among isolates with fibronectin-binding protein genes (P = 0.05). Strains belonging to emm75 or emm12 types more frequently harbored macrolide resistance genes than other emm types (P = 0.0094 and P = 0.043, respectively). Strains carrying more than one repeat at the RD2 region of the prtF1 gene and the FBRD region of the prtF2 gene were more prevalent among strains with macrolide resistance genes than among strains negative for macrolide resistance genes. These genes (i.e., the prtF1, prtF2, and spe genes) may enable host-bacteria interaction, and internalization in the host cell, but may not enable infection complications such as invasive diseases.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sanderson-Smith ML, Dinkla K, Cole JN, Cork AJ, Maamary PG, McArthur JD, Chhatwal GS, Walker MJ. M protein-mediated plasminogen binding is essential for the virulence of an invasive Streptococcus pyogenes isolate. FASEB J 2008; 22:2715-22. [PMID: 18467595 DOI: 10.1096/fj.07-105643] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human protease plasmin plays a crucial role in the capacity of the group A streptococcus (GAS; Streptococcus pyogenes) to initiate invasive disease. The GAS strain NS88.2 was isolated from a case of bacteremia from the Northern Territory of Australia, a region with high rates of GAS invasive disease. Mutagenesis of the NS88.2 plasminogen binding M protein Prp was undertaken to examine the contribution of plasminogen binding and cell surface plasmin acquisition to virulence. The isogenic mutant NS88.2prp was engineered whereby four amino acid residues critical for plasminogen binding were converted to alanine codons in the GAS genome sequence. The mutated residues were reverse complemented to the wild-type sequence to construct GAS strain NS88.2prpRC. In comparison to NS88.2 and NS88.2prpRC, the NS88.2prp mutant exhibited significantly reduced ability to bind human plasminogen and accumulate cell surface plasmin activity during growth in human plasma. Utilizing a humanized plasminogen mouse model of invasive infection, we demonstrate that the capacity to bind plasminogen and accumulate surface plasmin activity plays an essential role in GAS virulence.
Collapse
Affiliation(s)
- M L Sanderson-Smith
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Creti R, Imperi M, Baldassarri L, Pataracchia M, Recchia S, Alfarone G, Orefici G. emm Types, virulence factors, and antibiotic resistance of invasive Streptococcus pyogenes isolates from Italy: What has changed in 11 years? J Clin Microbiol 2007; 45:2249-56. [PMID: 17494723 PMCID: PMC1933002 DOI: 10.1128/jcm.00513-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/12/2007] [Accepted: 04/27/2007] [Indexed: 11/20/2022] Open
Abstract
To investigate the epidemiology and characteristics of invasive group A streptococcal (GAS) disease over 11 years in Italy, this study compared the emm types and the superantigen toxin genes speA and speC as well as the erythromycin, clindamycin, and tetracycline susceptibilities of 207 invasive GAS strains collected during two national enhanced surveillance periods (1994 to 1996 and 2003 to 2005) and the time between each set of surveillance periods. The present study demonstrated that emm1 strains were consistently responsible for about 20% of invasive GAS infections, while variations in the frequencies of the other types were noted, although the causes of most cases of invasive infections were restricted to emm1, emm3, emm4, emm6, emm12, and emm18. During the 1994 to 1996 surveillance period, an emm89 epidemic clone spread across the northern part of Italy. A restricted macrolide resistance phenotype-type distribution of the bacteriophage-encoded speA toxin as well as of macrolide resistance genes was noted over time. Indeed, the recent acquisition of macrolide resistance in previously susceptible emm types was observed.
Collapse
Affiliation(s)
- Roberta Creti
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|